Skip to content
2000
Volume 25, Issue 6
  • ISSN: 1568-0096
  • E-ISSN: 1873-5576

Abstract

Background

The mechanism of action of envafolimab (also known as KN035), a programmed death ligand 1 (PD-L1) inhibitor, in gastric adenocarcinoma patients with low PD-L1 expression is not well understood.

Objectives

The objective of this study was to explore the underlying mechanism of envafolimab in gastric cancer with low PD-L1 expression.

Methods

Cytotoxicity and proliferation were evaluated by a CCK8 assay. Transwell assays were used to detect the migration and invasion ability of gastric cancer cells. The effect of envafolimab on the apoptosis of gastric cancer cells was detected by flow cytometry. The effect of envafolimab on gastric cancer cells with low PD-L1 expression was investigated proteomics and bioinformatics analysis.

Results

A total of 19 patients with advanced gastric adenocarcinoma who received envafolimab monotherapy or combination therapy were reviewed. Among them, 4 patients had low PD-L1 expression, the objective response rate (ORR) was 75% (3/4), and the disease control rate (DCR) was 100% (4/4). experiments showed that envafolimab inhibited the proliferation, invasion, and migration of gastric cancer cells with low expression of PD-L1 and induced cell apoptosis. DDX20 may be the target of envafolimab in gastric cancer cells, and it is related to the NF-κB signaling pathway. Western blot results showed that the protein expressions of DDX20, NF-κB p65, and TNF-α in gastric cancer cells were decreased after adding envafolimab. Furthermore, the DDX20 gene was silenced by small interfering RNA to further study the effect of DDX20 on PD-L1 low expression in gastric cancer cells.

Conclusion

This study confirmed that envafolimab could inhibit the growth of gastric cancer cells with low PD-L1 expression by down-regulating DDX20 expression and regulating the NF-κB/TNF-α signaling pathway.

Loading

Article metrics loading...

/content/journals/ccdt/10.2174/0115680096314855240619181909
2024-07-15
2025-09-02
Loading full text...

Full text loading...

References

  1. SungH. FerlayJ. SiegelR.L. LaversanneM. SoerjomataramI. JemalA. BrayF. Global cancer statistics 2020: Globocan estimates of incidence and mortality worldwide for 36 cancers in 185 countries.CA Cancer J. Clin.202171320924910.3322/caac.2166033538338
    [Google Scholar]
  2. RicciA.D. RizzoA. BrandiG. DNA damage response alterations in gastric cancer: Knocking down a new wall.Future Oncol.202117886586810.2217/fon‑2020‑098933508962
    [Google Scholar]
  3. RadfordM. AbushukairH. HentzenS. CavalcanteL. SaeedA. Targeted and immunotherapy approaches in HER2-positive gastric and gastroesophageal junction adenocarcinoma: A new era.J. Immunoth. Prec. Oncol.20236315015710.36401/JIPO‑22‑3637637236
    [Google Scholar]
  4. Meric-BernstamF. MakkerV. OakninA. OhD.Y. BanerjeeS. González-MartínA. JungK.H. ŁugowskaI. MansoL. ManzanoA. MelicharB. SienaS. StroyakovskiyD. FieldingA. MaY. PuvvadaS. ShireN. LeeJ.Y. Efficacy and safety of trastuzumab deruxtecan in patients with HER2-expressing solid tumors: Primary results from the destiny-PanTumor02 phase II trial.J. Clin. Oncol.2024421475810.1200/JCO.23.0200537870536
    [Google Scholar]
  5. RihawiK. RicciA.D. RizzoA. BrocchiS. MarascoG. PastoreL.V. LlimpeF.L.R. GolfieriR. RenzulliM. Tumor-associated macrophages and inflammatory microenvironment in gastric cancer: Novel translational implications.Int. J. Mol. Sci.2021228380510.3390/ijms2208380533916915
    [Google Scholar]
  6. BokuN. SatohT. RyuM.H. ChaoY. KatoK. ChungH.C. ChenJ.S. MuroK. KangW.K. YehK.H. YoshikawaT. OhS.C. BaiL.Y. TamuraT. LeeK.W. HamamotoY. KimJ.G. ChinK. OhD.Y. MinashiK. ChoJ.Y. TsudaM. NishiyamaT. ChenL.T. KangY.K. Nivolumab in previously treated advanced gastric cancer (ATTRACTION-2): 3-year update and outcome of treatment beyond progression with nivolumab.Gastric Cancer202124494695810.1007/s10120‑021‑01173‑w33743112
    [Google Scholar]
  7. BokuN. RyuM.H. KatoK. ChungH.C. MinashiK. LeeK.W. ChoH. KangW.K. KomatsuY. TsudaM. YamaguchiK. HaraH. FumitaS. AzumaM. ChenL.T. KangY.K. Safety and efficacy of nivolumab in combination with S-1/capecitabine plus oxaliplatin in patients with previously untreated, unresectable, advanced, or recurrent gastric/gastroesophageal junction cancer: Interim results of a randomized, phase II trial (ATTRACTION-4).Ann. Oncol.201930225025810.1093/annonc/mdy54030566590
    [Google Scholar]
  8. JanjigianY.Y. ShitaraK. MoehlerM. GarridoM. SalmanP. ShenL. WyrwiczL. YamaguchiK. SkoczylasT. Campos BragagnoliA. LiuT. SchenkerM. YanezP. TehfeM. KowalyszynR. KaramouzisM.V. BrugesR. ZanderT. Pazo-CidR. HitreE. FeeneyK. ClearyJ.M. PoulartV. CullenD. LeiM. XiaoH. KondoK. LiM. AjaniJ.A. First-line nivolumab plus chemotherapy versus chemotherapy alone for advanced gastric, gastro-oesophageal junction, and oesophageal adenocarcinoma (CheckMate 649): A randomised, open-label, phase 3 trial.Lancet202139810294274010.1016/S0140‑6736(21)00797‑234102137
    [Google Scholar]
  9. MollicaV. RizzoA. MarchettiA. TateoV. TassinariE. RoselliniM. MassafraR. SantoniM. MassariF. The impact of ECOG performance status on efficacy of immunotherapy and immune-based combinations in cancer patients: the MOUSEION-06 study.Clin. Exp. Med.20232385039504910.1007/s10238‑023‑01159‑137535194
    [Google Scholar]
  10. Dall’OlioF.G. RizzoA. MollicaV. MassucciM. MaggioI. MassariF. Immortal time bias in the association between toxicity and response for immune checkpoint inhibitors: A meta-analysis.Immunotherapy202113325727010.2217/imt‑2020‑017933225800
    [Google Scholar]
  11. JiangH. YuX. LiN. KongM. MaZ. ZhouD. WangW. WangH. WangH. HeK. LiZ. LuY. ZhangJ. ZhaoK. ZhangY. XuN. LiZ. LiuY. WangY. WangY. TengL. Efficacy and safety of neoadjuvant sintilimab, oxaliplatin and capecitabine in patients with locally advanced, resectable gastric or gastroesophageal junction adenocarcinoma: Early results of a phase 2 study.J. Immunother. Cancer2022103e00363510.1136/jitc‑2021‑00363535296556
    [Google Scholar]
  12. WeiJ. LuX. LiuQ. FuY. LiuS. ZhaoY. ZhouJ. ChenH. WangM. LiL. YangJ. LiuF. ZhengL. YinH. YangY. ZhouC. ZengP. ZhouX. DingN. ChenS. ZhaoX. YanJ. FanX. GuanW. LiuB. Neoadjuvant sintilimab in combination with concurrent chemoradiotherapy for locally advanced gastric or gastroesophageal junction adenocarcinoma: A single-arm phase 2 trial.Nat. Commun.2023141490410.1038/s41467‑023‑40480‑x37580320
    [Google Scholar]
  13. HuangX. FangJ. HuangL. ChenH. ChenH. ChaiT. YeZ. ChenH. XuQ. DuY. YuP. SOX combined with sintilimab versus SOX alone in the perioperative management of locally advanced gastric cancer: A propensity score–matched analysis.Gastric Cancer20232661040105010.1007/s10120‑023‑01431‑z37768447
    [Google Scholar]
  14. ZhangL. WangW. GeS. LiH. BaiM. DuanJ. YangY. NingT. LiuR. WangX. JiZ. WangF. ZhangH. BaY. DengT. Sintilimab plus apatinib and chemotherapy as second‑/third-line treatment for advanced gastric or gastroesophageal junction adenocarcinoma: A prospective, single-arm, phase II trial.BMC Cancer202323121110.1186/s12885‑023‑10661‑436872337
    [Google Scholar]
  15. GuoH. DingP. SunC. YangP. TianY. LiuY. LoweS. BentleyR. LiY. ZhangZ. WangD. LiY. ZhaoQ. Efficacy and safety of sintilimab plus XELOX as a neoadjuvant regimen in patients with locally advanced gastric cancer: A single-arm, open-label, phase II trial.Front. Oncol.20221292778110.3389/fonc.2022.92778136091139
    [Google Scholar]
  16. XuJ. JiangH. PanY. GuK. CangS. HanL. ShuY. LiJ. ZhaoJ. PanH. LuoS. QinY. GuoQ. BaiY. LingY. GuoY. LiZ. LiuY. WangY. ZhouH. LBA53 Sintilimab plus chemotherapy (chemo) versus chemo as first-line treatment for advanced gastric or gastroesophageal junction (G/GEJ) adenocarcinoma (ORIENT-16): First results of a randomized, double-blind, phase III study.Ann. Oncol.202132S133110.1016/j.annonc.2021.08.2133
    [Google Scholar]
  17. ShitaraK. Van CutsemE. BangY.J. FuchsC. WyrwiczL. LeeK.W. KudabaI. GarridoM. ChungH.C. LeeJ. CastroH.R. MansoorW. BraghiroliM.I. KarasevaN. CaglevicC. VillanuevaL. GoekkurtE. SatakeH. EnzingerP. AlsinaM. BensonA. ChaoJ. KoA.H. WainbergZ.A. KherU. ShahS. KangS.P. TaberneroJ. Efficacy and safety of pembrolizumab or pembrolizumab plus chemotherapy vs chemotherapy alone for patients with first-line, advanced gastric cancer.JAMA Oncol.20206101571158010.1001/jamaoncol.2020.337032880601
    [Google Scholar]
  18. RhaS.Y. OhD.Y. YañezP. BaiY. RyuM.H. LeeJ. RiveraF. AlvesG.V. GarridoM. ShiuK.K. FernándezM.G. LiJ. LoweryM.A. ÇilT. CruzF.M. QinS. LuoS. PanH. WainbergZ.A. YinL. BordiaS. BhagiaP. WyrwiczL.S. MendezG. O’ConnorJ.M. Yanzi CastillaA. CundomJ. KaenD. WongR. NgW. AghmeshehM. PeressoniM. AndradeC. FrankeF. AlvesG. CruzF.J. ViannaK. MonteiroM.M. RaphaelM. BerryS. JangR. TanA. AsselahJ. Yanez WeberP. MahaveM. SanchezC. SalmanP. BaiY. LiJ. ZhangX. LiuT. LinX. QinS. YangJ. LuoS. LiW. YingJ. ChenX. ZengS. QuY. YangL. ZhaoL. ChenP. PanH. LiE. YeF. LuJ. LiangX. ZhaoQ. YinX. LiJ. LingY. LvG. LiS. GuerreroA. RubianoJ. Gonzalez FernandezM. Manneh KoppR. Guzman RamirezA. CorralesL. Gonzalez HerreraI. MelicharB. BuchlerT. SvobodaT. ObermannovaR. VranaD. CvekJ. PfeifferP. BaeksgaardL. YilmazM. BoigeV. Lopez-TrabadaD. BorgC. PannierD. HiretS. Di FioreF. MetgesJ-P. ArnoldD. MartensU. LordickF. SteinA. CastroH. LopezK. RamirezJ. AguilarM. ChivalanM. ChanW. ChengA. YeoW. ArkosyP. CsosziT. HitreE. HorvathZ. LoweryM. McDermottR. MorrisP. HubertA. BrennerB. Ben-AharonI. Shacham-ShmueliE. ManS. Pelles AvrahamS. BrennerR. MishaeliM. Di BartolomeoM. FazioN. LonardiS. GarufiC. SatohT. HaraH. IwagamiS. YasuiH. TsudaM. ShimoyamaT. ShojiH. SugimotoN. ShibataN. YamaguchiK. AmagaiK. ChodaY. EsakiT. YabusakiH. OshimaT. TsujiA. KawakamiH. KawazoeA. IshidoK. KadowakiS. Martinez RodriguezJ. Herrera MartinezM. Huitzil MelendezF. Ramirez GodinezF. BalancanP. DamianovichD. Castro OlidenV. GradosJ. TorresC. WyrwiczL. WysockiP. HajacL. ZolnierekJ. KaraszewskaB. RhaS.Y. LeeJ. RyuM-H. OhD-Y. OrlovaR. TjulandinS. FadeevaN. MakarychevaY. NosovD. SmaginaM. ChanS. JacobsC. KrausP. LandersG. RobertsonB. RuffP. SchoemanE. MaurelJ-M. Diez GarciaM. Jimenez FonsecaP. Gallego PlazasJ. Rivera HerreroF. Miranda PomaJ. Layos RomeroL. FritschR. BastianS. WinterhalderR. DossoS.D. KosslerT. YehK-H. YenC-J. ChenY-Y. LinJ. BiliciM. OzgurogluM. CilT. OksuzogluB. HarputluogluH. KaraogluA. HacibekirogluI. ErdoganB. YalcinS. AdamchukH. BondarenkoI. KolesnikO. OstapenkoY. KryzhanivskaA. LeshchenkoL. IlinI. ShparykY. TrukhinD. VoitkoN. RoyR. YoungA-M. MedleyL. ShiuK-K. CelanoP. OvertonL. RajM. DunneR. WainbergZ. DayyaniF. LarsonT. KochenderferM. Pembrolizumab plus chemotherapy versus placebo plus chemotherapy for HER2-negative advanced gastric cancer (KEYNOTE-859): A multicentre, randomised, double-blind, phase 3 trial.Lancet Oncol.202324111181119510.1016/S1470‑2045(23)00515‑637875143
    [Google Scholar]
  19. ChauI. Pembrolizumab as a first-line treatment for advanced gastric cancer.Lancet Oncol.202324111158115910.1016/S1470‑2045(23)00526‑037875145
    [Google Scholar]
  20. ChungH.C. BangY.J. S FuchsC. QinS.K. SatohT. ShitaraK. TaberneroJ. Van CutsemE. AlsinaM. CaoZ.A. LuJ. BhagiaP. ShihC.S. JanjigianY.Y. First-line pembrolizumab/placebo plus trastuzumab and chemotherapy in HER2-positive advanced gastric cancer: KEYNOTE-811.Future Oncol.202117549150110.2217/fon‑2020‑073733167735
    [Google Scholar]
  21. MarabelleA. LeD.T. AsciertoP.A. Di GiacomoA.M. De Jesus-AcostaA. DelordJ.P. GevaR. GottfriedM. PenelN. HansenA.R. Piha-PaulS.A. DoiT. GaoB. ChungH.C. Lopez-MartinJ. BangY.J. FrommerR.S. ShahM. GhoriR. JoeA.K. PruittS.K. DiazL.A.Jr Efficacy of pembrolizumab in patients with noncolorectal high microsatellite instability/mismatch repair–deficient cancer: Results from the phase II KEYNOTE-158 study.J. Clin. Oncol.202038111010.1200/JCO.19.0210531682550
    [Google Scholar]
  22. XuJ. BaiY. XuN. LiE. WangB. WangJ. LiX. WangX. YuanX. Tislelizumab plus chemotherapy as first-line treatment for advanced esophageal squamous cell carcinoma and gastric/gastroesophageal junction adenocarcinoma.Clin. Cancer Res.202026174542455010.1158/1078‑0432.CCR‑19‑356132561664
    [Google Scholar]
  23. JiangQ. LiuW. ZengX. ZhangC. DuY. ZengL. YinY. FanJ. YangM. TaoK. ZhangP. Safety and efficacy of tislelizumab plus chemotherapy versus chemotherapy alone as neoadjuvant treatment for patients with locally advanced gastric cancer: real-world experience with a consecutive patient cohort.Front. Immunol.202314112212110.3389/fimmu.2023.112212137215127
    [Google Scholar]
  24. YinY. LinY. YangM. LvJ. LiuJ. WuK. LiuK. LiA. ShuaiX. CaiK. WangZ. WangG. ShenJ. ZhangP. TaoK. Neoadjuvant tislelizumab and tegafur/gimeracil/octeracil (S-1) plus oxaliplatin in patients with locally advanced gastric or gastroesophageal junction cancer: Early results of a phase 2, single-arm trial.Front. Oncol.20221295929510.3389/fonc.2022.95929536158692
    [Google Scholar]
  25. LuZ. YangS. LuoX. ShiY. LeeJ.S. DevaS. LiuT. ChaoY. ZhangY. HuangR. XuY. ShenZ. ShenL. The combination of gene hyperamplification and PD-L1 expression as a biomarker for the clinical benefit of tislelizumab in gastric/gastroesophageal junction adenocarcinoma.Gastric Cancer202225594395510.1007/s10120‑022‑01308‑735778636
    [Google Scholar]
  26. KoA.H. KimK.P. SivekeJ.T. LopezC.D. LacyJ. O’ReillyE.M. MacarullaT. ManjiG.A. LeeJ. AjaniJ. Alsina MaquedaM. RhaS.Y. LauJ. Al-SakaffN. AllenS. LuD. ShemeshC.S. GanX. ChaE. OhD.Y. Atezolizumab plus PEGPH20 versus chemotherapy in advanced pancreatic ductal adenocarcinoma and gastric cancer: MORPHEUS phase Ib/II umbrella randomized study platform.Oncologist2023286553e47210.1093/oncolo/oyad02236940261
    [Google Scholar]
  27. LorenzenS. GötzeT.O. Thuss-PatienceP. BieblM. HomannN. SchenkM. LindigU. HeuerV. KretzschmarA. GoekkurtE. HaagG.M. Riera-KnorrenschildJ. BollingC. HofheinzR.D. ZhanT. AngermeierS. EttrichT.J. SiebenhuenerA.R. ElshafeiM. BechsteinW.O. GaiserT. LooseM. SookthaiD. KoppC. PauligkC. Al-BatranS.E. Perioperative atezolizumab plus fluorouracil, leucovorin, oxaliplatin, and docetaxel for resectable esophagogastric cancer: Interim results from the randomized, multicenter, phase II/III DANTE/IKF-s633 trial.J. Clin. Oncol.202442441042010.1200/JCO.23.0097537963317
    [Google Scholar]
  28. VerschoorY.L. van de HaarJ. van den BergJ.G. van SandickJ.W. KodachL.L. van DierenJ.M. BalduzziS. GrootscholtenC. IJsselsteijnM.E. VeenhofA.A.F.A. HarteminkK.J. VolleberghM.A. JurdiA. SharmaS. SpickardE. OwersE.C. Bartels-RuttenA. den HartogP. de MirandaN.F.C.C. van LeerdamM.E. HaanenJ.B.A.G. SchumacherT.N. VoestE.E. ChalabiM. Neoadjuvant atezolizumab plus chemotherapy in gastric and gastroesophageal junction adenocarcinoma: The phase 2 PANDA trial.Nat. Med.202430251953010.1038/s41591‑023‑02758‑x38191613
    [Google Scholar]
  29. MaronS.B. KlempnerS.J. Are you a tmbeliever? mutations and atezolizumab response in solid tumors.Cancer Discov.202212360260310.1158/2159‑8290.CD‑21‑164235257152
    [Google Scholar]
  30. KwonM. KimG. KimR. KimK.T. KimS.T. SmithS. MortimerP.G.S. HongJ.Y. LoembéA.B. Irurzun-AranaI. KoulaiL. KimK.M. KangW.K. DeanE. ParkW.Y. LeeJ. Phase II study of ceralasertib (AZD6738) in combination with durvalumab in patients with advanced gastric cancer.J. Immunother. Cancer2022107e00504110.1136/jitc‑2022‑00504135790315
    [Google Scholar]
  31. SaeedA. ParkR. DaiJ. Al-RajabiR. KasiA. BarandaJ. WilliamsonS. SaeedA. RippJ. CollinsZ. MulvaneyK. ShugrueM. Firth-BraunJ. GodwinA.K. MadanR. PhadnisM. SunW. Cabozantinib plus durvalumab in advanced gastroesophageal cancer and other gastrointestinal malignancies: Phase Ib CAMILLA trial results.Cell Rep. Med.20234210091610.1016/j.xcrm.2023.10091636702123
    [Google Scholar]
  32. JanjigianY.Y. Van CutsemE. MuroK. WainbergZ. Al-BatranS.E. HyungW.J. MolenaD. MarcovitzM. RuscicaD. RobbinsS.H. NegroA. TaberneroJ. MATTERHORN: phase III study of durvalumab plus FLOT chemotherapy in resectable gastric/gastroesophageal junction cancer.Future Oncol.202218202465247310.2217/fon‑2022‑009335535555
    [Google Scholar]
  33. RaimondiA. PalermoF. PrisciandaroM. AgliettaM. AntonuzzoL. AprileG. BerardiR. CardellinoG.G. De ManzoniG. De VitaF. Di MaioM. FornaroL. FrassinetiG.L. GranettoC. IachettaF. LonardiS. MurialdoR. OngaroE. PucciF. RattiM. SilvestrisN. SmiroldoV. SpallanzaniA. StrippoliA. TamberiS. TamburiniE. ZaniboniA. Di BartolomeoM. CremoliniC. SpositoC. MazzaferroV. PietrantonioF. Tremelimumab and durvalumab combination for the non-operative management (NOM) of microsatellite instability (MSI)-high resectable gastric or gastroesophageal junction cancer: The multicentre, single-arm, multi-cohort, phase II infinity study.Cancers20211311283910.3390/cancers1311283934200267
    [Google Scholar]
  34. MuyldermansS. Single domain camel antibodies: Current status.J. Biotechnol.200174427730211526908
    [Google Scholar]
  35. ZhangF. WeiH. WangX. BaiY. WangP. WuJ. JiangX. WangY. CaiH. XuT. ZhouA. Structural basis of a novel PD-L1 nanobody for immune checkpoint blockade.Cell Discov.2017311700410.1038/celldisc.2017.428280600
    [Google Scholar]
  36. MarkhamA. Envafolimab: First approval.Drugs202282223524010.1007/s40265‑022‑01671‑w35122636
    [Google Scholar]
  37. ShimizuT. NakajimaT.E. YamamotoN. YonemoriK. KoyamaT. KondoS. SunakawaY. IzawaN. HorieY. XiangS. XuS. QinL. GongJ. LiuD. Phase I study of envafolimab (KN035), a novel subcutaneous single-domain anti-PD-L1 monoclonal antibody, in Japanese patients with advanced solid tumors.Invest. New Drugs20224051021103110.1007/s10637‑022‑01287‑735932387
    [Google Scholar]
  38. LiJ. DengY. ZhangW. ZhouA.P. GuoW. YangJ. YuanY. ZhuL. QinS. XiangS. LuH. GongJ. XuT. LiuD. ShenL. Subcutaneous envafolimab monotherapy in patients with advanced defective mismatch repair/microsatellite instability high solid tumors.J. Hematol. Oncol.20211419510.1186/s13045‑021‑01095‑134154614
    [Google Scholar]
  39. WangX. WuW.K.K. GaoJ. LiZ. DongB. LinX. LiY. LiY. GongJ. QiC. PengZ. YuJ. ShenL. Autophagy inhibition enhances PD-L1 expression in gastric cancer.J. Exp. Clin. Cancer Res.201938114010.1186/s13046‑019‑1148‑530925913
    [Google Scholar]
  40. MiliotisC. SlackF.J. miR-105-5p regulates PD-L1 expression and tumor immunogenicity in gastric cancer.Cancer Lett.202151811512610.1016/j.canlet.2021.05.03734098061
    [Google Scholar]
  41. ShimizuT. NakajimaT.E. LuN. XueS. XuW. FuM. CaoW. LuH. LiuD. DongR.P. WangX. WangP. ZhuD. XuT. GongJ. Phase I safety and pharmacokinetic study of KN035, the first subcutaneously administered, novel fusion anti-PD-L1 antibody in Japanese patients with advanced solid tumors.J. Clin. Oncol.20193715_suppl2609260910.1200/JCO.2019.37.15_suppl.2609
    [Google Scholar]
  42. DhanasekaranR. Treacherous apoptosis—cancer cells sacrifice themselves at the altar of heterogeneity.Hepatology202276354955010.1002/hep.3243335218240
    [Google Scholar]
  43. MoranaO. WoodW. GregoryC.D. The apoptosis paradox in cancer.Int. J. Mol. Sci.2022233132810.3390/ijms2303132835163253
    [Google Scholar]
  44. AliM.A.M. The DEAD-box protein family of RNA helicases: Sentinels for a myriad of cellular functions with emerging roles in tumorigenesis.Int. J. Clin. Oncol.202126579582510.1007/s10147‑021‑01892‑133656655
    [Google Scholar]
  45. Heerma van VossM.R. van DiestP.J. RamanV. Targeting RNA helicases in cancer: The translation trap.Biochim. Biophys. Acta Rev. Cancer20171868251052010.1016/j.bbcan.2017.09.00628965870
    [Google Scholar]
  46. CargillM. VenkataramanR. LeeS. DEAD-Box RNA helicases and genome stability.Genes20211210147110.3390/genes1210147134680866
    [Google Scholar]
  47. WangQ. YeY. LinR. WengS. CaiF. ZouM. NiuH. GeL. LinY. Analysis of the expression, function, prognosis and co-expression genes of DDX20 in gastric cancer.Comput. Struct. Biotechnol. J.2020182453246210.1016/j.csbj.2020.09.00233005307
    [Google Scholar]
  48. SangheraC. SangheraR. Immunotherapy : Strategies for expanding its role in the treatment of all major tumor sites.Cureus20191110e593810.7759/cureus.593831788395
    [Google Scholar]
  49. LahiriA. MajiA. PotdarP.D. SinghN. ParikhP. BishtB. MukherjeeA. PaulM.K. Lung cancer immunotherapy: Progress, pitfalls, and promises.Mol. Cancer20232214010.1186/s12943‑023‑01740‑y36810079
    [Google Scholar]
  50. DesaiA. PetersS. Immunotherapy-based combinations in metastatic NSCLC.Cancer Treat. Rev.202311610254510.1016/j.ctrv.2023.10254537030062
    [Google Scholar]
  51. ChangJ.Y. LinS.H. DongW. LiaoZ. GandhiS.J. GayC.M. ZhangJ. ChunS.G. ElaminY.Y. FossellaF.V. BlumenscheinG. CasconeT. LeX. PozadzidesJ.V. TsaoA. VermaV. WelshJ.W. ChenA.B. AltanM. MehranR.J. VaporciyanA.A. SwisherS.G. BalterP.A. FujimotoJ. WistubaI.I. FengL. LeeJ.J. HeymachJ.V. Stereotactic ablative radiotherapy with or without immunotherapy for early-stage or isolated lung parenchymal recurrent node-negative non-small-cell lung cancer: An open-label, randomised, phase 2 trial.Lancet20234021040587188110.1016/S0140‑6736(23)01384‑337478883
    [Google Scholar]
  52. SchoenfeldJ.D. Giobbie-HurderA. RanasingheS. KaoK.Z. LakoA. TsujiJ. LiuY. BrennickR.C. GentzlerR.D. LeeC. HubbardJ. ArnoldS.M. AbbruzzeseJ.L. JabbourS.K. UbohaN.V. StephansK.L. JohnsonJ.M. ParkH. VillaruzL.C. SharonE. StreicherH. AhmedM.M. LyonH. CibuskisC. LennonN. JhaveriA. YangL. AltreuterJ. GunastiL. WeiratherJ.L. MakR.H. AwadM.M. RodigS.J. ChenH.X. WuC.J. MonjazebA.M. HodiF.S. Durvalumab plus tremelimumab alone or in combination with low-dose or hypofractionated radiotherapy in metastatic non-small-cell lung cancer refractory to previous PD(L)-1 therapy: An open-label, multicentre, randomised, phase 2 trial.Lancet Oncol.202223227929110.1016/S1470‑2045(21)00658‑635033226
    [Google Scholar]
  53. JaryM. LiuW.W. YanD. BaiI. MuranyiA. ColleE. BrocheriouI. TurpinA. Radosevic-RobinN. BourgoinP. Penault-LlorcaF. CohenR. VernereyD. AndréT. BorgC. ShanmugamK. SvrcekM. Immune microenvironment in patients with mismatch‐repair‐proficient oligometastatic colorectal cancer exposed to chemotherapy: The randomized MIROX GERCOR cohort study.Mol. Oncol.202216112260227310.1002/1878‑0261.1317334954864
    [Google Scholar]
  54. LiJ. WuC. HuH. QinG. WuX. BaiF. ZhangJ. CaiY. HuangY. WangC. YangJ. LuanY. JiangZ. LingJ. WuZ. ChenY. XieZ. DengY. Remodeling of the immune and stromal cell compartment by PD-1 blockade in mismatch repair-deficient colorectal cancer.Cancer Cell202341611521169.e710.1016/j.ccell.2023.04.01137172580
    [Google Scholar]
  55. TianJ. ChenJ.H. ChaoS.X. PelkaK. GiannakisM. HessJ. BurkeK. JorgjiV. SindurakarP. BravermanJ. MehtaA. OkaT. HuangM. LiebD. SpurrellM. AllenJ.N. AbramsT.A. ClarkJ.W. EnzingerA.C. EnzingerP.C. KlempnerS.J. McClearyN.J. MeyerhardtJ.A. RyanD.P. YurgelunM.B. KanterK. Van SeventerE.E. BaievI. ChiG. JarnaginJ. BradfordW.B. WongE. MichelA.G. FetterI.J. SiravegnaG. GemmaA.J. SharpeA. DemehriS. LearyR. CampbellC.D. YilmazO. GetzG.A. ParikhA.R. HacohenN. CorcoranR.B. Combined PD-1, BRAF and MEK inhibition in BRAFV600E colorectal cancer: A phase 2 trial.Nat. Med.202329245846610.1038/s41591‑022‑02181‑836702949
    [Google Scholar]
  56. ChenY. ChenY. TanS. ZhengY. LiuS. ZhengT. MiY. LinS. YangC. LiW. Visual analysis of global research on immunotherapy for gastric cancer: A literature mining from 2012 to 2022.Hum. Vaccin. Immunother.2023191218668410.1080/21645515.2023.218668437017186
    [Google Scholar]
  57. MagahisP.T. MaronS.B. CowzerD. KingS. SchattnerM. JanjigianY. FaleckD. LaszkowskaM. Impact of Helicobacter pylori infection status on outcomes among patients with advanced gastric cancer treated with immune checkpoint inhibitors.J. Immunother. Cancer20231110e00769910.1136/jitc‑2023‑00769937899129
    [Google Scholar]
  58. WangJ.B. QiuQ.Z. ZhengQ.L. ZhaoY.J. XuY. ZhangT. WangS.H. WangQ. JinQ.W. YeY.H. LiP. XieJ.W. LinJ.X. LuJ. ChenQ.Y. CaoL.L. YangY.H. ZhengC.H. HuangC.M. Tumor immunophenotyping‐derived signature identifies prognosis and neoadjuvant immunotherapeutic responsiveness in gastric cancer.Adv. Sci.20231015220741710.1002/advs.20220741736998102
    [Google Scholar]
  59. JuF. WangD. HuangL. JiangC. GaoC. XiongC. ZhaiG. Progress of PD-1/PD-L1 signaling in immune response to liver transplantation for hepatocellular carcinoma.Front. Immunol.202314122775610.3389/fimmu.2023.122775637545535
    [Google Scholar]
  60. WuL. YanJ. BaiY. ChenF. ZouX. XuJ. HuangA. HouL. ZhongY. JingZ. YuQ. ZhouX. JiangZ. WangC. ChengM. JiY. HouY. LuoR. LiQ. WuL. ChengJ. WangP. GuoD. HuangW. LeiJ. LiuS. YanY. ChenY. LiaoS. LiY. SunH. YaoN. ZhangX. ZhangS. ChenX. YuY. LiY. LiuF. WangZ. ZhouS. YangH. YangS. XuX. LiuL. GaoQ. TangZ. WangX. WangJ. FanJ. LiuS. YangX. ChenA. ZhouJ. An invasive zone in human liver cancer identified by Stereo-seq promotes hepatocyte–tumor cell crosstalk, local immunosuppression and tumor progression.Cell Res.202333858560310.1038/s41422‑023‑00831‑137337030
    [Google Scholar]
  61. QiuY. WuZ. ChenY. LiaoJ. ZhangQ. WangQ. DuanY. GongK. ChenS. WangL. FanP. DuanY. WangW. DongY. Nano ultrasound contrast agent for synergistic chemo‐photothermal therapy and enhanced immunotherapy against liver cancer and metastasis.Adv. Sci.20231021230087810.1002/advs.20230087837162268
    [Google Scholar]
  62. ShahM.A. KennedyE.B. Alarcon-RozasA.E. AlcindorT. BartleyA.N. MalowanyA.B. BhadkamkarN.A. DeightonD.C. JanjigianY. KarippotA. KhanU. KingD.A. KluteK. LacyJ. LeeJ.J. MehtaR. MukherjeeS. NagarajanA. ParkH. SaeedA. SemradT.J. ShitaraK. SmythE. UbohaN.V. VincelliM. WainbergZ. RajdevL. Immunotherapy and targeted therapy for advanced gastroesophageal cancer: ASCO guideline.J. Clin. Oncol.20234171470149110.1200/JCO.22.0233136603169
    [Google Scholar]
  63. ChaoJ. FuchsC.S. ShitaraK. TaberneroJ. MuroK. Van CutsemE. BangY.J. De VitaF. LandersG. YenC.J. ChauI. ElmeA. LeeJ. ÖzgürogluM. CatenacciD. YoonH.H. ChenE. AdelbergD. ShihC.S. ShahS. BhagiaP. WainbergZ.A. Assessment of pembrolizumab therapy for the treatment of microsatellite instability–high gastric or gastroesophageal junction cancer among patients in the KEYNOTE-059, KEYNOTE-061, and KEYNOTE-062 clinical trials.JAMA Oncol.20217689590210.1001/jamaoncol.2021.027533792646
    [Google Scholar]
  64. ShitaraK. ÖzgüroğluM. BangY.J. Di BartolomeoM. MandalàM. RyuM.H. FornaroL. OlesińskiT. CaglevicC. ChungH.C. MuroK. GoekkurtE. MansoorW. McDermottR.S. Shacham-ShmueliE. ChenX. MayoC. KangS.P. OhtsuA. FuchsC.S. LerzoG. O’ConnorJ.M. MendezG.A. LynamJ. TebbuttN. WongM. StricklandA. KarapetisC. GoldsteinD. VaseyP. Van LaethemJ-L. Van CutsemE. BerryS. VincentM. MullerB. ReyF. ZambranoA. GuerraJ. KroghM. BaeksgaardL. YilmazM. ElmeA. MagiA. AuvinenP. AlankoT. MoehlerM. KunzmannV. SeufferleinT. Thuss-PatienceP. GoekkurtE. HoehlerT. HaagG. Al-BatranS-E. CastroH. LopezK. Aguilar VasquezM. SandovalM. LamK.O. CuffeS. KellyC. GevaR. Shacham-ShmueliE. HubertA. BenyA. BrennerB. GiuseppeA. FalconeA. MaielloE. PassalacquaR. MontesarchioV. HaraH. ChinK. NishinaT. KomatsuY. MachidaN. HironakaS. SatohT. TamuraT. SugimotoN. ChoH. OmuroY. KatoK. GotoM. HyodoI. YoshidaK. BabaH. EsakiT. FuruseJ. Wan MohammedW.Z. Hernandez HernandezC. Casas GarciaJ. Dominguez AndradeA. ClarkeK. HjortlandG. GlenjenN. KubiatowskiT. JacekJ. WojtukiewiczM. LazarevS. LancukhayY. AfanasayevS. MoiseyenkoV. KostorovV. ProtsenkoS. ShirinkinV. SakaevaD. FadeevaN. YongW.P. NgC.H.M. RobertsonB. RapaportB. CohenG. DreostiL. RuffP. JacobsC. LandersG. SzpakW. RohS-Y. LeeJ. KimY.H. BangY-J. ChungH.C. RyuM-H. Alsina MaquedaM. Longo MunozF. Cervantes AguilarA. Aranda AguilarE. Garcia AlfonsoP. RiveraF. Feliu BatleJ. Pazo CidR. YehK-H. ChenJ-S. ChaoY. YenC-J. ÖzgüroğluM. KaraO. YalcinS. HochhauserD. ChauI. BensonA. ShankaranV. ShaibW. PhilipP. SharmaV. SiegelR. SunW. WainbergZ. GeorgeB. BullockA. MyrickS. FaruolJ. SiegelR. LarsonT. BecerraC. RatnamS. RichardsD.A. RicheS.L. Pembrolizumab versus paclitaxel for previously treated, advanced gastric or gastro-oesophageal junction cancer (KEYNOTE-061): A randomised, open-label, controlled, phase 3 trial.Lancet20183921014212313310.1016/S0140‑6736(18)31257‑129880231
    [Google Scholar]
  65. ShitaraKA-O Association between gene expression signatures and clinical outcomes of pembrolizumab versus paclitaxel in advanced gastric cancer: exploratory analysis from the randomized, controlled, phase III KEYNOTE-061 trial.J Immunother Cancer2023116e00692010.1136/jitc‑2023‑006920
    [Google Scholar]
  66. AliM.A.M. DEAD-box RNA helicases: The driving forces behind RNA metabolism at the crossroad of viral replication and antiviral innate immunity.Virus Res.202129619835210.1016/j.virusres.2021.19835233640359
    [Google Scholar]
  67. HeL. YangJ. HaoY. YangX. ShiX. ZhangD. ZhaoD. YanW. BieX. ChenL. ChenG. ZhaoS. LiuX. ZhengH. ZhangK. DDX20: A multifunctional complex protein.Molecules20232820719810.3390/molecules2820719837894677
    [Google Scholar]
  68. SimankovaA. BizenN. SaitohS. ShibataS. OhnoN. AbeM. SakimuraK. TakebayashiH. Ddx20, DEAD box helicase 20, is essential for the differentiation of oligodendrocyte and maintenance of myelin gene expression.Glia202169112559257410.1002/glia.2405834231259
    [Google Scholar]
  69. BizenN. BepariA.K. ZhouL. AbeM. SakimuraK. OnoK. TakebayashiH. Ddx20, an Olig2 binding factor, governs the survival of neural and oligodendrocyte progenitor cells via proper Mdm2 splicing and p53 suppression.Cell Death Differ.20222951028104110.1038/s41418‑021‑00915‑834974536
    [Google Scholar]
  70. ShinE.M. Sin HayH. LeeM.H. GohJ.N. TanT.Z. SenY.P. LimS.W. YousefE.M. OngH.T. ThikeA.A. KongX. WuZ. MendozE. SunW. Salto-TellezM. LimC.T. LobieP.E. LimY.P. YapC.T. ZengQ. SethiG. LeeM.B. TanP. GohB.C. MillerL.D. ThieryJ.P. ZhuT. GabouryL. TanP.H. HuiK.M. YipG.W.C. MiyamotoS. KumarA.P. TergaonkarV. DEAD-box helicase DP103 defines metastatic potential of human breast cancers.J. Clin. Invest.201412493807382410.1172/JCI7345125083991
    [Google Scholar]
  71. ChenW. ZhouP. LiX. High expression of DDX20 enhances the proliferation and metastatic potential of prostate cancer cells through the NF-κB pathway.Int. J. Mol. Med.20163761551155710.3892/ijmm.2016.257527121695
    [Google Scholar]
  72. Bourova-FlinE. DerakhshanS. GoudarziA. WangT. VitteA.L. ChuffartF. KhochbinS. RousseauxS. AminishakibP. The combined detection of Amphiregulin, Cyclin A1 and DDX20/Gemin3 expression predicts aggressive forms of oral squamous cell carcinoma.Br. J. Cancer202112581122113410.1038/s41416‑021‑01491‑x34290392
    [Google Scholar]
  73. YangY. YangM. PangH. QiuY. SunT. WangT. ShenS. WangW. A macrophage differentiation-mediated gene: DDX20 as a molecular biomarker encompassing the tumor microenvironment, disease staging, and prognoses in hepatocellular carcinoma.Oxid. Med. Cell. Longev.2022202212210.1155/2022/997177636246406
    [Google Scholar]
  74. HobaniY.H. AlmarsA.I. AlelwaniW. ToraihE.A. NemrN.A. ShaalanA.A.M. FawzyM.S. AttallahS.M. Genetic variation in dead-box helicase 20 as a putative marker of recurrence in propensity-matched colon cancer patients.Genes2022138140410.3390/genes1308140436011315
    [Google Scholar]
  75. TaoY. ZhouJ. WangZ. TaoH. BaiJ. GeG. LiW. ZhangW. HaoY. YangX. GengD. Human bone mesenchymal stem cells-derived exosomal miRNA-361-5p alleviates osteoarthritis by downregulating DDX20 and inactivating the NF-κB signaling pathway.Bioorg. Chem.202111310497810.1016/j.bioorg.2021.10497834052737
    [Google Scholar]
  76. TakataA. OtsukaM. YoshikawaT. KishikawaT. KudoY. GotoT. YoshidaH. KoikeK. A miRNA machinery component DDX20 controls NF-κB via microRNA-140 function.Biochem. Biophys. Res. Commun.2012420356456910.1016/j.bbrc.2012.03.03422445758
    [Google Scholar]
/content/journals/ccdt/10.2174/0115680096314855240619181909
Loading
/content/journals/ccdt/10.2174/0115680096314855240619181909
Loading

Data & Media loading...


  • Article Type:
    Research Article
Keyword(s): DDX20; Envafolimab (KN035); gastric cancer; NF-κB; PD-L1; PD-L1 inhibitor
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test