Skip to content
2000
Volume 25, Issue 10
  • ISSN: 1568-0096
  • E-ISSN: 1873-5576

Abstract

Background

Ferroptosis is closely related to radiotherapy resistance in multiple cancers. Herein, the role of microsomal glutathione S-transferase 1 (MGST1) in regulating ferroptosis and radiotherapy resistance in non-small cell lung cancer (NSCLC) was investigated.

Methods

Radiation-resistant NSCLC cells (NCI-1299-IR and HCC827-IR cells) were established. After exposure to X-ray, cell proliferation and survival were assessed by colony formation assay and CCK-8 assay, and lipid ROS level was examined by the fluorophore BODIPY™ 581/591 C11. MDA, GSH, and Fe2+ levels were measured by ELISA kits. The molecular interaction was analyzed using ChIP and MSP assays.

Results

Our results showed that RSL3 treatment greatly enhanced the radiotherapy sensitivity of NCI-1299-IR and HCC827-IR cells. It was subsequently revealed that MGST1 was highly expressed in NCI-1299-IR and HCC827-IR cells than its parent cells, and silencing of MGST1 reduced radioresistance of NCI-1299-IR and HCC827-IR cells by facilitating ferroptosis. Mechanistically, MGST1 knockdown greatly reduced HO-1 and DNMT1/3A protein levels, leading to reduced DNA methylation on the ALOX15 promoter region, thereby epigenetically upregulating ALOX15 expression. As expected, the promoting effects of MGST1 silencing on radiosensitivity and ferroptosis in radiation-resistant NSCLC cells were strikingly eliminated by ALOX15 knockdown.

Conclusion

MGST1 knockdown epigenetically enhanced radiotherapy sensitivity of NCSLC cells by promoting ALOX15-mediated ferroptosis through regulating the HO-1/DNMT1 pathway.

Loading

Article metrics loading...

/content/journals/ccdt/10.2174/0115680096317925240820053934
2024-09-27
2025-12-24
Loading full text...

Full text loading...

References

  1. SungH. FerlayJ. SiegelR.L. Global cancer statistics 2020: globocan estimates of incidence and mortality worldwide for 36 cancers in 185 countries.CA Cancer J. Clin.202171320924910.3322/caac.21660 33538338
    [Google Scholar]
  2. MaoY. TanN. XuC. Establishment and validation of a long-term prognosis prediction model for patients with non-small cell lung cancer.J. Thorac. Dis.20231541994200210.21037/jtd‑23‑381 37197504
    [Google Scholar]
  3. SusterD.I. Mino-KenudsonM. Molecular pathology of primary non-small cell lung cancer.Arch. Med. Res.202051878479810.1016/j.arcmed.2020.08.004 32873398
    [Google Scholar]
  4. PetrellaF. RizzoS. AttiliI. Stage III Non-small-cell lung cancer: An overview of treatment options.Curr. Oncol.20233033160317510.3390/curroncol30030239 36975452
    [Google Scholar]
  5. ZhangN. NanA. ChenL. Circular RNA circSATB2 promotes progression of non-small cell lung cancer cells.Mol. Cancer202019110110.1186/s12943‑020‑01221‑6 32493389
    [Google Scholar]
  6. StravopodisD.J. PapavassiliouK.A. PapavassiliouA.G. Vistas in non-small cell lung cancer (NSCLC) Treatment: Of kinome and signaling Networks.Int. J. Biol. Sci.20231972002200510.7150/ijbs.83574 37151885
    [Google Scholar]
  7. RussellÉ. ConroyM.J. BarrM.P. Harnessing natural killer cells in non-small cell lung cancer.Cells202211460510.3390/cells11040605 35203256
    [Google Scholar]
  8. LinJ. McGlynnK.A. NationsJ.A. ShriverC.D. ZhuK. Comorbidity and stage at diagnosis among lung cancer patients in the US military health system.Cancer Causes Control202031325526110.1007/s10552‑020‑01269‑1 31984449
    [Google Scholar]
  9. HughesD.J. KapirisM. Podvez NevajdaA. Non-small cell lung cancer (nsclc) in young adults, age < 50, is associated with late stage at presentation and a very poor prognosis in patients that do not have a targeted therapy option: a real-world study.Cancers (Basel)20221424605610.3390/cancers14246056 36551542
    [Google Scholar]
  10. Duréndez-SáezE. Torres-MartinezS. Calabuig-FariñasS. Meri-AbadM. Ferrero-GimenoM. CampsC. Exosomal microRNAs in non-small cell lung cancer.Transl. Cancer Res.20211063128313910.21037/tcr‑20‑2815 35116621
    [Google Scholar]
  11. BrownS. BanfillK. AznarM.C. WhitehurstP. Faivre FinnC. The evolving role of radiotherapy in non-small cell lung cancer.Br. J. Radiol.20199211042019052410.1259/bjr.20190524 31535580
    [Google Scholar]
  12. VinodS.K. HauE. Radiotherapy treatment for lung cancer: Current status and future directions.Respirology202025S2617110.1111/resp.13870 32516852
    [Google Scholar]
  13. Giaj-LevraN. BorghettiP. BruniA. Current radiotherapy techniques in NSCLC: challenges and potential solutions.Expert Rev. Anticancer Ther.202020538740210.1080/14737140.2020.1760094 32321330
    [Google Scholar]
  14. WangZ. LncRNA CCAT1 downregulation increases the radiosensitivity of non‐small cell lung cancer cells.Kaohsiung J. Med. Sci.202137865466310.1002/kjm2.12387 33955133
    [Google Scholar]
  15. KimT.W. HongD.W. ParkJ.W. HongS.H. CB11, a novel purine-based PPARɣ ligand, overcomes radio-resistance by regulating ATM signalling and EMT in human non-small-cell lung cancer cells.Br. J. Cancer2020123121737174810.1038/s41416‑020‑01088‑w 32958825
    [Google Scholar]
  16. JiangX. StockwellB.R. ConradM. Ferroptosis: mechanisms, biology and role in disease.Nat. Rev. Mol. Cell Biol.202122426628210.1038/s41580‑020‑00324‑8 33495651
    [Google Scholar]
  17. ChenX. KangR. KroemerG. TangD. Ferroptosis in infection, inflammation, and immunity.J. Exp. Med.20212186e2021051810.1084/jem.20210518 33978684
    [Google Scholar]
  18. LeiG. MaoC. YanY. ZhuangL. GanB. Ferroptosis, radiotherapy, and combination therapeutic strategies.Protein Cell2021121183685710.1007/s13238‑021‑00841‑y 33891303
    [Google Scholar]
  19. ZouJ. WangL. TangH. LiuX. PengF. PengC. Ferroptosis in non-small cell lung cancer: progression and therapeutic potential on it.Int. J. Mol. Sci.202122241333510.3390/ijms222413335 34948133
    [Google Scholar]
  20. ZhangC. LiuX. JinS. ChenY. GuoR. Ferroptosis in cancer therapy: a novel approach to reversing drug resistance.Mol. Cancer20222114710.1186/s12943‑022‑01530‑y 35151318
    [Google Scholar]
  21. LiD. WangY. DongC. CST1 inhibits ferroptosis and promotes gastric cancer metastasis by regulating GPX4 protein stability via OTUB1.Oncogene2023422839810.1038/s41388‑022‑02537‑x 36369321
    [Google Scholar]
  22. BanoI. HorkyP. AbbasS.Q. Ferroptosis: A new road towards cancer management.Molecules2022277212910.3390/molecules27072129 35408533
    [Google Scholar]
  23. ZhangW. DaiJ. HouG. SMURF2 predisposes cancer cell toward ferroptosis in GPX4-independent manners by promoting GSTP1 degradation.Mol. Cell2023832343524369.e810.1016/j.molcel.2023.10.042 38016474
    [Google Scholar]
  24. LeiG. ZhuangL. GanB. The roles of ferroptosis in cancer: Tumor suppression, tumor microenvironment, and therapeutic interventions.Cancer Cell202442451353410.1016/j.ccell.2024.03.011 38593779
    [Google Scholar]
  25. MaruD. HothiA. BagariyaC. KumarA. Targeting ferroptosis pathways: A novel strategy for cancer therapy.Curr. Cancer Drug Targets202222323424410.2174/1568009622666220211122745 35152865
    [Google Scholar]
  26. ZhangX. LiX. XiaR. ZhangH.S. Ferroptosis resistance in cancer: recent advances and future perspectives.Biochem. Pharmacol.202421911593310.1016/j.bcp.2023.115933 37995980
    [Google Scholar]
  27. BaoZ.H. HouX.B. LiH.L. MaoY.F. WangW.R. The mechanism and progress of ferroptosis in pancreatic cancer.Acta Histochem.2022124615191910.1016/j.acthis.2022.151919 35772355
    [Google Scholar]
  28. PanX. LinZ. JiangD. Erastin decreases radioresistance of NSCLC cells partially by inducing GPX4 mediated ferroptosis.Oncol. Lett.20191733001300810.3892/ol.2019.9888 30854078
    [Google Scholar]
  29. ZengB. GeC. LiR. Knockdown of microsomal glutathione S-transferase 1 inhibits lung adenocarcinoma cell proliferation and induces apoptosis.Biomed. Pharmacother.202012110956210.1016/j.biopha.2019.109562 31707341
    [Google Scholar]
  30. DaiH. LuX. MGST1 alleviates the oxidative stress of trophoblast cells induced by hypoxia/reoxygenation and promotes cell proliferation, migration, and invasion by activating the PI3K/AKT/mTOR pathway.Open Med. (Wars.)20221712062207110.1515/med‑2022‑0617 36568515
    [Google Scholar]
  31. KuangF. LiuJ. XieY. TangD. KangR. MGST1 is a redox-sensitive repressor of ferroptosis in pancreatic cancer cells.Cell Chem. Biol.2021286765775.e510.1016/j.chembiol.2021.01.006 33539732
    [Google Scholar]
  32. DodsonM. AnandhanA. ZhangD.D. MGST1, a new soldier of NRF2 in the battle against ferroptotic death.Cell Chem. Biol.202128674174210.1016/j.chembiol.2021.05.013 34143955
    [Google Scholar]
  33. YangB. XiaS. YeX. JingW. WuB. MiR-379–5p targets microsomal glutathione transferase 1 (MGST1) to regulate human glioma in cell proliferation, migration and invasion and epithelial-mesenchymal transition (EMT).Biochem. Biophys. Res. Commun.202156881410.1016/j.bbrc.2021.05.099 34171541
    [Google Scholar]
  34. YangW.S. KimK.J. GaschlerM.M. PatelM. ShchepinovM.S. StockwellB.R. Peroxidation of polyunsaturated fatty acids by lipoxygenases drives ferroptosis.Proc. Natl. Acad. Sci. USA201611334E4966E497510.1073/pnas.1603244113 27506793
    [Google Scholar]
  35. LiK. WangM. HuangZ.H. ALOX5 inhibition protects against dopaminergic neurons undergoing ferroptosis.Pharmacol. Res.202319310677910.1016/j.phrs.2023.106779 37121496
    [Google Scholar]
  36. WangM. ZengG. XiongB. ALOX5 promotes autophagy-dependent ferroptosis by activating the AMPK/mTOR pathway in melanoma.Biochem. Pharmacol.202321211555410.1016/j.bcp.2023.115554 37080437
    [Google Scholar]
  37. LeeJ.J. Chang-ChienG.P. LinS. 5-Lipoxygenase inhibition protects retinal pigment epithelium from sodium iodate-induced ferroptosis and prevents retinal degeneration.Oxid. Med. Cell. Longev.2022202212110.1155/2022/1792894 35251467
    [Google Scholar]
  38. ChenQ. ZhengW. GuanJ. SOCS2-enhanced ubiquitination of SLC7A11 promotes ferroptosis and radiosensitization in hepatocellular carcinoma.Cell Death Differ.202330113715110.1038/s41418‑022‑01051‑7 35995846
    [Google Scholar]
  39. WeiX. WangH. SunX. 4-hydroxy-2(3H)-benzoxazolone alleviates acetaminophen-induced hepatic injury by inhibiting NF-κB and activating Nrf2/HO-1 signaling pathways.Am. J. Transl. Res.202012521692180 32509209
    [Google Scholar]
  40. CieslaM. MaronaP. KozakowskaM. Heme oxygenase-1 controls an hdac4-mir-206 pathway of oxidative stress in rhabdomyosarcoma.Cancer Res.201676195707571810.1158/0008‑5472.CAN‑15‑1883 27488535
    [Google Scholar]
  41. WangP. MaD. WangJ. Silencing HO-1 sensitizes SKM-1 cells to apoptosis induced by low concentration 5-azacytidine through enhancing p16 demethylation.Int. J. Oncol.20154631317132710.3892/ijo.2015.2835 25585641
    [Google Scholar]
  42. YinH. WangX. ZhangX. UBE2T promotes radiation resistance in non-small cell lung cancer via inducing epithelial-mesenchymal transition and the ubiquitination-mediated FOXO1 degradation.Cancer Lett.202049412113110.1016/j.canlet.2020.06.005 32590022
    [Google Scholar]
  43. SuiX. GengJ. LiY.H. ZhuG. WangW.H. Calcium channel α2δ1 subunit (CACNA2D1) enhances radioresistance in cancer stem-like cells in non-small cell lung cancer cell lines.Cancer Manag. Res.2018105009501810.2147/CMAR.S176084 30464601
    [Google Scholar]
  44. YuZ. WangG. ZhangC. LncRNA SBF2-AS1 affects the radiosensitivity of non-small cell lung cancer via modulating microRNA-302a/MBNL3 axis.Cell Cycle202019330031610.1080/15384101.2019.1708016 31928130
    [Google Scholar]
  45. JenkinsS.V. ShahS. Jamshidi-ParsianA. Acquired radiation resistance induces thiol-dependent cisplatin cross-resistance.Radiat. Res.20242012174187 38329819
    [Google Scholar]
  46. ChenX. KangR. KroemerG. TangD. Broadening horizons: the role of ferroptosis in cancer.Nat. Rev. Clin. Oncol.202118528029610.1038/s41571‑020‑00462‑0 33514910
    [Google Scholar]
  47. ZengF. NijiatiS. TangL. YeJ. ZhouZ. ChenX. Ferroptosis detection: From approaches to applications.Angew. Chem. Int. Ed.20236235e20230037910.1002/anie.202300379 36828775
    [Google Scholar]
  48. LiuJ. KangR. TangD. Signaling pathways and defense mechanisms of ferroptosis.FEBS J.2022289227038705010.1111/febs.16059 34092035
    [Google Scholar]
  49. TangD. ChenX. KangR. KroemerG. Ferroptosis: molecular mechanisms and health implications.Cell Res.202131210712510.1038/s41422‑020‑00441‑1 33268902
    [Google Scholar]
  50. YangM. WuX. HuJ. COMMD10 inhibits HIF1α/CP loop to enhance ferroptosis and radiosensitivity by disrupting Cu-Fe balance in hepatocellular carcinoma.J. Hepatol.20227651138115010.1016/j.jhep.2022.01.009 35101526
    [Google Scholar]
  51. YeL.F. ChaudharyK.R. ZandkarimiF. Radiation-induced lipid peroxidation triggers ferroptosis and synergizes with ferroptosis inducers.ACS Chem. Biol.202015246948410.1021/acschembio.9b00939 31899616
    [Google Scholar]
  52. LangX. GreenM.D. WangW. Radiotherapy and immunotherapy promote tumoral lipid oxidation and ferroptosis via synergistic repression of SLC7A11.Cancer Discov.20199121673168510.1158/2159‑8290.CD‑19‑0338 31554642
    [Google Scholar]
  53. WuY. SongY. WangR. WangT. Molecular mechanisms of tumor resistance to radiotherapy.Mol. Cancer20232219610.1186/s12943‑023‑01801‑2 37322433
    [Google Scholar]
  54. LiY. XuX. WangX. ZhangC. HuA. LiY. MGST1 expression is associated with poor prognosis, enhancing the wnt/β-catenin pathway via regulating akt and inhibiting ferroptosis in gastric cancer.ACS Omega2023826236832369410.1021/acsomega.3c01782 37426275
    [Google Scholar]
  55. ZhangJ. YeZ. MorgensternR. TownsendD.M. TewK.D. Microsomal glutathione transferase 1 in cancer and the regulation of ferroptosis.Adv. Cancer Res.202316010713210.1016/bs.acr.2023.05.001 37704286
    [Google Scholar]
  56. PengZ. PengN. Microsomal glutathione S-transferase 1 targets the autophagy signaling pathway to suppress ferroptosis in gastric carcinoma cells.Hum. Exp. Toxicol.20234210.1177/09603271231172915 37161854
    [Google Scholar]
  57. JohanssonK. AhlenK. RinaldiR. SahlanderK. SiritantikornA. MorgensternR. Microsomal glutathione transferase 1 in anticancer drug resistance.Carcinogenesis200628246547010.1093/carcin/bgl148 16920737
    [Google Scholar]
  58. ScotlandiK. RemondiniD. CastellaniG. Overcoming resistance to conventional drugs in Ewing sarcoma and identification of molecular predictors of outcome.J. Clin. Oncol.200927132209221610.1200/JCO.2008.19.2542 19307502
    [Google Scholar]
  59. HallJ.S. IypeR. SenraJ. Investigation of radiosensitivity gene signatures in cancer cell lines.PLoS One201491e8632910.1371/journal.pone.0086329 24466029
    [Google Scholar]
  60. LangC. YinC. LinK. m 6 A modification of lncRNA PCAT6 promotes bone metastasis in prostate cancer through IGF2BP2 ‐mediated IGF1R mRNA stabilization.Clin. Transl. Med.2021116e42610.1002/ctm2.426 34185427
    [Google Scholar]
  61. LeeJ. YouJ.H. RohJ.L. Poly(rC)-binding protein 1 represses ferritinophagy-mediated ferroptosis in head and neck cancer.Redox Biol.20225110227610.1016/j.redox.2022.102276 35290903
    [Google Scholar]
  62. SultanM. Ben-ShushanD. PeledM. Specific overexpression of 15-lipoxygenase in endothelial cells promotes cancer cell death in an in vivo Lewis lung carcinoma mouse model.Adv. Med. Sci.202065111111910.1016/j.advms.2019.11.006 31923770
    [Google Scholar]
  63. MaX. GanY. MaiZ. SongY. ZhangM. XiaW. Silencing heatr1 rescues cisplatin resistance of non-small cell lung cancer by inducing ferroptosis via the p53/SAT1/ALOX15 axis.Curr. Cancer Drug Targets20242410.2174/0115680096284068240506095417 38818906
    [Google Scholar]
  64. WangG. LiuL. SharmaS. Bmi-1 confers adaptive radioresistance to KYSE-150R esophageal carcinoma cells.Biochem. Biophys. Res. Commun.2012425230931410.1016/j.bbrc.2012.07.087 22842564
    [Google Scholar]
  65. AnandhanA. DodsonM. SchmidlinC.J. LiuP. ZhangD.D. Breakdown of an Ironclad Defense System: The Critical Role of NRF2 in Mediating Ferroptosis.Cell Chem. Biol.202027443644710.1016/j.chembiol.2020.03.011 32275864
    [Google Scholar]
  66. FuD. WangC. YuL. YuR. Induction of ferroptosis by ATF3 elevation alleviates cisplatin resistance in gastric cancer by restraining Nrf2/Keap1/xCT signaling.Cell. Mol. Biol. Lett.20212612610.1186/s11658‑021‑00271‑y 34098867
    [Google Scholar]
  67. ShinD. KimE.H. LeeJ. RohJ.L. Nrf2 inhibition reverses resistance to GPX4 inhibitor-induced ferroptosis in head and neck cancer.Free Radic. Biol. Med.201812945446210.1016/j.freeradbiomed.2018.10.426 30339884
    [Google Scholar]
  68. RohJ.L. KimE.H. JangH. ShinD. Nrf2 inhibition reverses the resistance of cisplatin-resistant head and neck cancer cells to artesunate-induced ferroptosis.Redox Biol.20171125426210.1016/j.redox.2016.12.010 28012440
    [Google Scholar]
  69. WeiR. ZhaoY. WangJ. Tagitinin C induces ferroptosis through PERK-Nrf2-HO-1 signaling pathway in colorectal cancer cells.Int. J. Biol. Sci.202117112703271710.7150/ijbs.59404 34345202
    [Google Scholar]
  70. ChiangS.K. ChenS.E. ChangL.C. The role of HO-1 and its crosstalk with oxidative stress in cancer cell survival.Cells2021109240110.3390/cells10092401 34572050
    [Google Scholar]
  71. GhareghomiS. Moosavi-MovahediF. SasoL. Modulation of nrf2/ho-1 by natural compounds in lung cancer.Antioxidants202312373510.3390/antiox12030735 36978983
    [Google Scholar]
  72. YangR. GaoW. WangZ. Polyphyllin I induced ferroptosis to suppress the progression of hepatocellular carcinoma through activation of the mitochondrial dysfunction via Nrf2/HO-1/GPX4 axis.Phytomedicine202412215513510.1016/j.phymed.2023.155135 37856990
    [Google Scholar]
  73. WangX. ChenJ. TieH. Eriodictyol regulated ferroptosis, mitochondrial dysfunction, and cell viability via Nrf2/HO‐1/NQO1 signaling pathway in ovarian cancer cells.J. Biochem. Mol. Toxicol.2023377e2336810.1002/jbt.23368 37020356
    [Google Scholar]
  74. LiuH. SongY. QiuH. Downregulation of FOXO3a by DNMT1 promotes breast cancer stem cell properties and tumorigenesis.Cell Death Differ.202027396698310.1038/s41418‑019‑0389‑3 31296961
    [Google Scholar]
  75. WongK.K. DNMT1: A key drug target in triple-negative breast cancer.Semin. Cancer Biol.20217219821310.1016/j.semcancer.2020.05.01032461152
    [Google Scholar]
/content/journals/ccdt/10.2174/0115680096317925240820053934
Loading
/content/journals/ccdt/10.2174/0115680096317925240820053934
Loading

Data & Media loading...


  • Article Type:
    Research Article
Keyword(s): ALOX15; ferroptosis; HO-1/DNMT1 pathway; MGST1; Non-small cell lung cancer; radioresistance
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test