Skip to content
2000
Volume 25, Issue 10
  • ISSN: 1568-0096
  • E-ISSN: 1873-5576

Abstract

Background

Apatinib, a tyrosine-kinase inhibitor that targets the vascular endothelial growth factor receptor 2, contributes to the inhibition of angiogenesis. Vinorelbine, a semisynthetic vinca alkaloid, primarily inhibits metaphase mitosis of cancer cells through its interactions with tubulin. This study aimed to evaluate whether apatinib combined with vinorelbine was effective and safe for refractory human epidermal growth factor receptor 2 (HER2)-negative breast cancer patients who failed taxanes and/or anthracycline and analyze the possible mechanism of drug resistance through metabolomic analysis.

Methods

Eligible patients were HER2-negative, inoperable, locally advanced, or metastatic breast cancer patients who progressed after at least one chemotherapy regimen in this present prospective phase II study. Patients took oral apatinib (250-500 mg/day) plus intravenous infusion of vinorelbine (25 mg/m2 on day 1, day 8 at 3-week intervals). Objective response rate (ORR) was our primary endpoint, while disease control rate (DCR), overall survival (OS), progression-free survival (PFS), and toxicity were our secondary endpoints. The exploratory purpose was to identify biomarkers or drug resistance mechanisms through metabolomics changes before and after the combination therapy.

Results

Between September, 2019 and June, 2022, a total of 34 patients were included. ORR and DCR were 32.4% (11/34) and 85.3% (29/34), respectively. The median PFS was 5.0 months (95% CI, 3.766-6.234), while the median OS was 13.0 months (95% CI, 8.714-17.286). Side effects included hematologic toxicity, gastrointestinal reaction, and sinus tachycardia, which were mild to moderate. The mainly disturbed metabolic pathways were the cAMP signaling pathway, the alanine/aspartate/glutamate metabolism, the central carbon metabolism in cancer, the beta-alanine metabolism, the butanoate metabolism, and the glyoxylate and dicarboxylate metabolism, which may lead to the resistance of patients to this combination therapy.

Conclusion

Apatinib combined with vinorelbine is effective and safe in patients with locally advanced or metastatic refractory HER2-negative breast cancer. The findings of this study contribute to a better understanding of the metabolic effect of apatinib and vinorelbine therapy.

Clinical Trial No

ChiCTR1900025659.

Loading

Article metrics loading...

/content/journals/ccdt/10.2174/0115680096303785240822155217
2024-10-01
2026-01-02
Loading full text...

Full text loading...

References

  1. SarhangiN. HajjariS. HeydariS.F. GanjizadehM. RouhollahF. HasanzadM. Breast cancer in the era of precision medicine.Mol. Biol. Rep.20224910100231003710.1007/s11033‑022‑07571‑2 35733061
    [Google Scholar]
  2. GluzO. LiedtkeC. GottschalkN. PusztaiL. NitzU. HarbeckN. Triple-negative breast cancer—current status and future directions.Ann. Oncol.200920121913192710.1093/annonc/mdp492 19901010
    [Google Scholar]
  3. SchettiniF. VenturiniS. GiulianoM. LambertiniM. PinatoD.J. OnestiC.E. De PlacidoP. HarbeckN. LüftnerD. DenysH. Van DamP. ArpinoG. ZamanK. MustacchiG. GligorovJ. AwadaA. CamponeM. WildiersH. GennariA. Tjan-HeijnenV. BartschR. CortesJ. ParisI. MartínM. De PlacidoS. Del MastroL. JerusalemG. CuriglianoG. PratA. GeneraliD. Multiple Bayesian network meta-analyses to establish therapeutic algorithms for metastatic triple negative breast cancer.Cancer Treat. Rev.202211110246810.1016/j.ctrv.2022.102468 36202026
    [Google Scholar]
  4. WaksA.G. WinerE.P. Breast Cancer Treatment.JAMA2019321328830010.1001/jama.2018.19323 30667505
    [Google Scholar]
  5. CristofanilliM. TurnerN.C. BondarenkoI. RoJ. ImS.A. MasudaN. ColleoniM. DeMicheleA. LoiS. VermaS. IwataH. HarbeckN. ZhangK. TheallK.P. JiangY. BartlettC.H. KoehlerM. SlamonD. Fulvestrant plus palbociclib versus fulvestrant plus placebo for treatment of hormone-receptor-positive, HER2-negative metastatic breast cancer that progressed on previous endocrine therapy (PALOMA-3): Final analysis of the multicentre, double-blind, phase 3 randomised controlled trial.Lancet Oncol.201617442543910.1016/S1470‑2045(15)00613‑0 26947331
    [Google Scholar]
  6. GoetzM.P. ToiM. CamponeM. SohnJ. Paluch-ShimonS. HuoberJ. ParkI.H. TrédanO. ChenS.C. MansoL. FreedmanO.C. Garnica JaliffeG. ForresterT. FrenzelM. BarrigaS. SmithI.C. BourayouN. Di LeoA. MONARCH 3: Abemaciclib As Initial Therapy for Advanced Breast Cancer.J. Clin. Oncol.201735323638364610.1200/JCO.2017.75.6155 28968163
    [Google Scholar]
  7. O’ShaughnessyJ. PetrakovaK. SonkeG.S. ConteP. ArteagaC.L. CameronD.A. HartL.L. VillanuevaC. JakobsenE. BeckJ.T. LindquistD. SouamiF. MondalS. GermaC. HortobagyiG.N. Ribociclib plus letrozole versus letrozole alone in patients with de novo HR+, HER2− advanced breast cancer in the randomized MONALEESA-2 trial.Breast Cancer Res. Treat.2018168112713410.1007/s10549‑017‑4518‑8 29164421
    [Google Scholar]
  8. KimmickG. PilehvariA. YouW. BonillaG. AndersonR. First- vs second-line CDK 4/6 inhibitor use for patients with hormone receptor positive, human epidermal growth-factor receptor-2 negative, metastatic breast cancer in the real world setting.Breast Cancer Res. Treat.20242024610.1007/s10549‑024‑07415‑6 38922546
    [Google Scholar]
  9. AnJ. PengC. XieX. PengF. New Advances in Targeted Therapy of HER2-Negative Breast Cancer.Front. Oncol.20221282843810.3389/fonc.2022.828438 35311116
    [Google Scholar]
  10. GradisharW.J. MoranM.S. AbrahamJ. AftR. AgneseD. AllisonK.H. AndersonB. BursteinH.J. ChewH. DangC. EliasA.D. GiordanoS.H. GoetzM.P. GoldsteinL.J. HurvitzS.A. IsakoffS.J. JankowitzR.C. JavidS.H. KrishnamurthyJ. LeitchM. LyonsJ. MortimerJ. PatelS.A. PierceL.J. RosenbergerL.H. RugoH.S. SitapatiA. SmithK.L. SmithM.L. SolimanH. Stringer-ReasorE.M. TelliM.L. WardJ.H. WisinskiK.B. YoungJ.S. BurnsJ. KumarR. Breast Cancer, Version 3.2022, NCCN Clinical Practice Guidelines in Oncology.J. Natl. Compr. Canc. Netw.202220669172210.6004/jnccn.2022.0030 35714673
    [Google Scholar]
  11. CardosoF. Paluch-ShimonS. SenkusE. CuriglianoG. AaproM.S. AndréF. BarriosC.H. BerghJ. BhattacharyyaG.S. BiganzoliL. BoyleF. CardosoM.J. CareyL.A. CortésJ. El SaghirN.S. ElzayatM. EniuA. FallowfieldL. FrancisP.A. GelmonK. GligorovJ. HaidingerR. HarbeckN. HuX. KaufmanB. KaurR. KielyB.E. KimS.B. LinN.U. MertzS.A. NeciosupS. OffersenB.V. OhnoS. PaganiO. PratA. Penault-LlorcaF. RugoH.S. SledgeG.W. ThomssenC. VorobiofD.A. WisemanT. XuB. NortonL. CostaA. WinerE.P. 5th ESO-ESMO international consensus guidelines for advanced breast cancer (ABC 5).Ann. Oncol.202031121623164910.1016/j.annonc.2020.09.010 32979513
    [Google Scholar]
  12. WinerE.P. LipatovO. ImS.A. GoncalvesA. Muñoz-CouseloE. LeeK.S. SchmidP. TamuraK. TestaL. WitzelI. OhtaniS. TurnerN. ZambelliS. HarbeckN. AndreF. DentR. ZhouX. KarantzaV. MejiaJ. CortesJ. Pembrolizumab versus investigator-choice chemotherapy for metastatic triple-negative breast cancer (KEYNOTE-119): A randomised, open-label, phase 3 trial.Lancet Oncol.202122449951110.1016/S1470‑2045(20)30754‑3 33676601
    [Google Scholar]
  13. BardiaA. HurvitzS.A. TolaneyS.M. LoiratD. PunieK. OliveiraM. BrufskyA. SardesaiS.D. KalinskyK. ZelnakA.B. WeaverR. TrainaT. DalencF. AftimosP. LynceF. DiabS. CortésJ. O’ShaughnessyJ. DiérasV. FerrarioC. SchmidP. CareyL.A. GianniL. PiccartM.J. LoiblS. GoldenbergD.M. HongQ. OlivoM.S. ItriL.M. RugoH.S. Sacituzumab Govitecan in Metastatic Triple-Negative Breast Cancer.N. Engl. J. Med.2021384161529154110.1056/NEJMoa2028485 33882206
    [Google Scholar]
  14. YuanP. HuX. SunT. LiW. ZhangQ. CuiS. ChengY. OuyangQ. WangX. ChenZ. HiraiwaM. SaitoK. FunasakaS. XuB. Eribulin mesilate versus vinorelbine in women with locally recurrent or metastatic breast cancer: A randomised clinical trial.Eur. J. Cancer2019112576510.1016/j.ejca.2019.02.002 30928806
    [Google Scholar]
  15. CortesJ. O’ShaughnessyJ. LoeschD. BlumJ.L. VahdatL.T. PetrakovaK. CholletP. ManikasA. DiérasV. DelozierT. VladimirovV. CardosoF. KohH. BougnouxP. DutcusC.E. SeegobinS. MirD. MenesesN. WandersJ. TwelvesC. Eribulin monotherapy versus treatment of physician’s choice in patients with metastatic breast cancer (EMBRACE): A phase 3 open-label randomised study.Lancet2011377976991492310.1016/S0140‑6736(11)60070‑6 21376385
    [Google Scholar]
  16. ZhangJ. WangL. WangZ. HuX. WangB. CaoJ. LvF. ZhenC. ZhangS. ShaoZ. A phase II trial of biweekly vinorelbine and oxaliplatin in second- or third-line metastatic triple-negative breast cancer.Cancer Biol. Ther.201516222523210.4161/15384047.2014.986973 25648299
    [Google Scholar]
  17. JonesA. O’BrienM. SommerH. NowaraE. WeltA. PienkowskiT. RolskiJ. PhamM.L. PerraudK. Trillet-LenoirV. Phase II study of oral vinorelbine in combination with capecitabine as second line chemotherapy in metastatic breast cancer patients previously treated with anthracyclines and taxanes.Cancer Chemother. Pharmacol.201065475576310.1007/s00280‑009‑1081‑y 19669644
    [Google Scholar]
  18. KimM.K. KimS.B. AhnJ.H. LeeS.I. AhnS.H. SonB.H. GongG. KimH.H. LeeJ.S. KangY.K. KimW.K. Gemcitabine single or combination chemotherapy in post anthracycline and taxane salvage treatment of metastatic breast cancer: Retrospective analysis of 124 patients.Cancer Res. Treat.200638420621310.4143/crt.2006.38.4.206 19771244
    [Google Scholar]
  19. PoonR.T.P. FanS.T. WongJ. Clinical implications of circulating angiogenic factors in cancer patients.J. Clin. Oncol.20011941207122510.1200/JCO.2001.19.4.1207 11181687
    [Google Scholar]
  20. PengF.W. LiuD.K. ZhangQ.W. XuY.G. ShiL. VEGFR-2 inhibitors and the therapeutic applications thereof: A patent review (2012-2016).Expert Opin. Ther. Pat.2017279987100410.1080/13543776.2017.1344215 28621580
    [Google Scholar]
  21. NiH. GuoM. ZhangX. JiangL. TanS. YuanJ. L CuiH. Min Y. Zhang J. Schlisio S. Ma C. Liao W. Nister M. Chen C. Li S. Li N. VEGFR2 inhibition hampers breast cancer cell proliferation via enhanced mitochondrial biogenesis.Cancer Biol. Med.202118113915410.20892/j.issn.2095‑3941.2020.0151 33628590
    [Google Scholar]
  22. Khosravi ShahiP. Soria LovelleA. Pérez MangaG. Tumoral angiogenesis and breast cancer.Clin. Transl. Oncol.200911313814210.1007/S12094‑009‑0329‑7 19293050
    [Google Scholar]
  23. YanJ.D. LiuY. ZhangZ.Y. LiuG.Y. XuJ.H. LiuL.Y. HuY.M. Expression and prognostic significance of VEGFR-2 in breast cancer.Pathol. Res. Pract.2015211753954310.1016/j.prp.2015.04.003 25976977
    [Google Scholar]
  24. ZengJ. DengQ. ChenZ. YanS. DongQ. ZhangY. CuiY. LiL. HeY. ShiJ. Recent development of VEGFR small molecule inhibitors as anticancer agents: A patent review (2021–2023).Bioorg. Chem.202414610727810.1016/j.bioorg.2024.107278 38484586
    [Google Scholar]
  25. ZhangH. Apatinib for molecular targeted therapy in tumor.Drug Des. Devel. Ther.201596075608110.2147/DDDT.S97235 26622168
    [Google Scholar]
  26. LiJ. ZhaoX. ChenL. GuoH. LvF. JiaK. YvK. WangF. LiC. QianJ. ZhengC. ZuoY. Safety and pharmacokinetics of novel selective vascular endothelial growth factor receptor-2 inhibitor YN968D1 in patients with advanced malignancies.BMC Cancer201010152910.1186/1471‑2407‑10‑529 20923544
    [Google Scholar]
  27. AghaeiE. SoltanzadehH. KohanL. HeiatM. Apatinib increases anticancer potential of doxorubicin in breast cancer cells.Mol. Biol. Rep.20235012101371014510.1007/s11033‑023‑08860‑0 37921980
    [Google Scholar]
  28. Farhoudi Sefidan JadidM. JahangirzadehdG. BehrooziJ. Anti-proliferation effects of Apatinib in combination with Curcumin in breast cancer cells.Horm. Mol. Biol. Clin. Investig.2023441273210.1515/hmbci‑2022‑0036 36056785
    [Google Scholar]
  29. WangH. SuW. LoweS. ZhouZ. BentleyR. ZhouQ. ChengC. GuoX. SongQ. LiangQ. LiN. LiangM. ZhuY. SunC. Association of Apatinib and Breast Cancer: A systematic review and meta-analysis.Surg. Oncol.20224410181810.1016/j.suronc.2022.101818 35930900
    [Google Scholar]
  30. HuX. CaoJ. HuW. WuC. PanY. CaiL. TongZ. WangS. LiJ. WangZ. WangB. ChenX. YuH. Multicenter phase II study of Apatinib in non-triple-negative metastatic breast cancer.BMC Cancer201414182010.1186/1471‑2407‑14‑820 25376790
    [Google Scholar]
  31. HuX. ZhangJ. XuB. JiangZ. RagazJ. TongZ. ZhangQ. WangX. FengJ. PangD. FanM. LiJ. WangB. WangZ. ZhangQ. SunS. LiaoC. Multicenter phase II study of apatinib, a novel VEGFR inhibitor in heavily pretreated patients with metastatic triple-negative breast cancer.Int. J. Cancer201413581961196910.1002/ijc.28829 24604288
    [Google Scholar]
  32. LiD.D. TaoZ. WangB.Y. WangL.P. CaoJ. HuX.C. ZhangJ. Apatinib plus vinorelbine versus vinorelbine for metastatic triple-negative breast cancer who failed first/second-line treatment: The NAN trial.NPJ Breast Cancer20228111010.1038/s41523‑022‑00462‑6 36127351
    [Google Scholar]
  33. ZhuA. YuanP. HuN. LiM. WangW. WangX. YueJ. WangJ. LuoY. MaF. ZhangP. LiQ. XuB. CaoS. LippiG. NaitoY. OsmanM.A. MartaG.N. FranceschiniG. OrlandiA. Phase II study of apatinib in combination with oral vinorelbine in heavily pretreated HER2-negative metastatic breast cancer and clinical implications of monitoring ctDNA.Cancer Biol. Med.202118387588710.20892/j.issn.2095‑3941.2020.0418 34037346
    [Google Scholar]
  34. ChenJ. FengL. ShengQ. LiL. Efficacy, Safety, and Tumor Marker Inhibition of Apatinib Combined with Conventional Chemotherapy Regimens for Patients with Advanced Triple-Negative Breast Cancer.Evid. Based Complement. Alternat. Med.202120211710.1155/2021/8720679 34691227
    [Google Scholar]
  35. LiY.H. ZhouY. WangY.W. TongL. JiangR.X. XiaoL. ZhangG.J. XingS.S. QianF. FengJ.Q. ZhaoY.L. WangJ.G. WangX.H. Comparison of apatinib and capecitabine (Xeloda) with capecitabine (Xeloda) in advanced triple-negative breast cancer as third-line therapy.Medicine (Baltimore)20189736e1222210.1097/MD.0000000000012222 30200142
    [Google Scholar]
  36. LiuZ. ShanJ. YuQ. WangX. SongX. WangF. LiC. YuZ. YuJ. Real-World Data on Apatinib Efficacy - Results of a Retrospective Study in Metastatic Breast Cancer Patients Pretreated With Multiline Treatment.Front. Oncol.20211164365410.3389/fonc.2021.643654 34178630
    [Google Scholar]
  37. LinY. WuZ. ZhangJ. HuX. WangZ. WangB. CaoJ. WangL. Apatinib for metastatic breast cancer in non-clinical trial setting: Satisfying efficacy regardless of previous anti-angiogenic treatment.Tumour Biol.201739610.1177/1010428317711033 28639910
    [Google Scholar]
  38. YuanG. ChengX. LiQ. ZangM. HuangW. FanW. WuT. RuanJ. DaiW. YuW. ChenM. GuoY. HuX. ChenJ. Safety and Efficacy of Camrelizumab Combined with Apatinib for Advanced Hepatocellular Carcinoma with Portal Vein Tumor Thrombus: A Multicenter Retrospective Study.OncoTargets Ther.202013126831269310.2147/OTT.S286169 33328740
    [Google Scholar]
  39. LiuJ. WangY. TianZ. LinY. LiH. ZhuZ. LiuQ. SuS. ZengY. JiaW. YangY. XuS. YaoH. JiangW. SongE. Multicenter phase II trial of Camrelizumab combined with Apatinib and Eribulin in heavily pretreated patients with advanced triple-negative breast cancer.Nat. Commun.2022131301110.1038/s41467‑022‑30569‑0 35641481
    [Google Scholar]
  40. JiaY. TongZ. LiS. MengW. ZhangJ. XieX. HaoC. A randomized controlled Phase II trial of vinorelbine plus capecitabine versus docetaxel plus capecitabine in anthracycline-pretreated women with metastatic breast cancer.J. Cancer Res. Ther.20201651069107610.4103/jcrt.JCRT_792_19 33004749
    [Google Scholar]
  41. AaproM. Ruiz-BorregoM. HeggR. Kukielka-BudnyB. MoralesS. CinieriS. Freitas-JuniorR. Garcia-EstevezL. SzombaraE. BorgesG.S. PassalacquaR. HervieuH. GrocM. VillanovaG. Randomized phase II study evaluating weekly oral vinorelbine versus weekly paclitaxel in estrogen receptor-positive, HER2-negative patients with advanced breast cancer (NorBreast-231 trial).Breast20194571410.1016/j.breast.2019.01.009 30802822
    [Google Scholar]
  42. LiuX.H. ManY.N. CaoR. LiuC. WuX.Z. Individualized chemotherapy based on organ selectivity: A retrospective study of vinorelbine and capecitabine for patients with metastatic breast cancer.Curr. Med. Res. Opin.20143061017102410.1185/03007995.2014.895310 24528110
    [Google Scholar]
  43. LuuT. FrankelP. ChungC. ChowW. MortimerJ. HurriaA. SomloG. Phase I/II trial of vinorelbine and sorafenib in metastatic breast cancer.Clin. Breast Cancer20141429410010.1016/j.clbc.2013.10.013 24370210
    [Google Scholar]
  44. DranitsarisG. BeegleN. KalbererT. BlauS. CoxD. FariaC. A comparison of toxicity and health care resource use between eribulin, capecitabine, gemcitabine, and vinorelbine in patients with metastatic breast cancer treated in a community oncology setting.J. Oncol. Pharm. Pract.201521317017710.1177/1078155214525369 24620009
    [Google Scholar]
  45. CazzanigaM.E. TorriV. VillaF. GiuntiniN. RivaF. ZeppelliniA. CortinovisD. BidoliP. Efficacy and Safety of the All-Oral Schedule of Metronomic Vinorelbine and Capecitabine in Locally Advanced or Metastatic Breast Cancer Patients: The Phase I-II VICTOR-1 Study.Int. J. Breast Cancer201420141710.1155/2014/769790 24551455
    [Google Scholar]
  46. MontagnaE. PalazzoA. MaisonneuveP. CancelloG. IorfidaM. SciandivasciA. EspositoA. CardilloA. MazzaM. MunzoneE. LaiA. GoldhirschA. ColleoniM. Safety and efficacy study of metronomic vinorelbine, cyclophosphamide plus capecitabine in metastatic breast cancer: A phase II trial.Cancer Lett.201740027628110.1016/j.canlet.2017.01.027 28131905
    [Google Scholar]
  47. XuY.C. WangH.X. TangL. MaY. ZhangF.C. A systematic review of vinorelbine for the treatment of breast cancer.Breast J.201319218018810.1111/tbj.12071 23320984
    [Google Scholar]
  48. GalanoG. CaputoM. Felice TecceM. CapassoA. Efficacy and tolerability of vinorelbine in the cancer therapy.Curr. Drug Saf.20116318519310.2174/157488611797579302 22122393
    [Google Scholar]
  49. QinR.S. ZhangZ.H. ZhuN.P. ChenF. GuoQ. HuH.W. FuS.Z. LiuS.S. ChenY. FanJ. HanY.W. Enhanced antitumor and anti-angiogenic effects of metronomic Vinorelbine combined with Endostar on Lewis lung carcinoma.BMC Cancer201818196710.1186/s12885‑018‑4738‑2 30305062
    [Google Scholar]
  50. TanE.H. TanD.S.W. LiW.Y. HaalandB. AngM.K. ChauN.M. TohC.K. TanI.B.H. KohT.S. ThngC.H. ChowbayB. HuiK.M. LimW.T. NgQ.S. Metronomic vinorelbine (oral) in combination with sorafenib in advanced non-small cell lung cancer.Lung Cancer201588328929610.1016/j.lungcan.2015.04.001 25896396
    [Google Scholar]
  51. HuangJ.Y. ChenX.L. XieX.F. SongL. ChenL.P. LanX.F. BaiX. ChenX. DuC.W. The efficiency and safety of low‐dose apatinib combined with oral vinorelbine in pretreated HER2 ‐negative metastatic breast cancer.Cancer Med.2024138e718110.1002/cam4.7181 38659376
    [Google Scholar]
  52. ChenX. ChenS. YuD. Metabolic Reprogramming of Chemoresistant Cancer Cells and the Potential Significance of Metabolic Regulation in the Reversal of Cancer Chemoresistance.Metabolites202010728910.3390/metabo10070289 32708822
    [Google Scholar]
  53. NavarroC. OrtegaÁ. SantelizR. GarridoB. ChacínM. GalbanN. VeraI. De SanctisJ.B. BermúdezV. Metabolic Reprogramming in Cancer Cells: Emerging Molecular Mechanisms and Novel Therapeutic Approaches.Pharmaceutics2022146130310.3390/pharmaceutics14061303 35745875
    [Google Scholar]
  54. PanY. CaoM. LiuJ. YangQ. MiaoX. GoV.L.W. LeeP.W.N. XiaoG.G. Metabolic Regulation in Mitochondria and Drug Resistance.Adv. Exp. Med. Biol.2017103814917110.1007/978‑981‑10‑6674‑0_11 29178075
    [Google Scholar]
  55. Tarrado-CastellarnauM. de AtauriP. CascanteM. Oncogenic regulation of tumor metabolic reprogramming.Oncotarget2016738627266275310.18632/oncotarget.10911 28040803
    [Google Scholar]
  56. HanahanD. Hallmarks of Cancer: New Dimensions.Cancer Discov.2022121314610.1158/2159‑8290.CD‑21‑1059 35022204
    [Google Scholar]
  57. LiuY. ZhouQ. SongS. TangS. Integrating metabolic reprogramming and metabolic imaging to predict breast cancer therapeutic responses.Trends Endocrinol. Metab.2021321076277510.1016/j.tem.2021.07.001 34340886
    [Google Scholar]
  58. LeiP. WangW. SheldonM. SunY. YaoF. MaL. Role of Glucose Metabolic Reprogramming in Breast Cancer Progression and Drug Resistance.Cancers (Basel)20231513339010.3390/cancers15133390 37444501
    [Google Scholar]
  59. LvL. YangS. ZhuY. ZhaiX. LiS. TaoX. DongD. Relationship between metabolic reprogramming and drug resistance in breast cancer.Front. Oncol.20221294206410.3389/fonc.2022.942064 36059650
    [Google Scholar]
  60. GandhiN. DasG. Metabolic Reprogramming in Breast Cancer and Its Therapeutic Implications.Cells2019828910.3390/cells8020089 30691108
    [Google Scholar]
  61. GuJ. ShuD. SuF. XieY. LiangX. Analysis of metabolome changes in the HepG2 cells of apatinib treatment by using the NMR‐based metabolomics.J. Cell. Biochem.201912011191371914610.1002/jcb.29242 31264262
    [Google Scholar]
  62. IwamotoH. AbeM. YangY. CuiD. SekiT. NakamuraM. HosakaK. LimS. WuJ. HeX. SunX. LuY. ZhouQ. ShiW. TorimuraT. NieG. LiQ. CaoY. Cancer Lipid Metabolism Confers Antiangiogenic Drug Resistance.Cell Metab.2018281104117.e510.1016/j.cmet.2018.05.005 29861385
    [Google Scholar]
  63. PisarskyL. BillR. FagianiE. DimeloeS. GoosenR.W. HagmannJ. HessC. ChristoforiG. Targeting Metabolic Symbiosis to Overcome Resistance to Anti-angiogenic Therapy.Cell Rep.20161561161117410.1016/j.celrep.2016.04.028 27134168
    [Google Scholar]
  64. ZhaoY. SongP. ZhangH. ChenX. HanP. YuX. FangC. XieF. GuoQ. Alteration of plasma metabolic profile and physical performance combined with metabolites is more sensitive to early screening for mild cognitive impairment.Front. Aging Neurosci.20221495114610.3389/fnagi.2022.951146 35959293
    [Google Scholar]
  65. LanT. ZengQ. JiangW. LiuT. XuW. YaoP. LuW. Metabolism disorder promotes isoproterenol-induced myocardial injury in mice with high temperature and high humidity and high-fat diet.BMC Cardiovasc. Disord.202222113310.1186/s12872‑022‑02583‑z 35350989
    [Google Scholar]
  66. DengS. XingT. LiC. XuX. ZhouG. The Effect of Breed and Age on the Growth Performance, Carcass Traits and Metabolic Profile in Breast Muscle of Chinese Indigenous Chickens.Foods202211348310.3390/foods11030483 35159633
    [Google Scholar]
  67. XuB. WangZ. WangR. SongG. ZhangY. SuR. LiuY. LiJ. ZhangJ. Metabolomics analysis of buck semen cryopreserved with trehalose.Front. Genet.20221393862210.3389/fgene.2022.938622 35991557
    [Google Scholar]
  68. ShaoH. ZhaoM. GuanA.J. ShaoT. ZhouD. YuG. TangW. A network meta-analysis of efficacy and safety for first-line and second/further-line therapies in postmenopausal women with hormone receptor-positive, HER2-negative, advanced breast cancer.BMC Med.20242211310.1186/s12916‑023‑03238‑2 38212842
    [Google Scholar]
  69. PuD. XuD. WuY. ChenH. ShiG. FengD. ZhangM. LiuZ. LiJ. Efficacy of CDK4/6 inhibitors combined with endocrine therapy in HR+/HER2− breast cancer: An umbrella review.J. Cancer Res. Clin. Oncol.202415011610.1007/s00432‑023‑05516‑1 38240835
    [Google Scholar]
  70. GuoX. ZhouY. ZhangK. LuW. ZhongX. WuS. ShenL. ChenH. ChenY. First‐line CDK4/6 inhibitor‐based combinations for HR+/HER2– advanced breast cancer: A Bayesian network meta‐analysis.J. Evid. Based Med.202417110611810.1111/jebm.12571 38102891
    [Google Scholar]
  71. Coutinho-AlmeidaJ. SilvaA.S. RedondoP. RodriguesP.P. FerreiraA. CDK4/6 inhibitors and endocrine therapy in the treatment of metastatic breast cancer: A real-world and propensity scoreadjusted comparison.Cancer Treat. Res. Commun.20244010081810.1016/j.ctarc.2024.10081838761788
    [Google Scholar]
  72. TolaneyS.M. KalinskyK. KaklamaniV.G. D’AdamoD.R. AktanG. TsaiM.L. O’ReganR.M. KaufmanP.A. WilksS.T. AndreopoulouE. PattD.A. YuanY. WangG. SavulskyC. XingD. KleynermanE. KarantzaV. DiabS. Eribulin Plus Pembrolizumab in Patients with Metastatic Triple-Negative Breast Cancer (ENHANCE 1): A Phase Ib/II Study.Clin. Cancer Res.202127113061306810.1158/1078‑0432.CCR‑20‑4726 33727258
    [Google Scholar]
  73. LiuJ. LiY. LiQ. LiangD. WangQ. LiuQ. Biomarkers of response to camrelizumab combined with apatinib: An analysis from a phase II trial in advanced triple-negative breast cancer patients.Breast Cancer Res. Treat.2021186368769710.1007/s10549‑021‑06128‑4 33634417
    [Google Scholar]
  74. LiuC.T. HsiehM.C. SuY.L. HungC.M. PeiS.N. LiaoC.K. TsaiY.F. LiaoH.Y. LiuW.C. ChiuC.C. WuS.C. WangS.H. WeiC.T. RauK.M. Metronomic vinorelbine is an excellent and safe treatment for advanced breast cancer: A retrospective, observational study.J. Cancer202112175355536410.7150/jca.60682 34335952
    [Google Scholar]
  75. BlancasI. AguirreE. MoralesS. GonzálvezM.L. ServitjaS. DíazN. del BarcoS. BarnadasA. MargelíM. García CarboneroI. LlombartA. Real-world data on the efficacy and safety of weekly oral vinorelbine in breast cancer patients previously treated with anthracycline or taxane-based regimens.Clin. Transl. Oncol.201921445946610.1007/s12094‑018‑1946‑9 30293232
    [Google Scholar]
  76. FengS. WangH. WangY. SunR. XieY. ZhouZ. WangH. AaJ. ZhouF. WangG. Apatinib induces 3‐hydroxybutyric acid production in the liver of mice by peroxisome proliferator‐activated receptor α activation to aid its antitumor effect.Cancer Sci.2019110103328333910.1111/cas.14168 31429167
    [Google Scholar]
  77. LinY. GaoX. LiuZ. LiuZ. LiY. LiangR. LiaoZ. YeJ. Effective Treatment of Low-Grade Myofibroblastic Sarcoma with Apatinib: A Case Report and Literature Review.Pharm. Genomics Pers. Med.20221557358210.2147/PGPM.S35949235698620
    [Google Scholar]
/content/journals/ccdt/10.2174/0115680096303785240822155217
Loading
/content/journals/ccdt/10.2174/0115680096303785240822155217
Loading

Data & Media loading...

Supplements

Supplementary material is available on the publisher's website along with the published article.

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test