Skip to content
2000
Volume 25, Issue 10
  • ISSN: 1568-0096
  • E-ISSN: 1873-5576

Abstract

Cyclophosphamide is a precursor of alkylating nitrogen mustard and was initially claimed to have antineoplastic and immunosuppressive properties. However, the role of cyclophosphamide as an immune activator has also been reported, depending on the dosage used. The application of lower-dose cyclophosphamide has emerged as a potential approach to cancer treatment. Cyclophosphamide selectively depletes regulatory T cells (Tregs), which dampens the immunological response, thereby rebalancing the immune system to allow other immune cells to act more efficiently. Cyclophosphamide can be either a friend or a foe in cancer treatment, depending on the therapeutic regime. The following questions remain to be answered: Can the cyclophosphamide be used in the presence of other agents? Is there any single immunotherapeutic agent that acts synergistically with cyclophosphamide to effectively alter the immunosuppressive tumor microenvironment? This review emphasizes the role of cyclophosphamide as an immune modulator, both alone and in combination with other immunotherapeutic agents, for effective cancer treatment in preclinical and clinical settings.

Loading

Article metrics loading...

/content/journals/ccdt/10.2174/0115680096314791240830111909
2024-10-08
2025-12-20
Loading full text...

Full text loading...

References

  1. MarinJ.J.G. RomeroM.R. BlazquezA.G. HerraezE. KeckE. BrizO. Importance and limitations of chemotherapy among the available treatments for gastrointestinal tumours.Anticancer. Agents Med. Chem.20099216218410.2174/187152009787313828 19199863
    [Google Scholar]
  2. AlfaroukK.O. StockC.M. TaylorS. WalshM. MuddathirA.K. VerduzcoD. BashirA.H.H. MohammedO.Y. ElhassanG.O. HarguindeyS. ReshkinS.J. IbrahimM.E. RauchC. Resistance to cancer chemotherapy: failure in drug response from ADME to P-gp.Cancer Cell Int.20151517110.1186/s12935‑015‑0221‑1 26180516
    [Google Scholar]
  3. ZeienJ. QiuW. TriayM. DhaibarH.A. Cruz-TopeteD. CornettE.M. UritsI. ViswanathO. KayeA.D. Clinical implications of chemotherapeutic agent organ toxicity on perioperative care.Biomed. Pharmacother.202214611250310.1016/j.biopha.2021.112503 34922113
    [Google Scholar]
  4. D’AlterioC. ScalaS. SozziG. RozL. BertoliniG. Paradoxical effects of chemotherapy on tumor relapse and metastasis promotion.Semin. Cancer Biol.20206035136110.1016/j.semcancer.2019.08.019 31454672
    [Google Scholar]
  5. GalluzziL. BuquéA. KeppO. ZitvogelL. KroemerG. Immunological Effects of Conventional Chemotherapy and Targeted Anticancer Agents.Cancer Cell201528669071410.1016/j.ccell.2015.10.012 26678337
    [Google Scholar]
  6. LiK. ZhangZ. MeiY. LiM. YangQ. WuQ. YangH. HeL. LiuS. Targeting the innate immune system with nanoparticles for cancer immunotherapy.J. Mater. Chem. B202210111709173310.1039/D1TB02818A
    [Google Scholar]
  7. BasuA. DNA damage, mutagenesis and cancer.Int. J. Mol. Sci.201819497010.3390/ijms19040970 29570697
    [Google Scholar]
  8. MillsK.A. Chess-WilliamsR. McDermottC. Novel insights into the mechanism of cyclophosphamide-induced bladder toxicity: chloroacetaldehyde’s contribution to urothelial dysfunction in vitro.Arch. Toxicol.201993113291330310.1007/s00204‑019‑02589‑1 31598736
    [Google Scholar]
  9. AlhmoudJ.F. WoolleyJ.F. Al MoustafaA.E. MalkiM.I. DNA damage/repair management in cancers.Cancers (Basel)2020124105010.3390/cancers12041050 32340362
    [Google Scholar]
  10. GhiringhelliF. MenardC. PuigP.E. LadoireS. RouxS. MartinF. SolaryE. Le CesneA. ZitvogelL. ChauffertB. Metronomic cyclophosphamide regimen selectively depletes CD4+CD25+ regulatory T cells and restores T and NK effector functions in end stage cancer patients.Cancer Immunol. Immunother.200756564164810.1007/s00262‑006‑0225‑8 16960692
    [Google Scholar]
  11. VardanyanR.S. HrubyV.J. Antineoplastics.In: Synthesis of Essential Drugs.Elsevier200638941810.1016/B978‑044452166‑8/50030‑3
    [Google Scholar]
  12. ChibberS. HassanI. FarhanM. SalmanM. NaseemI. White light augments chemotherapeutic potential of cyclophosphamide: an in vitro study.Biometals2013261233110.1007/s10534‑012‑9591‑1 23100198
    [Google Scholar]
  13. MotoyoshiY. KaminodaK. SaitohO. HamasakiK. NakaoK. IshiiN. NagayamaY. EguchiK. Different mechanisms for anti-tumor effects of low- and high-dose cyclophosphamide.Oncol. Rep.200616114114610.3892/or.16.1.141 16786137
    [Google Scholar]
  14. HughesE. ScurrM. CampbellE. JonesE. GodkinA. GallimoreA. T‐cell modulation by cyclophosphamide for tumour therapy.Immunology20181541626810.1111/imm.12913 29460448
    [Google Scholar]
  15. Rivera-LazarínA.L. Martínez-TorresA.C. The bovine dialyzable leukocyte extract, immunepotent CRP, synergically enhances cyclophosphamide-induced breast cancer cell death, through a caspase-independent mechanism.EXCLI J.20232213114510.17179/excli2022‑5389
    [Google Scholar]
  16. SantosG.W. OwensA.H.Jr 19S and 17S antibody production in the cyclophosphamide- or methotrexate-treated rat.Nature1966209502362262410.1038/209622a0 5921198
    [Google Scholar]
  17. WinkelsteinA. Mechanisms of immunosuppression: effects of cyclophosphamide on cellular immunity.Blood197341227328410.1182/blood.V41.2.273.273 4541036
    [Google Scholar]
  18. FalvoP. OrecchioniS. HilljeR. RaveaneA. MancusoP. CamisaschiC. LuziL. PelicciP. BertoliniF. Cyclophosphamide and vinorelbine activate stem-like CD8+ T cells and improve anti-PD-1 efficacy in triple-negative breast cancer.Cancer Res.202181368569710.1158/0008‑5472.CAN‑20‑1818 33268528
    [Google Scholar]
  19. ChoiJ. Rod-inW. JangA. ParkW.J. Arctoscopus japonicus lipids enhance immunity of mice with cyclophosphamide-induced immunosuppression.Foods202312173292329210.3390/foods12173292 37685225
    [Google Scholar]
  20. ElazabM.F.A. YounesA.M. GaafarA.Y. Abu-BrykaA.Z. Abdel-DaimM.M. Immunosuppressive effect of cyclophosphamide in Nile tilapia (Oreochromis niloticus).Environ. Sci. Pollut. Res. Int.20212816207842079310.1007/s11356‑020‑11893‑8 33405143
    [Google Scholar]
  21. LeongW.I. AmesR.Y. HaverkampJ.M. TorresL. KlineJ. BansA. RochaL. GallottaM. GuiducciC. CoffmanR.L. JanatpourM.J. Low-dose metronomic cyclophosphamide complements the actions of an intratumoral C-class CpG TLR9 agonist to potentiate innate immunity and drive potent T cell-mediated anti-tumor responses.Oncotarget201910687220723710.18632/oncotarget.27322 31921384
    [Google Scholar]
  22. WebbE.R. Moreno-VicenteJ. EastonA. LanatiS. TaylorM. JamesS. WilliamsE.L. EnglishV. PenfoldC. BeersS.A. GrayJ.C. Cyclophosphamide depletes tumor infiltrating T regulatory cells and combined with anti-PD-1 therapy improves survival in murine neuroblastoma.iScience202225910499510499510.1016/j.isci.2022.104995 36097618
    [Google Scholar]
  23. OparaugoN.C. OuyangK. NguyenN.P.N. NelsonA.M. AgakG.W. Human regulatory T cells: Understanding the role of tregs in select autoimmune skin diseases and post-transplant nonmelanoma skin cancers.Int. J. Mol. Sci.20232421527152710.3390/ijms24021527 36675037
    [Google Scholar]
  24. FehérvariZ. SakaguchiS. Development and function of CD25+CD4+ regulatory T cells.Curr. Opin. Immunol.200416220320810.1016/j.coi.2004.01.004 15023414
    [Google Scholar]
  25. HeylmannD. BauerM. BeckerH. van GoolS. BacherN. SteinbrinkK. KainaB. Human CD4+CD25+ regulatory T cells are sensitive to low dose cyclophosphamide: implications for the immune response.PLoS One2013812e8338410.1371/journal.pone.0083384 24376696
    [Google Scholar]
  26. AkimovaT. BeierU.H. WangL. LevineM.H. HancockW.W. Helios expression is a marker of T cell activation and proliferation.PLoS One201168e2422610.1371/journal.pone.0024226 21918685
    [Google Scholar]
  27. ThorntonA.M. LuJ. KortyP.E. KimY.C. MartensC. SunP.D. ShevachE.M. Helios + and Helios − Treg subpopulations are phenotypically and functionally distinct and express dissimilar TCR repertoires.Eur. J. Immunol.201949339841210.1002/eji.201847935 30620397
    [Google Scholar]
  28. ChougnetC. HildemanD. Helios—controller of Treg stability and function.Transl. Cancer Res.20165S2Suppl. 2S338S34110.21037/tcr.2016.07.37 30656143
    [Google Scholar]
  29. BaineI. BasuS. AmesR. SellersR.S. MacianF. Helios induces epigenetic silencing of IL2 gene expression in regulatory T cells.J. Immunol.201319031008101610.4049/jimmunol.1200792 23275607
    [Google Scholar]
  30. YuW. JiN. GuC. WangY. HuangM. ZhangM. Coexpression of Helios in Foxp3+ Regulatory T Cells and Its Role in Human Disease.Dis. Markers202120211910.1155/2021/5574472 34257746
    [Google Scholar]
  31. PengS. Lyford-PikeS. AkpengB. WuA. HungC.F. HannamanD. SaundersJ.R. WuT.C. PaiS.I. Low-dose cyclophosphamide administered as daily or single dose enhances the antitumor effects of a therapeutic HPV vaccine.Cancer Immunol. Immunother.201362117118210.1007/s00262‑012‑1322‑5 23011589
    [Google Scholar]
  32. ZhongH. LaiY. ZhangR. DaoudA. FengQ. ZhouJ. ShangJ. Low Dose Cyclophosphamide Modulates Tumor Microenvironment by TGF-β Signaling Pathway.Int. J. Mol. Sci.202021395710.3390/ijms21030957 32023984
    [Google Scholar]
  33. ScurrM. PembrokeT. BloomA. RobertsD. ThomsonA. SmartK. BridgemanH. AdamsR. BrewsterA. JonesR. GwynneS. BlountD. HarropR. HillsR. GallimoreA. GodkinA. Low-Dose Cyclophosphamide Induces Antitumor T-Cell Responses, which Associate with Survival in Metastatic Colorectal Cancer.Clin. Cancer Res.201723226771678010.1158/1078‑0432.CCR‑17‑0895 28855352
    [Google Scholar]
  34. NakaharaT. UchiH. LesokhinA.M. AvogadriF. RizzutoG.A. Hirschhorn-CymermanD. PanageasK.S. MerghoubT. WolchokJ.D. HoughtonA.N. Cyclophosphamide enhances immunity by modulating the balance of dendritic cell subsets in lymphoid organs.Blood2010115224384439210.1182/blood‑2009‑11‑251231 20154220
    [Google Scholar]
  35. van der MostR.G. CurrieA.J. MahendranS. ProsserA. DarabiA. RobinsonB.W.S. NowakA.K. LakeR.A. Tumor eradication after cyclophosphamide depends on concurrent depletion of regulatory T cells: a role for cycling TNFR2-expressing effector-suppressor T cells in limiting effective chemotherapy.Cancer Immunol. Immunother.20095881219122810.1007/s00262‑008‑0628‑9 19052741
    [Google Scholar]
  36. GhiringhelliF. LarmonierN. SchmittE. ParcellierA. CathelinD. GarridoC. ChauffertB. SolaryE. BonnotteB. MartinF. CD4 + CD25 + regulatory T cells suppress tumor immunity but are sensitive to cyclophosphamide which allows immunotherapy of established tumors to be curative.Eur. J. Immunol.200434233634410.1002/eji.200324181 14768038
    [Google Scholar]
  37. LiP. ChenF. ZhengJ. YangY. LiY. WangY. ChenX. Cyclophosphamide abrogates the expansion of CD4+Foxp3+ regulatory T cells and enhances the efficacy of bleomycin in the treatment of mouse B16-F10 melanomas.Cancer Biol. Med.202118002710.20892/j.issn.2095‑3941.2021.0027
    [Google Scholar]
  38. GeY. DomschkeC. StoiberN. SchottS. HeilJ. RomJ. BlumensteinM. ThumJ. SohnC. SchneeweissA. BeckhoveP. SchuetzF. Metronomic cyclophosphamide treatment in metastasized breast cancer patients: immunological effects and clinical outcome.Cancer Immunol. Immunother.201261335336210.1007/s00262‑011‑1106‑3 21915801
    [Google Scholar]
  39. NoordamL. KaijenM.E.H. BezemerK. CornelissenR. MaatL.A.P.W.M. HoogstedenH.C. AertsJ.G.J.V. HendriksR.W. HegmansJ.P.J.J. VromanH. Low-dose cyclophosphamide depletes circulating naïve and activated regulatory T cells in malignant pleural mesothelioma patients synergistically treated with dendritic cell-based immunotherapy.OncoImmunology2018712e147431810.1080/2162402X.2018.1474318 30524884
    [Google Scholar]
  40. MeryB. Ménétrier-CauxC. MontanéL. Pembrolizumab in lymphopenic metastatic breast cancer patients treated with metronomic cyclophosphamide: A clinical and translational prospective study.Breast Cancer20231531132510.2147/BCTT.S400055
    [Google Scholar]
  41. SikandarB. QureshiM.A. NaseemS. KhanS. MirzaT. Increased Tumour Infiltration of CD4+ and CD8+ T-Lymphocytes in Patients with Triple Negative Breast Cancer Suggests Susceptibility to Immune Therapy.PubMed20171871827183210.22034/apjcp.2017.18.7.1827 28749113
    [Google Scholar]
  42. ZsirosE. LynamS. AttwoodK.M. WangC. ChilakapatiS. GomezE.C. LiuS. AkersS. LeleS. FrederickP.J. OdunsiK. Efficacy and Safety of Pembrolizumab in Combination With Bevacizumab and Oral Metronomic Cyclophosphamide in the Treatment of Recurrent Ovarian Cancer.JAMA Oncol.202171788510.1001/jamaoncol.2020.5945 33211063
    [Google Scholar]
  43. Arce VargasF. FurnessA.J.S SolomonI. JoshiK. MekkaouiL. LeskoM.H Miranda RotaE. DahanR. GeorgiouA. SledzinskaA. Ben AissaA. FranzD. Werner SunderlandM. WongY.N.S HenryJ.Y O’BrienT. NicolD. ChallacombeB. BeersS.A TurajlicS. GoreM. LarkinJ. SwantonC. ChesterK.A PuleM. RavetchJ.V MarafiotiT. PeggsK.S. QuezadaS.A SpainL. WotherspoonA. FrancisN. SmithM. StraussD. HayesA. SoultatiA. StaresM. SpainL. LynchJ. FotiadisN. FernandoA. HazellS. ChandraA. PickeringL. RudmanS. ChowdhuryS. SwantonC. Jamal-HanjaniM. VeeriahS. ShafiS. Czyzewska-KhanJ. JohnsonD. LaycockJ. Bosshard-CarterL. GohG. RosenthalR. GormanP. MurugaesuN. HyndsR.E WilsonG. BirkbakN.J WatkinsT.B.K McGranahanN. HorswellS. MitterR. EscuderoM. StewartA. Van LooP. RowanA. XuH. TurajlicS. HileyC. AbboshC GoldmanJ. StoneR.K DennerT. MatthewsN. ElgarG. WardS. BiggsJ. CostaM. BegumS. PhillimoreB. ChambersT. NyeE. GracaS. Al BakirM. HartleyJ.A LoweH.L HerreroJ. LawrenceD. HaywardM. PanagiotopoulosN. KolvekarS. FalzonM. BorgE. SimeonC. HectorG. SmithA. ArandaM. NovelliM. OukrifD. JanesS.M ThakrarR. ForsterM. AhmadT. LeeS.M Papadatos-PastosD. CarnellD. MendesR. GeorgeJ. NavaniN. AhmedA. TaylorM. ChoudharyJ. SummersY. CalifanoR. TaylorP. ShahR. KrysiakP. RammohanK. FontaineE. BootonR. EvisonM. CrosbieP. MossS. Idries.F JosephL. BishopP. ChaturvedA. QuinnA.M DoranH. LeekA. HarrisonP. MooreK. WaddingtonR. NovasioJ. BlackhallF. RoganJ. SmithE. DiveC. TugwoodJ. BradyG. RothwellD.G ChemiF. PierceJ. GulatiS. NaiduB. LangmanG. TrotterS. BellamyM. BancroftH. KerrA. KadiriS. WebbJ. MiddletonG. DjearamanM. FennellD. ShawJ.A Le QuesneJ. MooreD. NakasA. RathinamS. MonteiroW. MarshallH. NelsonL. BennettJ. RileyJ. PrimroseL. MartinsonL. AnandG. KhanS. AmadiA. NicolsonM. KerrK. PalmerS. RemmenH. MillerJ. BuchanK. ChettyM. GomersallL. LesterJ. EdwardsA. MorganF. AdamsH. DaviesH. KornaszewskaM. AttanoosR. LockS. VerjeeA. MacKenzieM. WilcoxM. BellH. IlesN. HackshawA. NgaiY. SmithS. GowerN. OttensmeierC. CheeS. JohnsonB. AlzetaniA. ShawE. LimE. De SousaP. BarbosaM.T BowmanA. JordaS. RiceA. RaubenheimerH. ProliC. CufariM.E RonquilloJ.C KwayieA. BhayaniH. HamiltonM. BakarY. MensahN. AmbroseL. DevarajA. BuderiS. FinchJ. AzcarateL. ChavanH. GreenS. MashingaH. NicholsonA.G LauK. SheaffM. SchmidP. ConibearJ. EzhilV. IsmailB. Irvin-sellersM. PrakashV. RussellP. LightT. HoreyT. DansonS. BuryJ. EdwardsJ. HillJ. MatthewsS. KitsantaY. SuvarnaK. FisherP. KeerioA.D ShackclothM. GosneyJ. PostmusP. FeeneyS. Asante-SiawJ. Fc-Optimized Anti-CD25 Depletes Tumor-Infiltrating Regulatory T Cells and Synergizes with PD-1 Blockade to Eradicate Established Tumors.Immunity201746457758610.1016/j.immuni.2017.03.01328410988
    [Google Scholar]
  44. RoghanianA. StopforthR.J. DahalL.N. CraggM.S. New revelations from an old receptor: Immunoregulatory functions of the inhibitory Fc gamma receptor, FcγRIIB (CD32B).J. Leukoc. Biol.201810361077108810.1002/JLB.2MIR0917‑354R 29406570
    [Google Scholar]
  45. RoghanianA. HuG. FraserC.S. SinghM. FoxallR.B. MeyerM. LeesE. HuetH. GlennieM.J. BeersS.A. LimS. Ashton-KeyM. ThirdboroughS.M. CraggM.S. ChenJ. Cyclophosphamide enhances cancer antibody immunotherapy in the resistant bone marrow niche by modulating macrophage FcγR expression.Cancer Immunol. Res.20197111876189010.1158/2326‑6066.CIR‑18‑0835
    [Google Scholar]
  46. KantoffP.W. HiganoC.S. ShoreN.D. BergerE.R. SmallE.J. PensonD.F. RedfernC.H. FerrariA.C. DreicerR. SimsR.B. XuY. FrohlichM.W. SchellhammerP.F. Sipuleucel-T immunotherapy for castration-resistant prostate cancer.N. Engl. J. Med.2010363541142210.1056/NEJMoa1001294 20818862
    [Google Scholar]
  47. WalterS. WeinschenkT. StenzlA. ZdrojowyR. PluzanskaA. SzczylikC. StaehlerM. BruggerW. DietrichP.Y. MendrzykR. HilfN. SchoorO. FritscheJ. MahrA. MaurerD. VassV. TrautweinC. LewandrowskiP. FlohrC. PohlaH. StanczakJ.J. BronteV. MandruzzatoS. BiedermannT. PawelecG. DerhovanessianE. YamagishiH. MikiT. HongoF. TakahaN. HirakawaK. TanakaH. StevanovicS. FrischJ. Mayer-MoklerA. KirnerA. RammenseeH.G. ReinhardtC. Singh-JasujaH. Multipeptide immune response to cancer vaccine IMA901 after single-dose cyclophosphamide associates with longer patient survival.Nat. Med.20121881254126110.1038/nm.2883 22842478
    [Google Scholar]
  48. WalterS. WeinschenkT. ReinhardtC. Singh-JasujaH. Single-dose cyclophosphamide synergizes with immune responses to the renal cell cancer vaccine IMA901.OncoImmunology201321e2224610.4161/onci.22246 23482454
    [Google Scholar]
  49. TanakaA. SakaguchiS. Regulatory T cells in cancer immunotherapy.Cell Res.201727110911810.1038/cr.2016.151 27995907
    [Google Scholar]
  50. SalehR. ElkordE. FoxP3+ T regulatory cells in cancer: Prognostic biomarkers and therapeutic targets.Cancer Lett.202049017418510.1016/j.canlet.2020.07.022 32721551
    [Google Scholar]
  51. McCarthyP.M. ValderaF.A. SmolinskyT.R. AdamsA.M. O’SheaA.E. ThomasK.K. Van DecarS. CarpenterE.L. TiwariA. MyersJ.W. HaleD.F. VreelandT.J. PeoplesG.E. StojadinovicA. CliftonG.T. Tumor infiltrating lymphocytes as an endpoint in cancer vaccine trials.Front. Immunol.202314109053310.3389/fimmu.2023.1090533 36960052
    [Google Scholar]
  52. PolJ.G. AthertonM.J. StephensonK.B. BridleB.W. WorkenheS.T. KazdhanN. McGrayA.J.R. WanY. KroemerG. LichtyB.D. Enhanced immunotherapeutic profile of oncolytic virus-based cancer vaccination using cyclophosphamide preconditioning.J. Immunother. Cancer202082e00098110.1136/jitc‑2020‑000981 32792361
    [Google Scholar]
  53. GaoJ. WangW. PeiQ. LordM.S. YuH. Engineering nanomedicines through boosting immunogenic cell death for improved cancer immunotherapy.Acta Pharmacol. Sin.202041798699410.1038/s41401‑020‑0400‑z 32317755
    [Google Scholar]
  54. YangF. ShiK. HaoY. JiaY. LiuQ. ChenY. PanM. YuanL. YuY. QianZ. Cyclophosphamide loaded thermo-responsive hydrogel system synergize with a hydrogel cancer vaccine to amplify cancer immunotherapy in a prime-boost manner.Bioact. Mater.20216103036304810.1016/j.bioactmat.2021.03.003 33778186
    [Google Scholar]
  55. BerinsteinN.L. KarkadaM. OzaA.M. OdunsiK. VillellaJ.A. NemunaitisJ.J. MorseM.A. PejovicT. BentleyJ. BuyseM. NigamR. WeirG.M. MacDonaldL.D. QuintonT. RajagopalanR. SharpK. PenwellA. SammaturL. BurzykowskiT. StanfordM.M. MansourM. Survivin-targeted immunotherapy drives robust polyfunctional T cell generation and differentiation in advanced ovarian cancer patients.OncoImmunology201548e102652910.1080/2162402X.2015.1026529 26405584
    [Google Scholar]
  56. BracciL. MoschellaF. SestiliP. La SorsaV. ValentiniM. CaniniI. BaccariniS. MaccariS. RamoniC. BelardelliF. ProiettiE. Cyclophosphamide enhances the antitumor efficacy of adoptively transferred immune cells through the induction of cytokine expression, B-cell and T-cell homeostatic proliferation, and specific tumor infiltration.Clin. Cancer Res.200713264465310.1158/1078‑0432.CCR‑06‑1209 17255288
    [Google Scholar]
  57. JamesonS.C. Maintaining the norm: T-cell homeostasis.Nat. Rev. Immunol.20022854755610.1038/nri853 12154374
    [Google Scholar]
  58. KravtsovD.S. ErbeA.K. SondelP.M. RakhmilevichA.L. Roles of CD4+ T cells as mediators of antitumor immunity.Front. Immunol.20221397202110.3389/fimmu.2022.972021 36159781
    [Google Scholar]
  59. PoncetteL. BluhmJ. BlankensteinT. The role of CD4 T cells in rejection of solid tumors.Curr. Opin. Immunol.202274182410.1016/j.coi.2021.09.005 34619457
    [Google Scholar]
  60. DorffT.B. BlanchardM.S. AdkinsL.N. LuebbertL. LeggettN. ShishidoS.N. MaciasA. Del RealM.M. DhapolaG. EgelstonC. MuradJ.P. RosaR. PaulJ. ChaudhryA. MartirosyanH. GerdtsE. WagnerJ.R. StillerT. TilakawardaneD. PalS. MartinezC. ReiterR.E. BuddeL.E. D’ApuzzoM. KuhnP. PachterL. FormanS.J. PricemanS.J. PSCA-CAR T cell therapy in metastatic castration-resistant prostate cancer: a phase 1 trial.Nat. Med.20243061636164410.1038/s41591‑024‑02979‑8 38867077
    [Google Scholar]
  61. MuradJ.P. Pre-conditioning modifies the TME to enhance solid tumor CAR T cell efficacy and endogenous protective immunity.Mol. Ther.20212972335234910.1016/j.ymthe.2021.02.024
    [Google Scholar]
  62. LickefettB. ChuL. Ortiz-MaldonadoV. WarmuthL. BarbaP. DoglioM. HendersonD. HudecekM. KremerA. MarkmanJ. NauerthM. NegreH. SangesC. StaberP.B. TanziR. DelgadoJ. BuschD.H. KuballJ. LuuM. JägerU. Lymphodepletion – an essential but undervalued part of the chimeric antigen receptor T-cell therapy cycle.Front. Immunol.202314130393510.3389/fimmu.2023.1303935 38187393
    [Google Scholar]
  63. SinghS. ChakrabartiR. Challenges of Using IFNγ in Clinical Settings.Cancer Res.202383132093209510.1158/0008‑5472.CAN‑22‑0571 37403627
    [Google Scholar]
  64. MoschellaF. TorelliG.F. ValentiniM. UrbaniF. BuccioneC. PetrucciM.T. NatalinoF. BelardelliF. FoàR. ProiettiE. Cyclophosphamide induces a type I interferon-associated sterile inflammatory response signature in cancer patients’ blood cells: implications for cancer chemoimmunotherapy.Clin. Cancer Res.201319154249426110.1158/1078‑0432.CCR‑12‑3666 23759676
    [Google Scholar]
  65. KwaM. LiX. NovikY. OratzR. JhaveriK. WuJ. GuP. MeyersM. MuggiaF. SpeyerJ. IwanoA. BonakdarM. KozhayaL. TavukcuogluE. BudanB. RaadR. GoldbergJ.D. UnutmazD. AdamsS. Serial immunological parameters in a phase II trial of exemestane and low-dose oral cyclophosphamide in advanced hormone receptor-positive breast cancer.Breast Cancer Res. Treat.20181681576710.1007/s10549‑017‑4570‑4 29124456
    [Google Scholar]
  66. RossmannE. ÖsterborgA. LöfvenbergE. ChoudhuryA. ForssmannU. von HeydebreckA. SchröderA. MellstedtH. Mucin 1-specific active cancer immunotherapy with tecemotide (L-BLP25) in patients with multiple myeloma: An exploratory study.Hum. Vaccin. Immunother.201410113394340810.4161/hv.29918 25483677
    [Google Scholar]
  67. AgarwalP. QiH. MunjalK. GaiJ. FergusonA. ParkinsonR. HarrisonJ. RodriguezC. AndersR.A. ThompsonE.D. BurkhartR. HeJ. NarangA. De Jesus-AcostaA. ZhengL. JaffeeE.M. GeorgeB. LaheruD.A. YarchoanM. OsipovA. Overall survival (OS) and pathologic response rate from a phase II clinical trial of neoadjuvant GVAX pancreas vaccine (with cyclophosphamide) in combination with nivolumab and stereotactic body radiation therapy (SBRT) followed by definitive resection for patients with borderline resectable pancreatic adenocarcinoma (BRPDAC).J. Clin. Oncol.20234116_suppl)(Suppl.e16309e1630910.1200/JCO.2023.41.16_suppl.e16309
    [Google Scholar]
  68. PatelT.H. van RheeF. Al HadidiS. Cereblon E3 Ligase Modulators Mezigdomide and Iberdomide in Multiple Myeloma.Clin. Lymphoma Myeloma Leuk.2024S2152-2650(24)00238-610.1016/j.clml.2024.06.00439003099
    [Google Scholar]
  69. VenezianiA. LheureuxS. AlqaisiH. BhatG. ColomboI. GonzalezE. NewtonS. MsanA. QuintosJ. RamsahaiJ. GrantR.C. DhaniN.C. WangL. BoweringV. OzaA.M. Pembrolizumab, maveropepimut-S, and low-dose cyclophosphamide in advanced epithelial ovarian cancer: Results from phase 1 and expansion cohort of PESCO trial.J. Clin. Oncol.20224016_suppl)(Suppl.5505550510.1200/JCO.2022.40.16_suppl.5505
    [Google Scholar]
  70. KastritisE. PalladiniG. MinnemaM.C. WechalekarA.D. JaccardA. LeeH.C. SanchorawalaV. GibbsS. MolleeP. VennerC.P. LuJ. SchönlandS. GattM.E. SuzukiK. KimK. CibeiraM.T. BeksacM. LibbyE. ValentJ. HungriaV. WongS.W. RosenzweigM. BummaN. HuartA. DimopoulosM.A. BhutaniD. WaxmanA.J. GoodmanS.A. ZonderJ.A. LamS. SongK. HansenT. ManierS. RoeloffzenW. JamroziakK. KwokF. ShimazakiC. KimJ.S. CrusoeE. AhmadiT. TranN. QinX. VaseyS.Y. TrompB. SchecterJ.M. WeissB.M. ZhuangS.H. VermeulenJ. MerliniG. ComenzoR.L. Daratumumab-Based Treatment for Immunoglobulin Light-Chain Amyloidosis.N. Engl. J. Med.20213851465810.1056/NEJMoa2028631 34192431
    [Google Scholar]
  71. TangF. ZhongQ. YangZ. LiH. PanC. HuangL. NiT. DengR. WangZ. TanS. NieY. ZhangY. Low-dose cyclophosphamide combined with IL-2 inhibits tumor growth by decreasing regulatory T cells and increasing CD8+ T cells and natural killer cells in mice.Immunobiology2022227315221210.1016/j.imbio.2022.152212 35436750
    [Google Scholar]
  72. CastanoA.P. MrozP. WuM.X. HamblinM.R. Photodynamic therapy plus low-dose cyclophosphamide generates antitumor immunity in a mouse model.Proc. Natl. Acad. Sci. USA2008105145495550010.1073/pnas.0709256105 18378905
    [Google Scholar]
  73. BarbonC.M. YangM. WandsG.D. RameshR. SlusherB.S. HedleyM.L. LubyT.M. Consecutive low doses of cyclophosphamide preferentially target Tregs and potentiate T cell responses induced by DNA PLG microparticle immunization.Cell. Immunol.2010262215016110.1016/j.cellimm.2010.02.007 20206921
    [Google Scholar]
  74. LvJ.Y. HuT.Y. WangR.Y. ZhuJ.M. WangG. Deciphering the anti-angiogenic effect of endostatin/cyclophosphamide to normalize tumor micrangium through notch signaling pathway in colon cancer.World J. Surg. Oncol.20151411010.1186/s12957‑015‑0761‑9 26762567
    [Google Scholar]
/content/journals/ccdt/10.2174/0115680096314791240830111909
Loading
/content/journals/ccdt/10.2174/0115680096314791240830111909
Loading

Data & Media loading...


  • Article Type:
    Review Article
Keyword(s): cancer; combination therapy; Cyclophosphamide; immunomodulation; immunotherapy; modulator
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test