Skip to content
2000
Volume 25, Issue 6
  • ISSN: 1568-0096
  • E-ISSN: 1873-5576

Abstract

Purpose

This study aims to understand the role of cirrhosis in promoting hepatocellular carcinoma (HCC) progression by analyzing the differential expression of long noncoding RNAs (lncRNAs) between cirrhotic hepatocellular carcinoma (CHCC) and noncirrhotic hepatocellular carcinoma (NCHCC).

Methods

A transcriptional profile array was used to identify differentially expressed lncRNAs. Subsequently, a specific lncRNA was selected to evaluate the clinical significance, potential functions, regulatory targets, and pathways through both and experiments.

Results

The study identified a lncRNA, which we termed DERCNC, an acronym for Differentially Expressed RNA between Cirrhotic and Non-Cirrhotic HCC. DERCNC was significantly more highly expressed in CHCC than in NCHCC. Clinically, elevated levels of DERCNC expression were positively correlated with both the cirrhotic state and tumor stage and inversely correlated with tumor differentiation. Furthermore, high expression of DERCNC was associated with a poor prognosis for patients. Conditioned medium from the hepatic stellate cell (LX2) was found to enhance DERCNC expression, SOX9 expression, and tumor proliferation. Overexpression of DERCNC similarly promoted tumor proliferation and increased SOX9 levels. Conversely, DERCNC silencing resulted in the opposite effects. Moreover, the pro-proliferative function of DERCNC was reversible through the modulation of SOX9 expression. Further mechanistic studies revealed that DERCNC upregulated SOX9 by increasing the enrichment of H3K27ac modifications near the SOX9 promoter.

Conclusion

In conclusion, DERCNC expression in CHCC has significant clinical implications and can aggravate tumor proliferation by targeting SOX9. This represents a novel mechanism by which cirrhosis promotes tumor progression.

Loading

Article metrics loading...

/content/journals/ccdt/10.2174/0115680096310229240626102449
2024-07-22
2025-09-03
Loading full text...

Full text loading...

References

  1. BrayF. FerlayJ. SoerjomataramI. SiegelR.L. TorreL.A. JemalA. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries.CA Cancer J. Clin.201868639442410.3322/caac.21492 30207593
    [Google Scholar]
  2. SamaeiS.S. DaryabM. GholamiS. RezaeeA. FatehiN. RoshanniaR. HashemiS. JavaniN. RahmanianP. Amani-BeniR. ZandiehM.A. NabaviN. RashidiM. MalgardN. HashemiM. TaheriazamA. Multifunctional and stimuli-responsive liposomes in hepatocellular carcinoma diagnosis and therapy.Transl. Oncol.20244510197510.1016/j.tranon.2024.101975 38692195
    [Google Scholar]
  3. HuoR. YangW.J. LiuY. LiuT. LiT. WangC.Y. PanB.S. WangB.L. GuoW. Stigmasterol: Remodeling gut microbiota and suppressing tumor growth through Treg and CD8+ T cells in hepatocellular carcinoma.Phytomedicine202412915522510.1016/j.phymed.2023.155225 38678948
    [Google Scholar]
  4. KimB.H. ParkH.C. KimT.H. KohY.H. HongJ.Y. ChoY. SinnD.H. ParkB. ParkJ.W. Concurrent nivolumab and external beam radiation therapy for hepatocellular carcinoma with macrovascular invasion: A phase II study.JHEP Rep202364100991
    [Google Scholar]
  5. WadeR. SouthE. AnwerS. Sharif-HurstS. HardenM. FulbrightH. HodgsonR. DiasS. SimmondsM. RoweI. ThorntonP. EastwoodA. Ablative and non-surgical therapies for early and very early hepatocellular carcinoma: A systematic review and network meta-analysis.Health Technol. Assess.20232729117210.3310/GK5221 38149643
    [Google Scholar]
  6. HerreroA. ToubertC. BedoyaJ.U. AssenatE. GuiuB. PanaroF. BardolT. CasseseG. Management of hepatocellular carcinoma recurrence after liver surgery and thermal ablations: State of the art and future perspectives.Hepatobiliary Surg. Nutr.2024131718810.21037/hbsn‑22‑579 38322198
    [Google Scholar]
  7. ZhuH. ZhaoS. ZhaoT. ChenL. LiS. JiK. JiangK. TaoH. XuanJ. YangM. XuB. JiangM. WangF. Comparison of metastasis and prognosis between early-onset and late-onset hepatocellular carcinoma: A population-based study.Heliyon2024107e2849710.1016/j.heliyon.2024.e28497 38689980
    [Google Scholar]
  8. XuJ. ZhaoY. ChenZ. WeiL. Clinical application of different liquid biopsy components in hepatocellular carcinoma.J. Pers. Med.202414442010.3390/jpm14040420 38673047
    [Google Scholar]
  9. XingL. ZhangY. LiS. TongM. BiK. ZhangQ. LiQ. A dual coverage monitoring of the bile acids profile in the liver–gut axis throughout the whole inflammation-cancer transformation progressive: Reveal hepatocellular carcinoma pathogenesis.Int. J. Mol. Sci.2023245425810.3390/ijms24054258 36901689
    [Google Scholar]
  10. BeudekerB.J.B. GuhaR. StoyanovaK. IJzermansJ.N.M. de ManR.A. SprengersD. BoonstraA. Cryptogenic non-cirrhotic HCC: Clinical, prognostic and immunologic aspects of an emerging HCC etiology.Sci. Rep.2024141430210.1038/s41598‑024‑52884‑w 38383695
    [Google Scholar]
  11. FuS. DegerT. BoersR.G. BoersJ.B. DoukasM. GribnauJ. WiltingS.M. DebesJ.D. BoonstraA. Hypermethylation of DNA methylation markers in non-cirrhotic hepatocellular carcinoma.Cancers (Basel)20231519478410.3390/cancers15194784 37835478
    [Google Scholar]
  12. WörnsM.A. BossletT. VictorA. KochS. Hoppe-LotichiusM. HeiseM. HansenT. PittonM.B. NiederleI.M. SchuchmannM. WeinmannA. DüberC. GalleP.R. OttoG. Prognostic factors and outcomes of patients with hepatocellular carcinoma in non-cirrhotic liver.Scand. J. Gastroenterol.201247671872810.3109/00365521.2012.677952 22472070
    [Google Scholar]
  13. TretiakovaM.S. HartJ. Shabani-RadM.T. ZhangJ. GaoZ.H. Distinction of hepatocellular adenoma from hepatocellular carcinoma with and without cirrhosis using E-cadherin and matrix metalloproteinase immunohistochemistry.Mod. Pathol.200922811131120
    [Google Scholar]
  14. BurnettN.P. Dunki-JacobsE.M. CallenderG.G. AndersonR.J. ScogginsC.R. McMastersK.M. MartinR.C.G. Evaluation of alpha-fetoprotein staging system for hepatocellular carcinoma in noncirrhotic patients.Am. Surg.201379771672210.1177/000313481307900717 23816006
    [Google Scholar]
  15. ArnaoutakisD.J. MavrosM.N. ShenF. AlexandrescuS. FiroozmandA. PopescuI. WeissM. WolfgangC.L. ChotiM.A. PawlikT.M. Recurrence patterns and prognostic factors in patients with hepatocellular carcinoma in noncirrhotic liver: A multi-institutional analysis.Ann. Surg. Oncol.201421114715410.1245/s10434‑013‑3211‑3 23959056
    [Google Scholar]
  16. EngstrandJ. StålP. GilgS. JanssonA. StrömbergC. Hepatocellular carcinoma in cirrhotic versus non-cirrhotic liver: Treatment and survival differences in a nationwide cohort.Scand. J. Surg.20241132120130
    [Google Scholar]
  17. MeiY. YouY. XiaJ. GongJ.P. WangY.B. Identifying differentially expressed micrornas between cirrhotic and non-cirrhotic hepatocellular carcinoma and exploring their functions using bioinformatic analysis.Cell. Physiol. Biochem.201848414431456
    [Google Scholar]
  18. HuJ. ZhangZ.Q. ZhuW. WuZ.R. YouY. LiuY. SuD.W. WangY.B. GongJ.P. Comparison of clinicopathological traits and prognostic factors of hepatocellular carcinoma with and without cirrhotic background.Carcinogenesis202041111576158210.1093/carcin/bgaa024 32188964
    [Google Scholar]
  19. PasqualiniC. KozakiT. BruschiM. NguyenT.H.H. Minard-ColinV. CastelD. GrillJ. GinhouxF. Modeling the interaction between the microenvironment and tumor cells in brain tumors.Neuron202010861025104410.1016/j.neuron.2020.09.018 33065047
    [Google Scholar]
  20. SussmanJ.H. KimN. KempS.B. TraumD. KatsudaT. KahnB.M. XuJ. KimI.K. EskandarianC. DelmanD. BeattyG.L. KaestnerK.H. SimpsonA.L. StangerB.Z. Multiplexed imaging mass cytometry analysis characterizes the vascular niche in pancreatic cancer.Cancer Res.202484142364237610.1158/0008‑5472.CAN‑23‑2352 38695869
    [Google Scholar]
  21. ZhuF. YeY. ShaoY. XueC. MEG3 shuttled by exosomes released from human bone marrow mesenchymal stem cells promotes TP53 stability to regulate MCM5 transcription in keloid fibroblasts.J. Gene Med.2024265e368810.1002/jgm.3688 38686583
    [Google Scholar]
  22. FanW. AdebowaleK. VánczaL. LiY. RabbiM.F. KunimotoK. ChenD. MozesG. ChiuD.K.C. LiY. TaoJ. WeiY. AdenijiN. BrunsingR.L. DhanasekaranR. SinghiA. GellerD. LoS.H. HodgsonL. EnglemanE.G. CharvilleG.W. CharuV. MongaS.P. KimT. WellsR.G. ChaudhuriO. TörökN.J. Matrix viscoelasticity promotes liver cancer progression in the pre-cirrhotic liver.Nature2024626799963564210.1038/s41586‑023‑06991‑9 38297127
    [Google Scholar]
  23. BehnkeM. ReimersM. FisherR. The expression of embryonic liver development genes in hepatitis C induced cirrhosis and hepatocellular carcinoma.Cancers (Basel)20124394596810.3390/cancers4030945 23667740
    [Google Scholar]
  24. JiangC.H. YuanX. LiJ.F. XieY.F. ZhangA.Z. WangX.L. YangL. LiuC.X. LiangW.H. PangL.J. ZouH. CuiX.B. ShenX.H. QiY. JiangJ.F. GuW.Y. LiF. HuJ.M. Bioinformatics-based screening of key genes for transformation of liver cirrhosis to hepatocellular carcinoma.J. Transl. Med.20201814010.1186/s12967‑020‑02229‑8 32000807
    [Google Scholar]
  25. KapsL. SchuppanD. Targeting cancer associated fibroblasts in liver fibrosis and liver cancer using nanocarriers.Cells202099202710.3390/cells9092027 32899119
    [Google Scholar]
  26. LiM. HuangF. ZhuW. PengY. XuF. LiW. ZhaoQ. LiuL. Dynamic regulation of EXO1 promotes the progression from liver fibrosis to HCC through TGF-β1/Smad signaling feedback loop.Hepatol. Commun.202381e0342 38126949
    [Google Scholar]
  27. GarridoA. DjouderN. Cirrhosis: A questioned risk factor for hepatocellular carcinoma.Trends Cancer202171293610.1016/j.trecan.2020.08.005 32917550
    [Google Scholar]
  28. XieY. MuC. KazybayB. SunQ. KutzhanovaA. NazarbekG. XuN. NurtayL. WangQ. AminA. LiX. Network pharmacology and experimental investigation of Rhizoma polygonati extract targeted kinase with herbzyme activity for potent drug delivery.Drug Deliv.20212812187219710.1080/10717544.2021.1977422 34662244
    [Google Scholar]
  29. MuraliC. MudgilP. GanC.Y. TaraziH. El-AwadyR. AbdallaY. AminA. MaqsoodS. Camel whey protein hydrolysates induced G2/M cellcycle arrest in human colorectal carcinoma.Sci. Rep.2021111706210.1038/s41598‑021‑86391‑z 33782460
    [Google Scholar]
  30. AbdallaY. AbdallaA. HamzaA.A. AminA. Safranal prevents liver cancer through inhibiting oxidative stress and alleviating inflammation.Front. Pharmacol.20221277750010.3389/fphar.2021.777500 35177980
    [Google Scholar]
  31. KoppF. MendellJ.T. Functional classification and experimental dissection of long noncoding RNAs.Cell2018172339340710.1016/j.cell.2018.01.011 29373828
    [Google Scholar]
  32. RomeoM. DallioM. ScognamiglioF. VentrigliaL. CipulloM. CoppolaA. TammaroC. ScafuroG. IodiceP. FedericoA. Role of non-coding RNAs in hepatocellular carcinoma progression: From classic to novel clinicopathogenetic implications.Cancers (Basel)20231521517810.3390/cancers15215178 37958352
    [Google Scholar]
  33. RothA. BoulayK. GroßM. Polycarpou-SchwarzM. MalletteF.A. RegnierM. BidaO. GinsbergD. WarthA. SchnabelP.A. MuleyT. MeisterM. ZabeckH. HoffmannH. DiederichsS. Targeting LINC00673 expression triggers cellular senescence in lung cancer.RNA Biol.201815121499151110.1080/15476286.2018.1553481 30499379
    [Google Scholar]
  34. ShiJ. ZhongX. SongY. WuZ. GaoP. ZhaoJ. SunJ. WangJ. LiuJ. WangZ. Long non‐coding RNA RUNX1‐IT1 plays a tumour‐suppressive role in colorectal cancer by inhibiting cell proliferation and migration.Cell Biochem. Funct.2019371112010.1002/cbf.3368 30499136
    [Google Scholar]
  35. FuW. ChaiboonchoeA. KhraiweshB. SultanaM. JaiswalA. JijakliK. NelsonD.R. Al-HroutA. BaigB. AminA. Salehi-AshtianiK. Intracellular spectral recompositioning of light enhances algal photosynthetic efficiency.Sci. Adv.201739e160309610.1126/sciadv.1603096 28879232
    [Google Scholar]
  36. XuC. FangT. QuJ. MiaoY. TianL. ZhangM. ZhuangH. SunB. ChenL. RASSF4 attenuates metabolic dysfunction-associated steatotic liver disease progression via Hippo signaling and suppresses hepatocarcinogenesis.Cell. Mol. Gastroenterol. Hepatol.202418210134810.1016/j.jcmgh.2024.04.005 38697356
    [Google Scholar]
  37. IshakK. BaptistaA. BianchiL. CalleaF. De GrooteJ. GudatF. DenkH. DesmetV. KorbG. MacSweenR.N.M. PhillipsM.J. PortmannB.G. PoulsenH. ScheuerP.J. SchmidM. ThalerH. Histological grading and staging of chronic hepatitis.J. Hepatol.199522669669910.1016/0168‑8278(95)80226‑6 7560864
    [Google Scholar]
  38. ChenP. LuoX. DaiG. JiangY. LuoY. PengS. WangH. XieP. QuC. LinW. HongJ. NingX. LiA. Dexmedetomidine promotes the progression of hepatocellular carcinoma through hepatic stellate cell activation.Exp. Mol. Med.20205271062107410.1038/s12276‑020‑0461‑6 32632241
    [Google Scholar]
  39. LiY. ZhuT. YangJ. ZhangQ. XuS. GeS. JiaR. ZhangJ. FanX. EHMT2 promotes tumorigenesis in GNAQ/11-mutant uveal melanoma via ARHGAP29-mediated RhoA pathway.Acta Pharm. Sin. B20241431187120310.1016/j.apsb.2023.12.002 38486999
    [Google Scholar]
  40. KimB. KimG. JeonH.P. JungJ. Lipidomics analysis unravels aberrant lipid species and pathways induced by zinc oxide nanoparticles in kidney cells.Int. J. Mol. Sci.2024258428510.3390/ijms25084285 38673870
    [Google Scholar]
  41. HuangD. DingH. WangY. WangX. ZhaoH. Integration analysis of hair follicle transcriptome and proteome reveals the mechanisms regulating wool fiber diameter in angora rabbits.Int. J. Mol. Sci.2024256326010.3390/ijms25063260 38542234
    [Google Scholar]
  42. YuanY. HanX. ZhaoX. ZhangH. VinogradA. BiX. DuanX. CaoY. GaoQ. SongJ. ShengL. LiY. Circulating exosome long non-coding RNAs are associated with atrial structural remodeling by increasing systemic inflammation in atrial fibrillation patients.J. Transl. Int. Med.202412110611810.2478/jtim‑2023‑0129 38525437
    [Google Scholar]
  43. LiQ. SuZ. XuX. LiuG. SongX. WangR. SuiX. LiuT. ChangX. HuangD. AS1DHRS4, a head-to-head natural antisense transcript, silences the DHRS4 gene cluster in cis and trans.Proc. Natl. Acad. Sci. USA201210935141101411510.1073/pnas.1116597109 22891334
    [Google Scholar]
  44. XiQ. GaoN. ZhangX. ZhangB. YeW. WuJ. ZhangX. A natural antisense transcript regulates acetylcholinesterase gene expression via epigenetic modification in Hepatocellular Carcinoma.Int. J. Biochem. Cell Biol.20145524225110.1016/j.biocel.2014.09.012 25240585
    [Google Scholar]
  45. HuangJ. GuoL. Knockdown of SOX9 inhibits the proliferation, invasion, and EMT in thyroid cancer cells.Oncol. Res.201725216717610.3727/096504016X14732772150307 28277188
    [Google Scholar]
  46. GuoY.Z. XieX.L. FuJ. XingG.L. SOX9 regulated proliferation and apoptosis of human lung carcinoma cells by the Wnt/β-catenin signaling pathway.Eur. Rev. Med. Pharmacol. Sci.2018221548984907 30070325
    [Google Scholar]
  47. YanS. ShanX. ChenK. LiuY. YuG. ChenQ. ZengT. ZhuL. DangH. ChenF. LingJ. HuangA. TangH. LINC00052/miR-101-3p axis inhibits cell proliferation and metastasis by targeting SOX9 in hepatocellular carcinoma.Gene201867913814910.1016/j.gene.2018.08.038 30098428
    [Google Scholar]
  48. BeckedorffF.C. AyupeA.C. Crocci-SouzaR. AmaralM.S. NakayaH.I. SoltysD.T. MenckC.F.M. ReisE.M. Verjovski-AlmeidaS. The intronic long noncoding RNA ANRASSF1 recruits PRC2 to the RASSF1A promoter, reducing the expression of RASSF1A and increasing cell proliferation.PLoS Genet.201398e100370510.1371/journal.pgen.1003705 23990798
    [Google Scholar]
  49. ZhangX.D. HuangG.W. XieY.H. HeJ.Z. GuoJ.C. XuX.E. LiaoL.D. XieY.M. SongY.M. LiE.M. XuL.Y. The interaction of lncRNA EZR-AS1 with SMYD3 maintains overexpression of EZR in ESCC cells.Nucleic Acids Res.20184641793180910.1093/nar/gkx1259 29253179
    [Google Scholar]
  50. AwadB. HamzaA.A. Al-MaktoumA. Al-SalamS. AminA. Combining Crocin and sorafenib improves their tumor-inhibiting effects in a rat model of diethylnitrosamine-induced cirrhotic-hepatocellular carcinoma.Cancers (Basel)20231516406310.3390/cancers15164063 37627094
    [Google Scholar]
  51. QinY. HanS. YuY. QiD. RanM. YangM. LiuY. LiY. LuL. LiuY. LiY. Lenvatinib in hepatocellular carcinoma: Resistance mechanisms and strategies for improved efficacy.Liver Int.202444818081831
    [Google Scholar]
  52. HamzaA.A. HeebaG.H. HassaninS.O. ElwyH.M. BekhitA.A. AminA. Hibiscus-cisplatin combination treatment decreases liver toxicity in rats while increasing toxicity in lung cancer cells via oxidative stress- apoptosis pathway.Biomed. Pharmacother.2023165115148
    [Google Scholar]
  53. Abdel-latifR. HeebaG.H. HassaninS.O. WazS. AminA. TLRs-JNK/NF-κB pathway underlies the protective effect of the sulfide salt against liver toxicity.Front. Pharmacol.20221385006610.3389/fphar.2022.850066 35517830
    [Google Scholar]
  54. BenassiE. FanH. SunQ. DukenbayevK. WangQ. ShaimoldinaA. TassanbiyevaA. NurtayL. NurkeshA. KutzhanovaA. MuC. DautovA. RazbekovaM. KabyldaA. YangQ. LiZ. AminA. LiX. XieY. Generation of particle assemblies mimicking enzymatic activity by processing of herbal food: The case of rhizoma polygonati and other natural ingredients in traditional Chinese medicine.Nanoscale Adv.2021382222223510.1039/D0NA00958J 36133773
    [Google Scholar]
  55. BotrosS.R. MatoukA.I. AminA. HeebaG.H. Comparative effects of incretin-based therapy on doxorubicin-induced nephrotoxicity in rats: The role of SIRT1/Nrf2/NF-κB/TNF-α signaling pathways.Front. Pharmacol.202415135302910.3389/fphar.2024.1353029 38440177
    [Google Scholar]
  56. Zucman-RossiJ. VillanuevaA. NaultJ.C. LlovetJ.M. Genetic landscape and biomarkers of hepatocellular carcinoma.Gastroenterology2015149512261239.e410.1053/j.gastro.2015.05.061 26099527
    [Google Scholar]
  57. LlovetJ.M. MontalR. SiaD. FinnR.S. Molecular therapies and precision medicine for hepatocellular carcinoma.Nat. Rev. Clin. Oncol.2018151059961610.1038/s41571‑018‑0073‑4 30061739
    [Google Scholar]
  58. NelsonD.R. HroutA.A. AlzahmiA.S. ChaiboonchoeA. AminA. Salehi-AshtianiK. Molecular Mechanisms behind Safranal’s Toxicity to HepG2 Cells from Dual Omics.Antioxidants (Basel)20221161125
    [Google Scholar]
  59. GeY. YanX. JinY. YangX. YuX. ZhouL. HanS. YuanQ. YangM. MiRNA-192 and miRNA-204 directly suppress lncRNA HOTTIP and interrupt GLS1-mediated glutaminolysis in hepatocellular carcinoma.PLoS Genet.20151112e100572610.1371/journal.pgen.1005726 26710269
    [Google Scholar]
  60. TianX. WuY. YangY. WangJ. NiuM. GaoS. QinT. BaoD. Long noncoding RNA LINC00662 promotes M2 macrophage polarization and hepatocellular carcinoma progression via activating Wnt/β‐catenin signaling.Mol. Oncol.202014246248310.1002/1878‑0261.12606 31785055
    [Google Scholar]
  61. LohJ.J. LiT.W. ZhouL. WongT.L. LiuX. MaV.W.S. LoC.M. ManK. LeeT.K. NingW. TongM. MaS. FSTL1 secreted by activated fibroblasts promotes hepatocellular carcinoma metastasis and stemness.Cancer Res.202181225692570510.1158/0008‑5472.CAN‑20‑4226 34551961
    [Google Scholar]
  62. DouC. LiuZ. TuK. ZhangH. ChenC. YaqoobU. WangY. WenJ. van DeursenJ. SicardD. TschumperlinD. ZouH. HuangW.C. UrrutiaR. ShahV.H. KangN. P300 acetyltransferase mediates stiffness-induced activation of hepatic stellate cells into tumor-promoting myofibroblasts.Gastroenterology2018154822092221.e1410.1053/j.gastro.2018.02.015 29454793
    [Google Scholar]
  63. LiN. ZhangX. ZhouJ. LiW. ShuX. WuY. LongM. Multiscale biomechanics and mechanotransduction from liver fibrosis to cancer.Adv. Drug Deliv. Rev.202218811444810.1016/j.addr.2022.114448 35820602
    [Google Scholar]
  64. DharD. BaglieriJ. KisselevaT. BrennerD.A. Mechanisms of liver fibrosis and its role in liver cancer.Exp. Biol. Med. (Maywood)202024529610810.1177/1535370219898141 31924111
    [Google Scholar]
  65. RuanQ. WangH. BurkeL.J. BridleK.R. LiX. ZhaoC.X. CrawfordD.H.G. RobertsM.S. LiangX. Therapeutic modulators of hepatic stellate cells for hepatocellular carcinoma.Int. J. Cancer202014761519152710.1002/ijc.32899 32010970
    [Google Scholar]
  66. RenZ. ChenY. ShiL. ShaoF. SunY. GeJ. ZhangJ. ZangY. Sox9/CXCL5 axis facilitates tumour cell growth and invasion in hepatocellular carcinoma.FEBS J.2022289123535354910.1111/febs.16357 35038357
    [Google Scholar]
  67. GuoC. ZhouS. YiW. YangP. LiO. LiuJ. PengC. SOX9/MKLN1-AS axis induces hepatocellular carcinoma proliferation and epithelial–mesenchymal transition.Biochem. Genet.20226061914193310.1007/s10528‑022‑10196‑6 35138470
    [Google Scholar]
  68. WangM. WangZ. ZhiX. DingW. XiongJ. TaoT. YangY. ZhangH. ZiX. ZhouW. HuangG. SOX9 enhances sorafenib resistance through upregulating ABCG2 expression in hepatocellular carcinoma.Biomed. Pharmacother.2020129110315
    [Google Scholar]
  69. LiuC. LiuL. ChenX. ChengJ. ZhangH. ShenJ. ShanJ. XuY. YangZ. LaiM. QianC. Sox9 regulates self‐renewal and tumorigenicity by promoting symmetrical cell division of cancer stem cells in hepatocellular carcinoma.Hepatology201664111712910.1002/hep.28509 26910875
    [Google Scholar]
  70. MasalhaM. Ben-DovI.Z. RamO. MeningherT. Jacob-HirschJ. KassemR. SidiY. AvniD. H3K27Ac modification and gene expression in psoriasis.J. Dermatol. Sci.202110329310010.1016/j.jdermsci.2021.07.003 34281744
    [Google Scholar]
  71. LingH. LiY. PengC. YangS. SetoE. HDAC10 inhibition represses melanoma cell growth and BRAF inhibitor resistance via upregulating SPARC expression.NAR Cancer202462zcae018
    [Google Scholar]
  72. LvJ. LiuX. SunZ. GaoJ. YuX. ZhangM. ZhangZ. RenS. ZuoY. STEAP3 promotes colon cancer cell proliferation and migration via regulating histone acetylation.Hum. Genet.2024143334335510.1007/s00439‑024‑02646‑5 38480539
    [Google Scholar]
  73. ZhangK. ShiZ.M. ChangY.N. HuZ.M. QiH.X. HongW. The ways of action of long non-coding RNAs in cytoplasm and nucleus.Gene201454711910.1016/j.gene.2014.06.043 24967943
    [Google Scholar]
  74. ShahM. SarkarD. HCC-related lncRNAs: Roles and mechanisms.Int. J. Mol. Sci.202425159710.3390/ijms25010597 38203767
    [Google Scholar]
  75. LiQ. WangC. WangY. SunL. LiuZ. WangL. SongT. YaoY. LiuQ. TuK. HSCs-derived COMP drives hepatocellular carcinoma progression by activating MEK/ERK and PI3K/AKT signaling pathways.J. Exp. Clin. Cancer Res.201837123110.1186/s13046‑018‑0908‑y 30231922
    [Google Scholar]
  76. SunC. XuW. XiaY. WangS. PRDM16 from hepatic stellate cells-derived extracellular vesicles promotes hepatocellular carcinoma progression.Am. J. Cancer Res.2023131152545270 38058806
    [Google Scholar]
/content/journals/ccdt/10.2174/0115680096310229240626102449
Loading
/content/journals/ccdt/10.2174/0115680096310229240626102449
Loading

Data & Media loading...

Supplements

Supplementary material is available on the publisher’s website along with the published article.


  • Article Type:
    Research Article
Keyword(s): cirrhosis; DERCNC; Hepatocellular carcinoma; long noncoding RNA; proliferation; SOX9
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test