Skip to content
2000
Volume 25, Issue 10
  • ISSN: 1568-0096
  • E-ISSN: 1873-5576

Abstract

Objective

This study aimed to investigate the effect and mechanism of arctigenin (ARG) on the sensitization of dacarbazine (DTIC) the regulation of mitophagy.

Methods

experiments were conducted to explore the effects of ARG on the biological behavior of melanoma cells, mitochondrial autophagy mediated by PINK1/Parkin, and the role of reactive oxygen species (ROS)-mitochondrial autophagy in the regulation of the biological behavior of melanoma cells by an ROS quenching agent, a mitochondrial autophagy inhibitor, and an activator. The effects of ARG and dacarbazine in nude mice were assessed.

Results

CCK8 assays revealed that ARG inhibited the proliferation of the human melanoma cell lines A375 and SK-MEL-2. The observation of submicroscopic structures demonstrated mitochondrial damage. Flow cytometry further verified that ARG induced apoptosis. Western blot analysis revealed that the protein expression levels of cleaved caspase 3 and Bax increased, whereas that of Bcl-2 decreased. In addition, ARG increased ROS levels. LC3II/I, PINK1, and Parkin were increased. ARG-induced apoptosis was related to increased mitochondrial oxidative stress and promoted the occurrence of mitochondrial autophagy. After the addition of the autophagy inhibitor Mdivi-1 or the ROS quencher N-acetylcysteine (NAC), the antiproliferative effect of ARG was markedly attenuated. The expression levels of PINK1, Parkin, LC3II/I, cleaved caspase 3, and Bax were increased, whereas that of Bcl-2 was decreased. The formation of mitochondrial autophagosomes was observed by transmission electron microscopy. ARG inhibited the proliferation and induced the apoptosis of melanoma cells .

Conclusion

Autophagy-mediated cell apoptosis was activated through the PINK1/Parkin pathway by ARG, effectively inhibiting the proliferation of human melanoma cells.

Loading

Article metrics loading...

/content/journals/ccdt/10.2174/0115680096373796250414062644
2025-04-25
2025-12-26
Loading full text...

Full text loading...

References

  1. LongG.V. SwetterS.M. MenziesA.M. GershenwaldJ.E. ScolyerR.A. Cutaneous melanoma.Lancet20234021040048550210.1016/S0140‑6736(23)00821‑837499671
    [Google Scholar]
  2. SwitzerB. PuzanovI. SkitzkiJ.J. HamadL. ErnstoffM.S. Managing metastatic melanoma in 2022: A clinical review.JCO Oncol. Pract.202218533535110.1200/OP.21.00686 35133862
    [Google Scholar]
  3. ZhangY. OstrowskiS.M. FisherD.E. Nevi and Melanoma.Hematol. Oncol. Clin. North Am.202438593995210.1016/j.hoc.2024.05.005 38880666
    [Google Scholar]
  4. Martinez-RecioS. Molina-PérezM.A. Muñoz-CouseloE. Sevillano-TriperoA.R. AyaF. AranceA. OrrilloM. Martin-LiberalJ. Fernandez-MoralesL. LestaR. Quindós-VarelaM. NievaM. VidalJ. Martinez-PerezD. BarbaA. MajemM. Adjuvant immunotherapy after resected melanoma: Survival outcomes, prognostic factors and patterns of relapse.Cancers202517114310.3390/cancers17010143 39796770
    [Google Scholar]
  5. EmanuelliM. SartiniD. MolinelliE. CampagnaR. PozziV. SalvoliniE. SimonettiO. CampanatiA. OffidaniA. The double-edged sword of oxidative stress in skin damage and melanoma: From physiopathology to therapeutical approaches.Antioxidants202211461210.3390/antiox11040612 35453297
    [Google Scholar]
  6. KamińskiK. KazimierczakU. KolendaT. Oxidative stress in melanogenesis and melanoma development.Contemp. Oncol.20222611710.5114/wo.2021.112447 35506034
    [Google Scholar]
  7. OliveiraR.D. CeleiroS.P. Barbosa-MatosC. FreitasA.S. CardosoS.M. Viana-PereiraM. Almeida-AguiarC. BaltazarF. Portuguese propolis antitumoral activity in melanoma involves ROS production and induction of apoptosis.Molecules20222711353310.3390/molecules27113533 35684471
    [Google Scholar]
  8. PalmaF.R. GantnerB.N. SakiyamaM.J. KayzukaC. ShuklaS. LacchiniR. CunniffB. BoniniM.G. ROS production by mitochondria: Function or dysfunction?Oncogene202443529530310.1038/s41388‑023‑02907‑z 38081963
    [Google Scholar]
  9. MallaR.R. KamalM.A. ROS-responsive nanomedicine: Towards targeting the breast tumor microenvironment.Curr. Med. Chem.202128285674569810.2174/0929867328666201209100659 33297907
    [Google Scholar]
  10. LiuJ.S. YehC.A. HuangI.C. HuangG.Y. ChiuC.H. MahalakshmiB. WenS.Y. HuangC.Y. KuoW.W. Signal transducer and activator of transcription 3 mediates apoptosis inhibition through reducing mitochondrial ROS and activating Bcl‐2 in gemcitabine‐resistant lung cancer A549 cells.J. Cell. Physiol.202123653896390510.1002/jcp.30133 33283880
    [Google Scholar]
  11. FuM. HanX. ChenB. GuoL. ZhongL. HuP. PanY. QiuM. CaoP. ChenJ. Cancer treatment: From traditional Chinese herbal medicine to the liposome delivery system.Acta. Materia Medica20221448650610.15212/AMM‑2022‑0035
    [Google Scholar]
  12. JiangL. DengY. LiW. LuY. Arctigenin suppresses fibroblast activity and extracellular matrix deposition in hypertrophic scarring by reducing inflammation and oxidative stress.Mol. Med. Rep20202264783479110.3892/mmr.2020.11539 33174021
    [Google Scholar]
  13. ChenX.F. LiuP.G. ShengN. LiX.S. HuR.K. ZhuL.X. FengP. Arctigenin inhibits the progression of colorectal cancer through epithelial-mesenchymal transition via PI3K/Akt/mTOR signaling pathway.PLoS One2024199e030894710.1371/journal.pone.0308947 39331595
    [Google Scholar]
  14. JeongJ.B. HongS.C. JeongH.J. KooJ.S. Arctigenin induces cell cycle arrest by blocking the phosphorylation of Rb via the modulation of cell cycle regulatory proteins in human gastric cancer cells.Int. Immunopharmacol.201111101573157710.1016/j.intimp.2011.05.016 21621647
    [Google Scholar]
  15. ShiH. ZhaoL. GuoX. FangR. ZhangH. DongG. FuJ. YanF. ZhangJ. NingZ. MaQ. LiZ. LiC. DaiJ. SiC. XiongH. Arctigenin attenuates breast cancer progression through decreasing GM-CSF/TSLP/STAT3/β-Catenin signaling.Int. J. Mol. Sci.20202117635710.3390/ijms21176357 32887217
    [Google Scholar]
  16. HuangD. LuR. CaiM. MengJ. HeS. ZhangQ. MengW. Effects of arctigenin in proliferation, migration, and invasion of nasopharyngeal carcinoma 5-8F cells.Anticancer. Agents Med. Chem.202323101211121610.2174/1871520623666230228155129 36852795
    [Google Scholar]
  17. LeeK.S. LeeM.G. KwonY.S. NamK.S. Arctigenin enhances the cytotoxic effect of doxorubicin in MDA-MB-231 breast cancer cells.Int. J. Mol. Sci.2020218299710.3390/ijms21082997 32340377
    [Google Scholar]
  18. GaoY. WangH. WangH. MaS. DuZ. LiuJ. Arctigenin induces apoptosis in melanoma cells by reducing the expression of BCL-2 and VEGF.Transplant. Proc.202456244845210.1016/j.transproceed.2024.01.054 38368128
    [Google Scholar]
  19. MalviP. ChaubeB. SinghS.V. MohammadN. VijayakumarM.V. SinghS. ChouhanS. BhatM.K. Elevated circulatory levels of leptin and resistin impair therapeutic efficacy of dacarbazine in melanoma under obese state.Cancer Metab.201861210.1186/s40170‑018‑0176‑5 29568521
    [Google Scholar]
  20. MalviP. ChaubeB. SinghS.V. MohammadN. PandeyV. VijayakumarM.V. RadhakrishnanR.M. VanuopadathM. NairS.S. NairB.G. BhatM.K. Weight control interventions improve therapeutic efficacy of dacarbazine in melanoma by reversing obesity-induced drug resistance.Cancer Metab.2016412110.1186/s40170‑016‑0162‑8 27980732
    [Google Scholar]
  21. BraicuC. ZanoagaO. ZimtaA.A. TiguA.B. KilpatrickK.L. BishayeeA. NabaviS.M. Berindan-NeagoeI. Natural compounds modulate the crosstalk between apoptosis- and autophagy-regulated signaling pathways: Controlling the uncontrolled expansion of tumor cells.Semin. Cancer Biol.20228021823610.1016/j.semcancer.2020.05.015 32502598
    [Google Scholar]
  22. SunB. CaiE. ZhaoY. WangY. YangL. WangJ.Y. Arctigenin triggers apoptosis and autophagy via PI3K/Akt/mTOR inhibition in PC-3M cells.Chem. Pharm. Bull202169547248010.1248/cpb.c21‑00021 33627540
    [Google Scholar]
  23. ShabgahA.G. SuksatanW. AchmadM.H. BokovD.O. AbdelbassetW.K. EzzatifarF. HemmatiS. MohammadiH. SoleimaniD. Jadidi-NiaraghF. AhmadiM. NavashenaqJ.G. Arctigenin, an anti-tumor agent; A cutting-edge topic and up-to-the-minute approach in cancer treatment.Eur. J. Pharmacol.202190917441910.1016/j.ejphar.2021.174419 34391770
    [Google Scholar]
  24. HaimoviciA. HöferC. BadrM.T. Bavafaye HaghighiE. AmerT. BoerriesM. BronsertP. GlavynskyiI. FanfoneD. IchimG. ThilmanyN. WeberA. BrummerT. SpohrC. ÖllingerR. JanssenK.P. RadR. HäckerG. Spontaneous activity of the mitochondrial apoptosis pathway drives chromosomal defects, the appearance of micronuclei and cancer metastasis through the Caspase-Activated DNAse.Cell Death Dis.202213431510.1038/s41419‑022‑04768‑y 35393399
    [Google Scholar]
  25. SuL. ZhangJ. GomezH. KellumJ.A. PengZ. Mitochondria ROS and mitophagy in acute kidney injury.Autophagy202319240141410.1080/15548627.2022.2084862 35678504
    [Google Scholar]
  26. ZhangX. LiH. LiuC. YuanX. Role of ROS mediated autophagy in melanoma (Review).Mol. Med. Rep.202226430310.3892/mmr.2022.1281935946460
    [Google Scholar]
  27. JiangY. LiuJ. HongW. FeiX. LiuR. Arctigenin inhibits glioblastoma proliferation through the AKT/mTOR pathway and induces autophagy.BioMed Res. Int.202020201354261310.1155/2020/3542613 33015162
    [Google Scholar]
  28. WangY. LinaL. XuL. YangZ. QianZ. ZhouJ. SuoniL. Arctigenin enhances the sensitivity of cisplatin resistant colorectal cancer cell by activating autophagy.Biochem. Biophys. Res. Commun.20195201202610.1016/j.bbrc.2019.09.086 31564411
    [Google Scholar]
  29. LeeY.J. OhJ.E. LeeS.H. Arctigenin shows preferential cytotoxicity to acidity-tolerant prostate carcinoma PC-3 cells through ROS-mediated mitochondrial damage and the inhibition of PI3K/Akt/mTOR pathway.Biochem. Biophys. Res. Commun.201850541244125010.1016/j.bbrc.2018.10.045 30333093
    [Google Scholar]
  30. HuX. WangJ. ChaiJ. YuX. ZhangY. FengY. QinJ. YuH. ChaetomugilinJ. Chaetomugilin J enhances apoptosis in human ovarian cancer A2780 cells induced by cisplatin through inhibiting Pink1/Parkin mediated mitophagy.OncoTargets Ther.2020139967997610.2147/OTT.S273435 33116582
    [Google Scholar]
  31. YaoN. WangC. HuN. LiY. LiuM. LeiY. ChenM. ChenL. ChenC. LanP. ChenW. ChenZ. FuD. YeW. ZhangD. Inhibition of PINK1/Parkin-dependent mitophagy sensitizes multidrug-resistant cancer cells to B5G1, a new betulinic acid analog.Cell. Death Dis.201910323210.1038/s41419‑019‑1470‑z 30850585
    [Google Scholar]
  32. WuH. WangT. LiuY. LiX. XuS. WuC. ZouH. CaoM. JinG. LangJ. WangB. LiuB. LuoX. XuC. Mitophagy promotes sorafenib resistance through hypoxia-inducible ATAD3A dependent Axis.J. Exp. Clin. Cancer Res.202039127410.1186/s13046‑020‑01768‑8 33280610
    [Google Scholar]
  33. DaiK. RadinD.P. LeonardiD. PINK1 depletion sensitizes non-small cell lung cancer to glycolytic inhibitor 3-bromopyruvate: Involvement of ROS and mitophagy.Pharmacol. Rep.20197161184118910.1016/j.pharep.2019.08.002 31669882
    [Google Scholar]
  34. RaghuG. BerkM. CampochiaroP.A. JaeschkeH. MarenziG. RicheldiL. WenF.Q. NicolettiF. CalverleyP.M.A. The multifaceted therapeutic role of n-acetylcysteine (NAC) in disorders characterized by oxidative stress.Curr. Neuropharmacol.20211981202122410.2174/1570159X19666201230144109 33380301
    [Google Scholar]
  35. AldiniG. AltomareA. BaronG. VistoliG. CariniM. BorsaniL. SergioF. N-Acetylcysteine as an antioxidant and disulphide breaking agent: The reasons why.Free Radic. Res.201852775176210.1080/10715762.2018.1468564 29742938
    [Google Scholar]
  36. OlivaA. PallecchiL. RossoliniG.M. TravaglinoF. ZanattaP. Rationale and evidence for the adjunctive use of N-acetylcysteine in multidrug-resistant infections.Eur. Rev. Med. Pharmacol. Sci.20232794316432510.26355/eurrev_202305_32342 37203858
    [Google Scholar]
  37. KangK.R. KimJ.S. LimH. SeoJ.Y. ParkJ.H. ChunH.S. YuS.K. KimH.J. KimC.S. KimD.K. Arctigenin induces caspase-dependent apoptosis in FaDu human pharyngeal carcinoma cells.Korean J. Physiol. Pharmacol.202226644745610.4196/kjpp.2022.26.6.447 36302620
    [Google Scholar]
  38. LiaoD. LiuY. LiC. HeB. ZhouG. CuiY. HuangH. Arctigenin hinders the invasion and metastasis of cervical cancer cells via the FAK/paxillin pathway.Heliyon202396e1668310.1016/j.heliyon.2023.e16683 37292259
    [Google Scholar]
  39. Al-BadrA.A. AlodhaibM.M. Dacarbazine.Profiles Drug Subst. Excip. Relat. Methodol.20164132337710.1016/bs.podrm.2015.12.002 26940170
    [Google Scholar]
  40. DingB. LiM. ZhangJ. ZhangX. GaoH. GaoJ. ShenC. ZhouY. LiF. LiuA. Co-delivery of dacarbazine and miRNA 34a combinations to synergistically improve malignant melanoma treatments.Drug Des. Devel. Ther.20251955356810.2147/DDDT.S497888 39876991
    [Google Scholar]
  41. HouS. GuoM. XiH. ZhangL. ZhaoA. HouH. FangW. Retraction: MicroRNA-153-3p sensitizes melanoma cells to dacarbazine by suppressing ATG5-mediated autophagy and apoptosis.Transl. Cancer Res.202514165865910.21037/tcr‑2024B‑11 39974410
    [Google Scholar]
  42. HerreraA.F. LeBlancM. CastellinoS.M. LiH. RutherfordS.C. EvensA.M. DavisonK. PunnettA. ParsonsS.K. AhmedS. CasuloC. BartlettN.L. TuscanoJ.M. MeiM.G. HessB.T. JacobsR. SaeedH. TorkaP. HuB. MoskowitzC. KaurS. GoyalG. ForlenzaC. DoanA. LambleA. KumarP. ChowdhuryS. BrinkerB. SharmaN. SinghA. BlumK.A. PerryA.M. KovachA.E. HodgsonD. ConstineL.S. ShieldsL.K. PricaA. DillonH. LittleR.F. ShippM.A. CrumpM. KahlB. LeonardJ.P. SmithS.M. SongJ.Y. KellyK.M. FriedbergJ.W. Nivolumab+AVD in advanced-stage classic Hodgkin’s lymphoma.N. Engl. J. Med.2024391151379138910.1056/NEJMoa2405888 39413375
    [Google Scholar]
/content/journals/ccdt/10.2174/0115680096373796250414062644
Loading
/content/journals/ccdt/10.2174/0115680096373796250414062644
Loading

Data & Media loading...

Supplements

Supplementary material is available on the publisher's website along with the published article.


  • Article Type:
    Research Article
Keyword(s): antitumor; apoptosis; Arctigenin; dacarbazine; melanoma; mitophagy
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test