Skip to content
2000
Volume 25, Issue 10
  • ISSN: 1568-0096
  • E-ISSN: 1873-5576

Abstract

Introduction

The heterogeneity of breast cancer requires exploring novel prognostic biomarkers as well as therapeutic targets for the treatment of the disease.

Methods

The METABRIC dataset was used to describe the gene expression of the programmed death-ligand 1 (PD-L1) and the hepatocyte growth factor receptor (MET) and their association with the tumor clinicopathologic characteristics and overall survival in breast cancer.

Results

The expression of the PD-L1 and MET genes correlated positively with the Nottingham Prognostic Index (NPI) (p=0.003 and 0.001, respectively). The expression of the two genes correlated inversely in patients with luminal A and luminal B tumors (r= – 0.089, p= 0.021 and r= – 0.116, p= 0.013, respectively). The mRNA levels were significantly higher in hormone receptor-negative and HER2-positive tumors. mRNA expression levels were significantly higher in hormone receptor-negative, HER2-enriched, and non-luminal breast cancers. The double-high expression was associated with younger age of patients at diagnosis, higher NPI scores, larger tumors, advanced stage, high-grade, hormone receptor-negativity, HER2-positivity, and non-luminal tumors. None of the genes or their double expression status was significantly associated with overall survival in this analysis.

Conclusion

The expression of the PD-L1 and MET genes is remarkably associated with worse tumor clinicopathologic features and poor prognosis in patients with breast cancer. Further investigations using combination drug regimens targeting PD-L1 and MET are important, particularly in breast tumors expressing high levels of both proteins.

Loading

Article metrics loading...

/content/journals/ccdt/10.2174/0115680096333231240902070108
2024-10-10
2025-12-24
Loading full text...

Full text loading...

References

  1. SungH. FerlayJ. SiegelR.L. LaversanneM. SoerjomataramI. JemalA. BrayF. Global cancer statistics 2020: Globocan estimates of incidence and mortality worldwide for 36 cancers in 185 countries.CA Cancer J. Clin.202171320924910.3322/caac.21660 33538338
    [Google Scholar]
  2. EliyatkinN. YalçınE. ZengelB. AktaşS. VardarE. Molecular classification of breast carcinoma: From traditional, old-fashioned way to a new age, and a new way.J. Breast Health2015112596610.5152/tjbh.2015.1669 28331693
    [Google Scholar]
  3. SørlieT. PerouC.M. TibshiraniR. AasT. GeislerS. JohnsenH. HastieT. EisenM.B. van de RijnM. JeffreyS.S. ThorsenT. QuistH. MateseJ.C. BrownP.O. BotsteinD. LønningP.E. Børresen-DaleA.L. Gene expression patterns of breast carcinomas distinguish tumor subclasses with clinical implications.Proc. Natl. Acad. Sci.20019819108691087410.1073/pnas.191367098 11553815
    [Google Scholar]
  4. PerouC.M. SørlieT. EisenM.B. van de RijnM. JeffreyS.S. ReesC.A. PollackJ.R. RossD.T. JohnsenH. AkslenL.A. FlugeØ. PergamenschikovA. WilliamsC. ZhuS.X. LønningP.E. Børresen-DaleA.L. BrownP.O. BotsteinD. Molecular portraits of human breast tumours.Nature2000406679774775210.1038/35021093 10963602
    [Google Scholar]
  5. HungS.K. YangH.J. LeeM.S. LiuD.W. ChenL.C. ChewC.H. LinC.H. LeeC.H. LiS.C. HongC.L. YuC.C. YuB.H. HsuF.C. ChiouW.Y. LinH.Y. Molecular subtypes of breast cancer predicting clinical benefits of radiotherapy after breast-conserving surgery: A propensity-score-matched cohort study.Breast Cancer Res.202325114910.1186/s13058‑023‑01747‑9 38066611
    [Google Scholar]
  6. KapilaK. FrancisI.M. AltemaimiR.A. Al-AyadhyB. AlathP. JaraghM. MothafarF.J. Hormone receptors and human epidermal growth factor (HER2) expression in fine-needle aspirates from metastatic breast carcinoma – Role in patient management.J. Cytol.20193629410010.4103/JOC.JOC_117_18 30992644
    [Google Scholar]
  7. PariseC.A. CaggianoV. Breast cancer survival defined by the ER/PR/HER2 subtypes and a surrogate classification according to tumor grade and immunohistochemical biomarkers.J. Cancer Epidemiol.2014201411110.1155/2014/469251 24955090
    [Google Scholar]
  8. HartkopfA.D. GrischkeE.M. BruckerS.Y. Endocrine-resistant breast cancer: Mechanisms and treatment.Breast Care202015434735410.1159/000508675 32982644
    [Google Scholar]
  9. SchlamI. TarantinoP. TolaneyS.M. Overcoming resistance to HER2-directed therapies in breast cancer.Cancers20221416399610.3390/cancers14163996 36010990
    [Google Scholar]
  10. Neves Rebello AlvesL. Dummer MeiraD. Poppe MeriguetiL. Correia CasottiM. do Prado VentorimD. Ferreira Figueiredo AlmeidaJ. Pereira de SousaV. Cindra Sant’AnaM. Gonçalves Coutinho da CruzR. Santos LouroL. Mendonça SantanaG. Erik Santos LouroT. Evangelista SalazarR. Ribeiro Campos da SilvaD. Stefani Siqueira ZetumA. Silva dos Reis TrabachR. Imbroisi Valle ErreraF. de PaulaF. de Vargas Wolfgramm dos SantosE. Fagundes de CarvalhoE. Drumond LouroI. Biomarkers in breast cancer: An old story with a new end.Genes2023147136410.3390/genes14071364 37510269
    [Google Scholar]
  11. HanahanD. Hallmarks of cancer: New dimensions.Cancer Discov.2022121314610.1158/2159‑8290.CD‑21‑1059 35022204
    [Google Scholar]
  12. CavalloF. De GiovanniC. NanniP. ForniG. LolliniP.L. The immune hallmarks of cancer.Cancer Immunol. Immunother.201160331932610.1007/s00262‑010‑0968‑0 21267721
    [Google Scholar]
  13. Santa-MariaC.A. ParkS.J. JainS. GradisharW.J. Breast cancer and immunology: Biomarker and therapeutic developments.Expert Rev. Anticancer Ther.201515101215122210.1586/14737140.2015.1086270 26358181
    [Google Scholar]
  14. AyoubN.M. Al-ShamiK.M. YaghanR.J. Immunotherapy for HER2-positive breast cancer: Recent advances and combination therapeutic approaches.Breast Cancer201911536910.2147/BCTT.S175360 30697064
    [Google Scholar]
  15. FabrizioF.P. TrombettaD. RossiA. SparaneoA. CastellanaS. MuscarellaL.A. Gene code CD274/PD-L1: From molecular basis toward cancer immunotherapy.Ther. Adv. Med. Oncol.20181010.1177/1758835918815598 30574211
    [Google Scholar]
  16. ParvezA. ChoudharyF. MudgalP. KhanR. QureshiK.A. FarooqiH. AspatwarA. PD-1 and PD-L1: Architects of immune symphony and immunotherapy breakthroughs in cancer treatment.Front. Immunol.202314129634110.3389/fimmu.2023.1296341 38106415
    [Google Scholar]
  17. UllahA. PulliamS. KarkiN.R. KhanJ. JogezaiS. SultanS. MuhammadL. KhanM. JamilN. WaheedA. BelakhlefS. GhleilibI. VailE. HeneidiS. KarimN.A. PD-L1 over-expression varies in different subtypes of lung cancer: Will This Affect Future therapies?Clin. Pract.202212565367110.3390/clinpract12050068 36136862
    [Google Scholar]
  18. MöllerK. FrauneC. BlessinN.C. LennartzM. KluthM. Hube-MaggC. LindhorstL. DahlemR. FischM. EichenauerT. RiechardtS. SimonR. SauterG. BüscheckF. HöppnerW. MatthiesC. DohO. KrechT. MarxA.H. ZechaH. RinkM. SteurerS. ClauditzT.S. Tumor cell PD-L1 expression is a strong predictor of unfavorable prognosis in immune checkpoint therapy-naive clear cell renal cell cancer.Int. Urol. Nephrol.202153122493250310.1007/s11255‑021‑02841‑7 33797012
    [Google Scholar]
  19. HuangY. ZhangS.D. McCRUDDEN, C.I.; Chan, K.W.; Lin, Y.; Kwok, H.F. The prognostic significance of PD-L1 in bladder cancer.Oncol. Rep.20153363075308410.3892/or.2015.3933 25963805
    [Google Scholar]
  20. EnkhbatT. NishiM. TakasuC. YoshikawaK. JunH. TokunagaT. KashiharaH. IshikawaD. ShimadaM. Programmed cell death ligand 1 expression is an independent prognostic factor in colorectal cancer.Anticancer Res.20183863367337310.21873/anticanres.12603 29848685
    [Google Scholar]
  21. AyoubN.M. FaresM. MarjiR. Al BashirS.M. YaghanR.J. programmed death-ligand 1 expression in breast cancer patients: Clinicopathological associations from a single-institution study.Breast Cancer20211360361510.2147/BCTT.S333123 34803400
    [Google Scholar]
  22. YiM. NiuM. XuL. LuoS. WuK. Regulation of PD-L1 expression in the tumor microenvironment.J. Hematol. Oncol.20211411010.1186/s13045‑020‑01027‑5 33413496
    [Google Scholar]
  23. CuiJ.W. LiY. YangY. YangH.K. DongJ.M. XiaoZ.H. HeX. GuoJ.H. WangR.Q. DaiB. ZhouZ.L. Tumor immunotherapy resistance: Revealing the mechanism of PD-1/PD-L1-mediated tumor immune escape.Biomed. Pharmacother.202417111620310.1016/j.biopha.2024.116203 38280330
    [Google Scholar]
  24. LiY. LiangL. DaiW. CaiG. XuY. LiX. LiQ. CaiS. Prognostic impact of programed cell death-1 (PD-1) and PD-ligand 1 (PD-L1) expression in cancer cells and tumor infiltrating lymphocytes in colorectal cancer.Mol. Cancer20161515510.1186/s12943‑016‑0539‑x 27552968
    [Google Scholar]
  25. Darb-EsfahaniS. KunzeC.A. KulbeH. SehouliJ. WienertS. LindnerJ. BudcziesJ. BockmayrM. DietelM. DenkertC. BraicuI. JöhrensK. Prognostic impact of programmed cell death-1 (PD-1) and PD-ligand 1 (PD-L1) expression in cancer cells and tumor-infiltrating lymphocytes in ovarian high grade serous carcinoma.Oncotarget2016721486149910.18632/oncotarget.6429 26625204
    [Google Scholar]
  26. AyoubN.M. IbrahimD.R. AlkhalifaA.E. Overcoming resistance to targeted therapy using MET inhibitors in solid cancers: evidence from preclinical and clinical studies.Med. Oncol.2021381214310.1007/s12032‑021‑01596‑6 34665336
    [Google Scholar]
  27. DuhF.M. SchererS.W. TsuiL.C. LermanM.I. ZbarB. SchmidtL. Gene structure of the human MET proto-oncogene.Oncogene199715131583158610.1038/sj.onc.1201338 9380410
    [Google Scholar]
  28. ComoglioP.M. GiordanoS. TrusolinoL. Drug development of MET inhibitors: Targeting oncogene addiction and expedience.Nat. Rev. Drug Discov.20087650451610.1038/nrd2530 18511928
    [Google Scholar]
  29. OrganS.L. TsaoM.S. An overview of the c-MET signaling pathway.Ther. Adv. Med. Oncol.201131S7S1910.1177/1758834011422556 22128289
    [Google Scholar]
  30. ZhangY. DuZ. ZhangM. Biomarker development in MET-targeted therapy.Oncotarget2016724373703738910.18632/oncotarget.8276 27013592
    [Google Scholar]
  31. LiuZ.L. ChenH.H. ZhengL.L. SunL.P. ShiL. Angiogenic signaling pathways and anti-angiogenic therapy for cancer.Signal Transduct. Target. Ther.20238119810.1038/s41392‑023‑01460‑1 37169756
    [Google Scholar]
  32. ChunH.W. HongR. Significance of PD L1 clones and C MET expression in hepatocellular carcinoma.Oncol. Lett.20191765487549810.3892/ol.2019.10222 31186768
    [Google Scholar]
  33. XuR. LiuX. LiA. SongL. LiangJ. GaoJ. TangX. c-Met up-regulates the expression of PD-L1 through MAPK/NF-κBp65 pathway.J. Mol. Med.2022100458559810.1007/s00109‑022‑02179‑2 35122106
    [Google Scholar]
  34. LiE. HuangX. ZhangG. LiangT. Combinational blockade of MET and PD-L1 improves pancreatic cancer immunotherapeutic efficacy.J. Exp. Clin. Cancer Res.202140127910.1186/s13046‑021‑02055‑w 34479614
    [Google Scholar]
  35. DomènechM. Muñoz MarmolA.M. MateJ.L. EstivalA. MoranT. CucurullM. SaigiM. HernandezA. SanzC. Hernandez-GallegoA. UrbizuA. Martinez-CardusA. BernatA. CarcerenyE. Correlation between PD-L1 expression and MET gene amplification in patients with advanced non-small-cell lung cancer and no other actionable oncogenic driver.Oncotarget202112181802181010.18632/oncotarget.28045 34504652
    [Google Scholar]
  36. LeoncikasV. WuH. WardL.T. KierzekA.M. PlantN.J. Generation of 2,000 breast cancer metabolic landscapes reveals a poor prognosis group with active serotonin production.Sci. Rep.2016611977110.1038/srep19771 26813959
    [Google Scholar]
  37. CurtisC. ShahS.P. ChinS.F. TurashviliG. RuedaO.M. DunningM.J. SpeedD. LynchA.G. SamarajiwaS. YuanY. GräfS. HaG. HaffariG. BashashatiA. RussellR. McKinneyS. LangerødA. GreenA. ProvenzanoE. WishartG. PinderS. WatsonP. MarkowetzF. MurphyL. EllisI. PurushothamA. Børresen-DaleA.L. BrentonJ.D. TavaréS. CaldasC. AparicioS. AparicioS. The genomic and transcriptomic architecture of 2,000 breast tumours reveals novel subgroups.Nature2012486740334635210.1038/nature10983 22522925
    [Google Scholar]
  38. CeramiE. GaoJ. DogrusozU. GrossB.E. SumerS.O. AksoyB.A. JacobsenA. ByrneC.J. HeuerM.L. LarssonE. AntipinY. RevaB. GoldbergA.P. SanderC. SchultzN. The cBio cancer genomics portal: An open platform for exploring multidimensional cancer genomics data.Cancer Discov.20122540140410.1158/2159‑8290.CD‑12‑0095 22588877
    [Google Scholar]
  39. GaoJ. AksoyB.A. DogrusozU. DresdnerG. GrossB. SumerS.O. SunY. JacobsenA. SinhaR. LarssonE. CeramiE. SanderC. SchultzN. Integrative analysis of complex cancer genomics and clinical profiles using the cBioPortal.Sci. Signal.20136269l110.1126/scisignal.2004088 23550210
    [Google Scholar]
  40. JiangG. ZhangS. YazdanparastA. LiM. PawarA.V. LiuY. InavoluS.M. ChengL. Comprehensive comparison of molecular portraits between cell lines and tumors in breast cancer.BMC Genomics201617752510.1186/s12864‑016‑2911‑z
    [Google Scholar]
  41. ShatnawiA. AyoubN.M. AlkhalifaA.E. ING4 Expression landscape and association with clinicopathologic characteristics in breast cancer.Clin. Breast Cancer2021214e319e33110.1016/j.clbc.2020.11.011 33334698
    [Google Scholar]
  42. AlhamdanY.R. AyoubN.M. JaradatS.K. ShatnawiA. YaghanR.J. BRAF expression and copy number alterations predict unfavorable tumor features and adverse outcomes in patients with breast cancer.Int. J. Breast Cancer2024202411110.1155/2024/6373900 38919805
    [Google Scholar]
  43. LüöndF. TiedeS. ChristoforiG. Breast cancer as an example of tumour heterogeneity and tumour cell plasticity during malignant progression.Br. J. Cancer2021125216417510.1038/s41416‑021‑01328‑7 33824479
    [Google Scholar]
  44. CloudA.S. VargheeseA.M. GunewardenaS. ShimakR.M. GaneshkumarS. KumaraswamyE. JensenR.A. ChennathukuzhiV.M. Loss of REST in breast cancer promotes tumor progression through estrogen sensitization, MMP24 and CEMIP overexpression.BMC Cancer202222118010.1186/s12885‑022‑09280‑2 35177031
    [Google Scholar]
  45. CaputoR. BuonoG. PiezzoM. MartinelliC. CiannielloD. RizzoA. PantanoF. StaropoliN. CangianoR. TuranoS. ParisI. NuzzoF. FabiA. De LaurentiisM. Sacituzumab Govitecan for the treatment of advanced triple negative breast cancer patients: A multi-center real-world analysis.Front. Oncol.202414136264110.3389/fonc.2024.1362641 38595817
    [Google Scholar]
  46. Lopez-GonzalezL. Sanchez CendraA. Sanchez CendraC. Roberts CervantesE.D. EspinosaJ.C. PekarekT. Fraile-MartinezO. García-MonteroC. Rodriguez-SlockerA.M. Jiménez-ÁlvarezL. GuijarroL.G. Aguado-HencheS. MonserratJ. Alvarez-MonM. PekarekL. OrtegaM.A. Diaz-PedreroR. Exploring biomarkers in breast cancer: Hallmarks of Diagnosis, treatment, and follow-up in clinical practice.Medicina202460116810.3390/medicina60010168 38256428
    [Google Scholar]
  47. JuX. ZhangH. ZhouZ. WangQ. Regulation of PD-L1 expression in cancer and clinical implications in immunotherapy.Am. J. Cancer Res.2020101111 32064150
    [Google Scholar]
  48. CoelhoM.A. de Carné TrécessonS. RanaS. ZecchinD. MooreC. Molina-ArcasM. EastP. Spencer-DeneB. NyeE. BarnouinK. SnijdersA.P. LaiW.S. BlackshearP.J. DownwardJ. Oncogenic ras signaling promotes tumor immunoresistance by stabilizing PD-L1 mRNA.Immunity201747610831099.e610.1016/j.immuni.2017.11.016 29246442
    [Google Scholar]
  49. CianfroccaM. GoldsteinL.J. Prognostic and predictive factors in early-stage breast cancer.Oncologist20049660661610.1634/theoncologist.9‑6‑606 15561805
    [Google Scholar]
  50. ZhouL. RuedaM. AlkhateebA. Classification of breast cancer nottingham prognostic index using high-dimensional embedding and residual neural network.Cancers202214493410.3390/cancers14040934 35205681
    [Google Scholar]
  51. ZhangM. SunH. ZhaoS. WangY. PuH. WangY. ZhangQ. Expression of PD-L1 and prognosis in breast cancer: A meta-analysis.Oncotarget2017819313473135410.18632/oncotarget.15532 28430626
    [Google Scholar]
  52. GuoY. YuP. LiuZ. MaimaitiY. WangS. YinX. LiuC. HuangT. Prognostic and clinicopathological value of programmed death ligand-1 in breast cancer: A meta-analysis.PLoS One2016115e015632310.1371/journal.pone.0156323 27227453
    [Google Scholar]
  53. MuenstS. SchaerliA.R. GaoF. DästerS. TrellaE. DroeserR.A. MuraroM.G. ZajacP. ZanettiR. GillandersW.E. WeberW.P. SoysalS.D. Expression of programmed death ligand 1 (PD-L1) is associated with poor prognosis in human breast cancer.Breast Cancer Res. Treat.20141461152410.1007/s10549‑014‑2988‑5 24842267
    [Google Scholar]
  54. MurazawaC. HashimotoN. KuraishiK. MotoyamaM. HashimotoS.I. IkeuchiM. NorimuraS. MatsunagaT. TeramotoK. HabaR. AbeN. YajimaT. KontaniK. Status and prognostic value of immunological biomarkers of breast cancer.Oncol. Lett.202325416410.3892/ol.2023.13750 36960188
    [Google Scholar]
  55. GatalicaZ. SnyderC. ManeyT. GhazalpourA. HoltermanD.A. XiaoN. OverbergP. RoseI. BasuG.D. VranicS. LynchH.T. Von HoffD.D. HamidO. Programmed cell death 1 (PD-1) and its ligand (PD-L1) in common cancers and their correlation with molecular cancer type.Cancer Epidemiol. Biomarkers Prev.201423122965297010.1158/1055‑9965.EPI‑14‑0654 25392179
    [Google Scholar]
  56. KimH.M. LeeJ. KooJ.S. Clinicopathological and prognostic significance of programmed death ligand-1 expression in breast cancer: A meta-analysis.BMC Cancer201717169010.1186/s12885‑017‑3670‑1 29041905
    [Google Scholar]
  57. JiaL. YangX. TianW. GuoS. HuangW. ZhaoW. Increased expression of C-MET is associated with chemotherapy-resistant breast cancer and poor clinical outcome.Med. Sci. Monit.2018248239824910.12659/MSM.913514 30444219
    [Google Scholar]
  58. Ho-YenC.M. GreenA.R. RakhaE.A. BrentnallA.R. EllisI.O. KermorgantS. JonesJ.L. C‐Met in invasive breast cancer.Cancer2014120216317110.1002/cncr.28386 24150964
    [Google Scholar]
  59. TongG. ChengB. LiJ. WuX. NongQ. HeL. LiX. LiL. WangS. MACC1 regulates PDL1 expression and tumor immunity through the c‐Met/AKT/mTOR pathway in gastric cancer cells.Cancer Med.20198167044705410.1002/cam4.2542 31557409
    [Google Scholar]
  60. SongK.Y. DesarS. PengoT. ShanleyR. GiubellinoA. Correlation of MET and PD-L1 expression in malignant melanoma.Cancers2020127184710.3390/cancers12071847 32659961
    [Google Scholar]
  61. KerrK.M. ThunnissenE. DafniU. FinnS.P. BubendorfL. SoltermannA. VerbekenE. BiernatW. WarthA. MarchettiA. SpeelE.J.M. PokharelS. QuinnA.M. MonkhorstK. NavarroA. MadsenL.B. RadonicT. WilsonJ. De LucaG. GrayS.G. CheneyR. SavicS. MartorellM. MuleyT. BaasP. MeldgaardP. BlackhallF. DingemansA.M. DziadziuszkoR. VansteenkisteJ. WederW. PolydoropoulouV. GeigerT. KammlerR. PetersS. StahelR. LungscapeC. A retrospective cohort study of PD-L1 prevalence, molecular associations and clinical outcomes in patients with NSCLC: Results from the european thoracic oncology platform (etop) lungscape project.Lung Cancer20191319510310.1016/j.lungcan.2019.03.012 31027705
    [Google Scholar]
  62. WangQ.W. SunL.H. ZhangY. WangZ. ZhaoZ. WangZ.L. WangK.Y. LiG.Z. XuJ.B. RenC.Y. MaW.P. WangH.J. LiS.W. ZhuY.J. JiangT. BaoZ.S. MET overexpression contributes to STAT4-PD-L1 signaling activation associated with tumor-associated, macrophages-mediated immunosuppression in primary glioblastomas.J. Immunother. Cancer2021910e00245110.1136/jitc‑2021‑002451 34667077
    [Google Scholar]
  63. CirqueiraM.B. MendonçaC.R. NollM. SoaresL.R. de Paula Carneiro CysneirosM.A. PaulinelliR.R. MoreiraM.A. Freitas-JuniorR. Prognostic role of PD-l1 expression in invasive breast cancer: A systematic review and meta-analysis.Cancers20211323609010.3390/cancers13236090 34885199
    [Google Scholar]
  64. SabatierR. FinettiP. MamessierE. AdelaideJ. ChaffanetM. AliH.R. ViensP. CaldasC. BirnbaumD. BertucciF. Prognostic and predictive value of PDL1 expression in breast cancer.Oncotarget2015675449546410.18632/oncotarget.3216 25669979
    [Google Scholar]
  65. ChenL. HuangS. LiuQ. KongX. SuZ. ZhuM. FangY. ZhangL. LiX. WangJ. PD-L1 protein expression is associated with good clinical outcomes and nomogram for prediction of disease free survival and overall survival in breast cancer patients received neoadjuvant chemotherapy.Front. Immunol.20221384946810.3389/fimmu.2022.849468 35669769
    [Google Scholar]
  66. YanS. JiaoX. ZouH. LiK. Prognostic significance of c-Met in breast cancer: A meta-analysis of 6010 cases.Diagn. Pathol.20151016210.1186/s13000‑015‑0296‑y 26047809
    [Google Scholar]
  67. RaghavK.P. WangW. LiuS. Chavez-MacGregorM. MengX. HortobagyiG.N. MillsG.B. Meric-BernstamF. BlumenscheinG.R. Gonzalez-AnguloA.M. cMET and phospho-cMET protein levels in breast cancers and survival outcomes.Clin. Cancer Res.20121882269227710.1158/1078‑0432.CCR‑11‑2830 22374333
    [Google Scholar]
  68. MiaoL. LuY. XuY. ZhangG. HuangZ. GongL. FanY. PD-L1 and c-MET expression and survival in patients with small cell lung cancer.Oncotarget2017833539785398810.18632/oncotarget.9765 28903317
    [Google Scholar]
  69. DebienV. De CaluwéA. WangX. Piccart-GebhartM. TuohyV.K. RomanoE. BuisseretL. Immunotherapy in breast cancer: An overview of current strategies and perspectives.NPJ Breast Cancer202391710.1038/s41523‑023‑00508‑3 36781869
    [Google Scholar]
  70. RizzoA. CusmaiA. AcquafreddaS. RinaldiL. PalmiottiG. Ladiratuzumab vedotin for metastatic triple negative cancer: Preliminary results, key challenges, and clinical potential.Expert Opin. Investig. Drugs202231649549810.1080/13543784.2022.2042252 35171746
    [Google Scholar]
  71. RoselliniM. MarchettiA. MollicaV. RizzoA. SantoniM. MassariF. Prognostic and predictive biomarkers for immunotherapy in advanced renal cell carcinoma.Nat. Rev. Urol.202320313315710.1038/s41585‑022‑00676‑0 36414800
    [Google Scholar]
  72. SunX. LiC.W. WangW.J. ChenM.K. LiH. LaiY.J. HsuJ.L. KollerP.B. ChanL.C. LeeP.C. ChengF.J. YamC. ChenG.Y. HungM.C. Inhibition of c-MET upregulates PD-L1 expression in lung adenocarcinoma.Am. J. Cancer Res.2020102564571 32195027
    [Google Scholar]
  73. LuS. SunZ. HuW. YinS. ZhaoC. HuH. PD‐L1 positively regulates MET phosphorylation through inhibiting PTP1B.Cancer Sci.202111251878188710.1111/cas.14844 33583114
    [Google Scholar]
  74. RizzoA. MollicaV. TateoV. TassinariE. MarchettiA. RoselliniM. De LucaR. SantoniM. MassariF. Hypertransaminasemia in cancer patients receiving immunotherapy and immune-based combinations: The MOUSEION-05 study.Cancer Immunol. Immunother.20237261381139410.1007/s00262‑023‑03366‑x 36695827
    [Google Scholar]
  75. SahinT.K. RizzoA. AksoyS. GuvenD.C. Prognostic significance of the royal marsden hospital (RMH) score in patients with cancer: A systematic review and meta-analysis.Cancers20241610183510.3390/cancers1610183538791914
    [Google Scholar]
/content/journals/ccdt/10.2174/0115680096333231240902070108
Loading
/content/journals/ccdt/10.2174/0115680096333231240902070108
Loading

Data & Media loading...

Supplements

Supplementary material is available on the publisher’s website along with the published article.


  • Article Type:
    Research Article
Keyword(s): Breast cancer; clinicopathologic; gene expression; MET; PD-L1; prognosis
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test