Skip to content
2000
image of Arctigenin Suppresses Melanoma via Mitophagy Activation In vitro and Enhances Dacarbazine Sensitivity In vivo

Abstract

Objective

This study aimed to investigate the effect and mechanism of arctigenin (ARG) on the sensitization of dacarbazine (DTIC) the regulation of mitophagy.

Methods

experiments were conducted to explore the effects of ARG on the biological behavior of melanoma cells, mitochondrial autophagy mediated by PINK1/Parkin, and the role of reactive oxygen species (ROS)-mitochondrial autophagy in the regulation of the biological behavior of melanoma cells by an ROS quenching agent, a mitochondrial autophagy inhibitor, and an activator. The effects of ARG and dacarbazine in nude mice were assessed.

Results

CCK8 assays revealed that ARG inhibited the proliferation of the human melanoma cell lines A375 and SK-MEL-2. The observation of submicroscopic structures demonstrated mitochondrial damage. Flow cytometry further verified that ARG induced apoptosis. Western blot analysis revealed that the protein expression levels of cleaved caspase 3 and Bax increased, whereas that of Bcl-2 decreased. In addition, ARG increased ROS levels. LC3II/I, PINK1, and Parkin were increased. ARG-induced apoptosis was related to increased mitochondrial oxidative stress and promoted the occurrence of mitochondrial autophagy. After the addition of the autophagy inhibitor Mdivi-1 or the ROS quencher N-acetylcysteine (NAC), the antiproliferative effect of ARG was markedly attenuated. The expression levels of PINK1, Parkin, LC3II/I, cleaved caspase 3, and Bax were increased, whereas that of Bcl-2 was decreased. The formation of mitochondrial autophagosomes was observed by transmission electron microscopy. ARG inhibited the proliferation and induced the apoptosis of melanoma cells .

Conclusion

Autophagy-mediated cell apoptosis was activated through the PINK1/Parkin pathway by ARG, effectively inhibiting the proliferation of human melanoma cells.

Loading

Article metrics loading...

/content/journals/ccdt/10.2174/0115680096373796250414062644
2025-04-25
2025-09-13
Loading full text...

Full text loading...

References

  1. Long G.V. Swetter S.M. Menzies A.M. Gershenwald J.E. Scolyer R.A. Cutaneous melanoma. Lancet 2023 402 10400 485 502 10.1016/S0140‑6736(23)00821‑8 37499671
    [Google Scholar]
  2. Switzer B. Puzanov I. Skitzki J.J. Hamad L. Ernstoff M.S. Managing metastatic melanoma in 2022: A clinical review. JCO Oncol. Pract. 2022 18 5 335 351 10.1200/OP.21.00686 35133862
    [Google Scholar]
  3. Zhang Y. Ostrowski S.M. Fisher D.E. Nevi and Melanoma. Hematol. Oncol. Clin. North Am. 2024 38 5 939 952 10.1016/j.hoc.2024.05.005 38880666
    [Google Scholar]
  4. Martinez-Recio S. Molina-Pérez M.A. Muñoz-Couselo E. Sevillano-Tripero A.R. Aya F. Arance A. Orrillo M. Martin-Liberal J. Fernandez-Morales L. Lesta R. Quindós-Varela M. Nieva M. Vidal J. Martinez-Perez D. Barba A. Majem M. Adjuvant immunotherapy after resected melanoma: Survival outcomes, prognostic factors and patterns of relapse. Cancers 2025 17 1 143 10.3390/cancers17010143 39796770
    [Google Scholar]
  5. Emanuelli M. Sartini D. Molinelli E. Campagna R. Pozzi V. Salvolini E. Simonetti O. Campanati A. Offidani A. The double-edged sword of oxidative stress in skin damage and melanoma: From physiopathology to therapeutical approaches. Antioxidants 2022 11 4 612 10.3390/antiox11040612 35453297
    [Google Scholar]
  6. Kamiński K. Kazimierczak U. Kolenda T. Oxidative stress in melanogenesis and melanoma development. Contemp. Oncol. 2022 26 1 1 7 10.5114/wo.2021.112447 35506034
    [Google Scholar]
  7. Oliveira R.D. Celeiro S.P. Barbosa-Matos C. Freitas A.S. Cardoso S.M. Viana-Pereira M. Almeida-Aguiar C. Baltazar F. Portuguese propolis antitumoral activity in melanoma involves ROS production and induction of apoptosis. Molecules 2022 27 11 3533 10.3390/molecules27113533 35684471
    [Google Scholar]
  8. Palma F.R. Gantner B.N. Sakiyama M.J. Kayzuka C. Shukla S. Lacchini R. Cunniff B. Bonini M.G. ROS production by mitochondria: Function or dysfunction? Oncogene 2024 43 5 295 303 10.1038/s41388‑023‑02907‑z 38081963
    [Google Scholar]
  9. Malla R.R. Kamal M.A. ROS-responsive nanomedicine: Towards targeting the breast tumor microenvironment. Curr. Med. Chem. 2021 28 28 5674 5698 10.2174/0929867328666201209100659 33297907
    [Google Scholar]
  10. Liu J.S. Yeh C.A. Huang I.C. Huang G.Y. Chiu C.H. Mahalakshmi B. Wen S.Y. Huang C.Y. Kuo W.W. Signal transducer and activator of transcription 3 mediates apoptosis inhibition through reducing mitochondrial ROS and activating Bcl‐2 in gemcitabine‐resistant lung cancer A549 cells. J. Cell. Physiol. 2021 236 5 3896 3905 10.1002/jcp.30133 33283880
    [Google Scholar]
  11. Fu M. Han X. Chen B. Guo L. Zhong L. Hu P. Pan Y. Qiu M. Cao P. Chen J. Cancer treatment: From traditional Chinese herbal medicine to the liposome delivery system. Acta Materia Medica 2022 1 4 486 506 10.15212/AMM‑2022‑0035
    [Google Scholar]
  12. Jiang L. Deng Y. Li W. Lu Y. Arctigenin suppresses fibroblast activity and extracellular matrix deposition in hypertrophic scarring by reducing inflammation and oxidative stress. Mol. Med. Rep. 2020 22 6 4783 4791 10.3892/mmr.2020.11539 33174021
    [Google Scholar]
  13. Chen X.F. Liu P.G. Sheng N. Li X.S. Hu R.K. Zhu L.X. Feng P. Arctigenin inhibits the progression of colorectal cancer through epithelial-mesenchymal transition via PI3K/Akt/mTOR signaling pathway. PLoS One 2024 19 9 e0308947 10.1371/journal.pone.0308947 39331595
    [Google Scholar]
  14. Jeong J.B. Hong S.C. Jeong H.J. Koo J.S. Arctigenin induces cell cycle arrest by blocking the phosphorylation of Rb via the modulation of cell cycle regulatory proteins in human gastric cancer cells. Int. Immunopharmacol. 2011 11 10 1573 1577 10.1016/j.intimp.2011.05.016 21621647
    [Google Scholar]
  15. Shi H. Zhao L. Guo X. Fang R. Zhang H. Dong G. Fu J. Yan F. Zhang J. Ning Z. Ma Q. Li Z. Li C. Dai J. Si C. Xiong H. Arctigenin attenuates breast cancer progression through decreasing GM-CSF/TSLP/STAT3/β-Catenin signaling. Int. J. Mol. Sci. 2020 21 17 6357 10.3390/ijms21176357 32887217
    [Google Scholar]
  16. Huang D. Lu R. Cai M. Meng J. He S. Zhang Q. Meng W. Effects of arctigenin in proliferation, migration, and invasion of nasopharyngeal carcinoma 5-8F cells. Anticancer. Agents Med. Chem. 2023 23 10 1211 1216 10.2174/1871520623666230228155129 36852795
    [Google Scholar]
  17. Lee K.S. Lee M.G. Kwon Y.S. Nam K.S. Arctigenin enhances the cytotoxic effect of doxorubicin in MDA-MB-231 breast cancer cells. Int. J. Mol. Sci. 2020 21 8 2997 10.3390/ijms21082997 32340377
    [Google Scholar]
  18. Gao Y. Wang H. Wang H. Ma S. Du Z. Liu J. Arctigenin induces apoptosis in melanoma cells by reducing the expression of BCL-2 and VEGF. Transplant. Proc. 2024 56 2 448 452 10.1016/j.transproceed.2024.01.054 38368128
    [Google Scholar]
  19. Malvi P. Chaube B. Singh S.V. Mohammad N. Vijayakumar M.V. Singh S. Chouhan S. Bhat M.K. Elevated circulatory levels of leptin and resistin impair therapeutic efficacy of dacarbazine in melanoma under obese state. Cancer Metab. 2018 6 1 2 10.1186/s40170‑018‑0176‑5 29568521
    [Google Scholar]
  20. Malvi P. Chaube B. Singh S.V. Mohammad N. Pandey V. Vijayakumar M.V. Radhakrishnan R.M. Vanuopadath M. Nair S.S. Nair B.G. Bhat M.K. Weight control interventions improve therapeutic efficacy of dacarbazine in melanoma by reversing obesity-induced drug resistance. Cancer Metab. 2016 4 1 21 10.1186/s40170‑016‑0162‑8 27980732
    [Google Scholar]
  21. Braicu C. Zanoaga O. Zimta A.A. Tigu A.B. Kilpatrick K.L. Bishayee A. Nabavi S.M. Berindan-Neagoe I. Natural compounds modulate the crosstalk between apoptosis- and autophagy-regulated signaling pathways: Controlling the uncontrolled expansion of tumor cells. Semin. Cancer Biol. 2022 80 218 236 10.1016/j.semcancer.2020.05.015 32502598
    [Google Scholar]
  22. Sun B. Cai E. Zhao Y. Wang Y. Yang L. Wang J.Y. Arctigenin triggers apoptosis and autophagy via PI3K/Akt/mTOR inhibition in PC-3M cells. Chem. Pharm. Bull. 2021 69 5 472 480 10.1248/cpb.c21‑00021 33627540
    [Google Scholar]
  23. Shabgah A.G. Suksatan W. Achmad M.H. Bokov D.O. Abdelbasset W.K. Ezzatifar F. Hemmati S. Mohammadi H. Soleimani D. Jadidi-Niaragh F. Ahmadi M. Navashenaq J.G. Arctigenin, an anti-tumor agent; A cutting-edge topic and up-to-the-minute approach in cancer treatment. Eur. J. Pharmacol. 2021 909 174419 10.1016/j.ejphar.2021.174419 34391770
    [Google Scholar]
  24. Haimovici A. Höfer C. Badr M.T. Bavafaye Haghighi E. Amer T. Boerries M. Bronsert P. Glavynskyi I. Fanfone D. Ichim G. Thilmany N. Weber A. Brummer T. Spohr C. Öllinger R. Janssen K.P. Rad R. Häcker G. Spontaneous activity of the mitochondrial apoptosis pathway drives chromosomal defects, the appearance of micronuclei and cancer metastasis through the Caspase-Activated DNAse. Cell Death Dis. 2022 13 4 315 10.1038/s41419‑022‑04768‑y 35393399
    [Google Scholar]
  25. Su L. Zhang J. Gomez H. Kellum J.A. Peng Z. Mitochondria ROS and mitophagy in acute kidney injury. Autophagy 2023 19 2 401 414 10.1080/15548627.2022.2084862 35678504
    [Google Scholar]
  26. Zhang X. Li H. Liu C. Yuan X. Role of ROS‑mediated autophagy in melanoma (Review). Mol. Med. Rep. 2022 26 4 303 10.3892/mmr.2022.12819 35946460
    [Google Scholar]
  27. Jiang Y. Liu J. Hong W. Fei X. Liu R. Arctigenin inhibits glioblastoma proliferation through the AKT/mTOR pathway and induces autophagy. BioMed Res. Int. 2020 2020 1 3542613 10.1155/2020/3542613 33015162
    [Google Scholar]
  28. Wang Y. Lina L. Xu L. Yang Z. Qian Z. Zhou J. Suoni L. Arctigenin enhances the sensitivity of cisplatin resistant colorectal cancer cell by activating autophagy. Biochem. Biophys. Res. Commun. 2019 520 1 20 26 10.1016/j.bbrc.2019.09.086 31564411
    [Google Scholar]
  29. Lee Y.J. Oh J.E. Lee S.H. Arctigenin shows preferential cytotoxicity to acidity-tolerant prostate carcinoma PC-3 cells through ROS-mediated mitochondrial damage and the inhibition of PI3K/Akt/mTOR pathway. Biochem. Biophys. Res. Commun. 2018 505 4 1244 1250 10.1016/j.bbrc.2018.10.045 30333093
    [Google Scholar]
  30. Hu X. Wang J. Chai J. Yu X. Zhang Y. Feng Y. Qin J. Yu H. Chaetomugilin J. Chaetomugilin J enhances apoptosis in human ovarian cancer A2780 cells induced by cisplatin through inhibiting Pink1/Parkin mediated mitophagy. OncoTargets Ther. 2020 13 9967 9976 10.2147/OTT.S273435 33116582
    [Google Scholar]
  31. Yao N. Wang C. Hu N. Li Y. Liu M. Lei Y. Chen M. Chen L. Chen C. Lan P. Chen W. Chen Z. Fu D. Ye W. Zhang D. Inhibition of PINK1/Parkin-dependent mitophagy sensitizes multidrug-resistant cancer cells to B5G1, a new betulinic acid analog. Cell Death Dis. 2019 10 3 232 10.1038/s41419‑019‑1470‑z 30850585
    [Google Scholar]
  32. Wu H. Wang T. Liu Y. Li X. Xu S. Wu C. Zou H. Cao M. Jin G. Lang J. Wang B. Liu B. Luo X. Xu C. Mitophagy promotes sorafenib resistance through hypoxia-inducible ATAD3A dependent Axis. J. Exp. Clin. Cancer Res. 2020 39 1 274 10.1186/s13046‑020‑01768‑8 33280610
    [Google Scholar]
  33. Dai K. Radin D.P. Leonardi D. PINK1 depletion sensitizes non-small cell lung cancer to glycolytic inhibitor 3-bromopyruvate: Involvement of ROS and mitophagy. Pharmacol. Rep. 2019 71 6 1184 1189 10.1016/j.pharep.2019.08.002 31669882
    [Google Scholar]
  34. Raghu G. Berk M. Campochiaro P.A. Jaeschke H. Marenzi G. Richeldi L. Wen F.Q. Nicoletti F. Calverley P.M.A. The multifaceted therapeutic role of n-acetylcysteine (NAC) in disorders characterized by oxidative stress. Curr. Neuropharmacol. 2021 19 8 1202 1224 10.2174/1570159X19666201230144109 33380301
    [Google Scholar]
  35. Aldini G. Altomare A. Baron G. Vistoli G. Carini M. Borsani L. Sergio F. N-Acetylcysteine as an antioxidant and disulphide breaking agent: The reasons why. Free Radic. Res. 2018 52 7 751 762 10.1080/10715762.2018.1468564 29742938
    [Google Scholar]
  36. Oliva A. Pallecchi L. Rossolini G.M. Travaglino F. Zanatta P. Rationale and evidence for the adjunctive use of N-acetylcysteine in multidrug-resistant infections. Eur. Rev. Med. Pharmacol. Sci. 2023 27 9 4316 4325 10.26355/eurrev_202305_32342 37203858
    [Google Scholar]
  37. Kang K.R. Kim J.S. Lim H. Seo J.Y. Park J.H. Chun H.S. Yu S.K. Kim H.J. Kim C.S. Kim D.K. Arctigenin induces caspase-dependent apoptosis in FaDu human pharyngeal carcinoma cells. Korean J. Physiol. Pharmacol. 2022 26 6 447 456 10.4196/kjpp.2022.26.6.447 36302620
    [Google Scholar]
  38. Liao D. Liu Y. Li C. He B. Zhou G. Cui Y. Huang H. Arctigenin hinders the invasion and metastasis of cervical cancer cells via the FAK/paxillin pathway. Heliyon 2023 9 6 e16683 10.1016/j.heliyon.2023.e16683 37292259
    [Google Scholar]
  39. Al-Badr A.A. Alodhaib M.M. Dacarbazine. Profiles Drug Subst. Excip. Relat. Methodol. 2016 41 323 377 10.1016/bs.podrm.2015.12.002 26940170
    [Google Scholar]
  40. Ding B. Li M. Zhang J. Zhang X. Gao H. Gao J. Shen C. Zhou Y. Li F. Liu A. Co-delivery of dacarbazine and miRNA 34a combinations to synergistically improve malignant melanoma treatments. Drug Des. Devel. Ther. 2025 19 553 568 10.2147/DDDT.S497888 39876991
    [Google Scholar]
  41. Hou S. Guo M. Xi H. Zhang L. Zhao A. Hou H. Fang W. Retraction: MicroRNA-153-3p sensitizes melanoma cells to dacarbazine by suppressing ATG5-mediated autophagy and apoptosis. Transl. Cancer Res. 2025 14 1 658 659 10.21037/tcr‑2024B‑11 39974410
    [Google Scholar]
  42. Herrera A.F. LeBlanc M. Castellino S.M. Li H. Rutherford S.C. Evens A.M. Davison K. Punnett A. Parsons S.K. Ahmed S. Casulo C. Bartlett N.L. Tuscano J.M. Mei M.G. Hess B.T. Jacobs R. Saeed H. Torka P. Hu B. Moskowitz C. Kaur S. Goyal G. Forlenza C. Doan A. Lamble A. Kumar P. Chowdhury S. Brinker B. Sharma N. Singh A. Blum K.A. Perry A.M. Kovach A.E. Hodgson D. Constine L.S. Shields L.K. Prica A. Dillon H. Little R.F. Shipp M.A. Crump M. Kahl B. Leonard J.P. Smith S.M. Song J.Y. Kelly K.M. Friedberg J.W. Nivolumab+AVD in advanced-stage classic Hodgkin’s lymphoma. N. Engl. J. Med. 2024 391 15 1379 1389 10.1056/NEJMoa2405888 39413375
    [Google Scholar]
/content/journals/ccdt/10.2174/0115680096373796250414062644
Loading
/content/journals/ccdt/10.2174/0115680096373796250414062644
Loading

Data & Media loading...

Supplements

Supplementary material is available on the publisher's website along with the published article.


  • Article Type:
    Review Article
Keywords: dacarbazine ; apoptosis ; melanoma ; antitumor ; mitophagy ; Arctigenin
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test