Skip to content
2000
Volume 25, Issue 8
  • ISSN: 1568-0096
  • E-ISSN: 1873-5576

Abstract

The research provides an in-depth exploration of gene therapy, covering fundamental principles, diverse implementation strategies, and innovative gene delivery vectors. Further implementations of gene therapy, such as apoptosis induction, anti-angiogenesis, and nucleic acid therapy, have been described. Gene delivery vectors, encompassing viral methods such as adenovirus, retroviral, foamy viral, adeno-associated viral, herpes simplex virus (HSV), and vaccinia virus vectors and nonviral methods, such as physical and chemical approaches have been extensively discussed. Further, a significant focus is placed on novel drug carriers, including nanoparticles, such as iron oxide, calcium carbonate, gold, carbon nanotubes, graphene oxide, quantum dots, nanogels, ceramic nanoparticles, calcium phosphate, and metal-organic frameworks. Additionally, lipids, peptides, and polymeric materials, featuring liposomes, exosomes, polymeric micelles, hydrogels, polymersomes, and dendrimers are explored as promising avenues for gene delivery. Finally, the key findings and insights underlining the dynamic landscape of gene therapy research have been summarized, which may offer a comprehensive understanding of current methodologies and potential future directions in the field of gene therapy.

Loading

Article metrics loading...

/content/journals/ccdt/10.2174/0115680096288917240404060506
2024-04-19
2025-10-22
Loading full text...

Full text loading...

References

  1. SiegelR.L. MillerK.D. WagleN.S. JemalA. Cancer statistics, 2023.CA Cancer J. Clin.2023731174810.3322/caac.2176336633525
    [Google Scholar]
  2. KashyapB.K. SinghV.V. SolankiM.K. KumarA. RuokolainenJ. KesariK.K. Smart nanomaterials in cancer theranostics: Challenges and opportunities.ACS Omega2023816142901432010.1021/acsomega.2c0784037125102
    [Google Scholar]
  3. HillA.B. ChenM. ChenC.K. PfeiferB.A. JonesC.H. Overcoming gene-delivery hurdles: Physiological considerations for nonviral vectors.Trends Biotechnol.20163429110510.1016/j.tibtech.2015.11.00426727153
    [Google Scholar]
  4. YaghoubiA. GhojazadehM. AbolhasaniS. AlikhahH. Khaki-KhatibiF. Correlation of serum levels of vitronectin, malondialdehyde and Hs- CRP with disease severity in coronary artery disease.J. Cardiovasc. Thorac. Res.20157311311710.15171/jcvtr.2015.2426430499
    [Google Scholar]
  5. GonzalezH. HagerlingC. WerbZ. Roles of the immune system in cancer: From tumor initiation to metastatic progression.Genes Dev.20183219-201267128410.1101/gad.314617.11830275043
    [Google Scholar]
  6. LiY. GuoW. LiX. ZhangJ. SunM. TangZ. RanW. YangK. HuangG. LiL. Expert consensus on the clinical application of recombinant adenovirus human p53 for head and neck cancers.Int. J. Oral Sci.20211313810.1038/s41368‑021‑00145‑134785635
    [Google Scholar]
  7. LocatelliF. ThompsonA.A. KwiatkowskiJ.L. PorterJ.B. ThrasherA.J. HongengS. SauerM.G. ThuretI. LalA. AlgeriM. SchneidermanJ. OlsonT.S. CarpenterB. AmroliaP.J. AnurathapanU. SchambachA. ChabannonC. SchmidtM. LabikI. ElliotH. GuoR. AsmalM. ColvinR.A. WaltersM.C. Betibeglogene autotemcel gene therapy for non-β0/β0 genotype β-thalassemia.N. Engl. J. Med.2022386541542710.1056/NEJMoa211320634891223
    [Google Scholar]
  8. LockeF.L. MiklosD.B. JacobsonC.A. PeralesM.A. KerstenM.J. OluwoleO.O. GhobadiA. RapoportA.P. McGuirkJ. PagelJ.M. MuñozJ. FarooqU. van MeertenT. ReaganP.M. SuredaA. FlinnI.W. VandenbergheP. SongK.W. DickinsonM. MinnemaM.C. RiedellP.A. LeslieL.A. ChagantiS. YangY. FilostoS. ShahJ. SchuppM. ToC. ChengP. GordonL.I. WestinJ.R. All ZUMA-7 Investigators and Contributing Kite Members Axicabtagene ciloleucel as second-line therapy for large B-cell lymphoma.N. Engl. J. Med.2022386764065410.1056/NEJMoa211613334891224
    [Google Scholar]
  9. LiangM. Oncorine, the world first oncolytic virus medicine and its update in China.Curr. Cancer Drug Targets201818217117610.2174/156800961866617112922150329189159
    [Google Scholar]
  10. RehmanH. SilkA.W. KaneM.P. KaufmanH.L. Into the clinic: Talimogene laherparepvec (T-VEC), a first-in-class intratumoral oncolytic viral therapy.J. Immunother. Cancer2016415310.1186/s40425‑016‑0158‑527660707
    [Google Scholar]
  11. ChawlaS.P. BrucknerH. MorseM.A. AssudaniN. HallF.L. GordonE.M. A phase I-II study using rexin-g tumor-targeted retrovector encoding a dominant-negative cyclin g1 inhibitor for advanced pancreatic cancer.Mol. Ther. Oncolytics201812March566710.1016/j.omto.2018.12.00530705966
    [Google Scholar]
  12. LiY. MingY. FuR. LiC. WuY. JiangT. LiZ. NiR. LiL. SuH. LiuY. The pathogenesis, diagnosis, prevention, and treatment of CAR-T cell therapy-related adverse reactions.Front. Pharmacol.202213October95092310.3389/fphar.2022.95092336313336
    [Google Scholar]
  13. HavunenR. KalliokoskiR. SiuralaM. SorsaS. SantosJ.M. Cervera-CarrasconV. AnttilaM. HemminkiA. Cytokine-coding oncolytic adenovirus TILT-123 is safe, selective, and effective as a single agent and in combination with immune checkpoint inhibitor anti-PD-1.Cells202110224610.3390/cells1002024633513935
    [Google Scholar]
  14. NayerossadatN. MaedehT. AliP.A. Viral and nonviral delivery systems for gene delivery.Adv. Biomed. Res.2012112710.4103/2277‑9175.9815223210086
    [Google Scholar]
  15. TangG.P. GuoH.Y. AlexisF. WangX. ZengS. LimT.M. DingJ. YangY.Y. WangS. Low molecular weight polyethylenimines linked by β-cyclodextrin for gene transfer into the nervous system.J. Gene Med.20068673674410.1002/jgm.87416550629
    [Google Scholar]
  16. MohammadinejadR. DehshahriA. Sagar MadamsettyV. ZahmatkeshanM. TavakolS. MakvandiP. KhorsandiD. PardakhtyA. AshrafizadehM. Ghasemipour AfsharE. ZarrabiA. >In vivo gene delivery mediated by non-viral vectors for cancer therapy.J. Control. Release202032524927510.1016/j.jconrel.2020.06.03832634464
    [Google Scholar]
  17. EscoffreJ.M. ZeghimiA. NovellA. BouakazA. In-vivo gene delivery by sonoporation: Recent progress and prospects.Curr. Gene Ther.201313121410.2174/15665231380480660623157546
    [Google Scholar]
  18. NaldiniL. BlömerU. GallayP. OryD. MulliganR. GageF.H. VermaI.M. TronoD. >In vivo gene delivery and stable transduction of nondividing cells by a lentiviral vector.Science1996272525926326710.1126/science.272.5259.2638602510
    [Google Scholar]
  19. EagerR. NemunaitisJ. GM-CSF gene-transduced tumor vaccines.Mol. Ther.2005121182710.1016/j.ymthe.2005.02.01215963916
    [Google Scholar]
  20. ParmianiG. RodolfoM. MelaniC. Immunological gene therapy with ex vivo gene-modified tumor cells: A critique and a reappraisal.Hum Gene Ther.20001191269127510.1089/10430340050032375
    [Google Scholar]
  21. NgoM.C. RooneyC.M. HowardJ.M. HeslopH.E. Ex vivo gene transfer for improved adoptive immunotherapy of cancer.Hum. Mol. Genet.201120R1R93R9910.1093/hmg/ddr10221415041
    [Google Scholar]
  22. HuW-W. WangZ. HollisterS.J. KrebsbachP.H. Localized viral vector delivery to enhance in situ regenerative gene therapy.Gene Ther.2007141189190110.1038/sj.gt.330294017344901
    [Google Scholar]
  23. FigueiredoM.L. KaoC. WuL. Advances in preclinical investigation of prostate cancer gene therapy.Mol. Ther.20071561053106410.1038/sj.mt.630018117457317
    [Google Scholar]
  24. ThompsonT.C. IrieA. EgawaS. BabaS. In situ gene therapy for prostate cancer.Oncol. Res.19991111810.2174/156652305299752310451026
    [Google Scholar]
  25. LiuZ. ZhangZ. ZhouC. JiaoY. Hydrophobic modifications of cationic polymers for gene delivery.Prog. Polym. Sci.20103591144116210.1016/j.progpolymsci.2010.04.007
    [Google Scholar]
  26. JonesC.H. ChenC.K. RavikrishnanA. RaneS. PfeiferB.A. Overcoming nonviral gene delivery barriers: Perspective and future.Mol. Pharm.201310114082409810.1021/mp400467x24093932
    [Google Scholar]
  27. WilsonR.C. GilbertL.A. The promise and challenge of in vivo delivery for genome therapeutics.ACS Chem. Biol.201813237638210.1021/acschembio.7b0068029019396
    [Google Scholar]
  28. LiuJ. LiuZ. PangY. ZhouH. The interaction between nanoparticles and immune system: application in the treatment of inflammatory diseases.J. Nanobiotechnology202220112710.1186/s12951‑022‑01343‑735279135
    [Google Scholar]
  29. SanpuiP. ChattopadhyayA. GhoshS.S. Induction of apoptosis in cancer cells at low silver nanoparticle concentrations using chitosan nanocarrier.ACS Appl. Mater. Interfaces20113221822810.1021/am100840c21280584
    [Google Scholar]
  30. LebedevaI.V. SuZ.Z. SarkarD. FisherP.B. Restoring apoptosis as a strategy for cancer gene therapy: Focus on p53 and mda-7.Semin. Cancer Biol.200313216917810.1016/S1044‑579X(02)00134‑712654260
    [Google Scholar]
  31. MuB.X. LiY. YeN. LiuS. ZouX. QianJ. WuC. ZhuangY. ChenM. ZhouJ.Y. Understanding apoptotic induction by Sargentodoxa cuneata-Patrinia villosa herb pair via PI3K/AKT/mTOR signalling in colorectal cancer cells using network pharmacology and cellular studies.J. Ethnopharmacol.2024319Pt 311734210.1016/j.jep.2023.11734237879505
    [Google Scholar]
  32. JiaL.T. ChenS.Y. YangA.G. Cancer gene therapy targeting cellular apoptosis machinery.Cancer Treat. Rev.201238786887610.1016/j.ctrv.2012.06.00822800735
    [Google Scholar]
  33. LuganoR. RamachandranM. DimbergA. Tumor angiogenesis: Causes, consequences, challenges and opportunities.Cell. Mol. Life Sci.20207791745177010.1007/s00018‑019‑03351‑731690961
    [Google Scholar]
  34. SuZ. LiW. LeiZ. HuL. WangS. GuoL. Regulation of angiogenesis by non-coding RNAs in cancer.Biomolecules20241416010.3390/biom1401006038254660
    [Google Scholar]
  35. KulkarniJ.A. WitzigmannD. ThomsonS.B. ChenS. LeavittB.R. CullisP.R. van der MeelR. The current landscape of nucleic acid therapeutics.Nat. Nanotechnol.202116663064310.1038/s41565‑021‑00898‑034059811
    [Google Scholar]
  36. BobbinM.L. RossiJ.J. RNA interference (RNAi)-based therapeutics: Delivering on the promise?Annu. Rev. Pharmacol. Toxicol.201656110312210.1146/annurev‑pharmtox‑010715‑10363326738473
    [Google Scholar]
  37. ThielK.W. Delivery of chemo-sensitizing siRNAs to HER2 + -breast cancer cells using RNA aptamers.Nucleic Acids Res. 201240136319633710.1093/nar/gks294
    [Google Scholar]
  38. RajaM.A.G. KatasH. AmjadM.W. WahabM. Design, mechanism, delivery and therapeutics of canonical and Dicer-substrate siRNA.Asian J. Pharm. Sci.201914549751010.1016/j.ajps.2018.12.00532104477
    [Google Scholar]
  39. KimB. SailorM.J. Rekindling RNAi therapy: Materials design requirements for >in vivo siRNA delivery.Adv Mater2020314914410.1002/adma.201903637.Rekindling
    [Google Scholar]
  40. NimjeeS.M. WhiteR.R. BeckerR.C. SullengerB.A. Aptamers as therapeutics.Annu. Rev. Pharmacol. Toxicol.2017571617910.1146/annurev‑pharmtox‑010716‑10455828061688
    [Google Scholar]
  41. XiongH. VeeduR.N. DiermeierS.D. Recent advances in oligonucleotide therapeutics in oncology.Int. J. Mol. Sci.2021227329510.3390/ijms2207329533804856
    [Google Scholar]
  42. GasiunasG. BarrangouR. HorvathP. SiksnysV. Cas9-crRNA ribonucleoprotein complex mediates specific DNA cleavage for adaptive immunity in bacteria.Proc Natl Acad Sci U S A. 201210939E2579E258610.1073/pnas.1208507109
    [Google Scholar]
  43. PlattR.J. ChenS. ZhouY. YimM.J. SwiechL. KemptonH.R. DahlmanJ.E. ParnasO. EisenhaureT.M. JovanovicM. GrahamD.B. JhunjhunwalaS. HeidenreichM. XavierR.J. LangerR. AndersonD.G. HacohenN. RegevA. FengG. SharpP.A. ZhangF. CRISPR-Cas9 knockin mice for genome editing and cancer modeling.Cell2014159244045510.1016/j.cell.2014.09.01425263330
    [Google Scholar]
  44. ZhouW. DingJ. LiuJ. Theranostic DNAzymes.Theranostics2017741010102510.7150/thno.17736
    [Google Scholar]
  45. YingS.Y. ChangD.C. LinS.L. The microRNA (miRNA): Overview of the RNA genes that modulate gene function.Mol. Biotechnol.200838325726810.1007/s12033‑007‑9013‑817999201
    [Google Scholar]
  46. AmulyaV. SambhaviB. AnandanB. Chapter 26 - miRNA signaling networks of therapeutic interest involved in angiogenesis regulation by cancer stem cellsCancer Stem Cells and Signaling PathwaysAcademic Press202445747110.1016/B978‑0‑443‑13212‑4.00009‑X
    [Google Scholar]
  47. HajjK.A. WhiteheadK.A. Tools for translation: Non-viral materials for therapeutic mRNA delivery.Nat. Rev. Mater.20172101705610.1038/natrevmats.2017.56
    [Google Scholar]
  48. WuX. WuT. LiuJ. DingB. Gene therapy based on nucleic acid nanostructure.Adv. Healthc. Mater.2020919e200104610.1002/adhm.20200104632864890
    [Google Scholar]
  49. YangS. MengZ. KangZ. SunC. WangT. FengS. The structure and configuration changes of multifunctional peptide vectors enhance gene delivery efficiency.RSC Adv20188283562836610.1039/C8RA04101F
    [Google Scholar]
  50. WolfD.P. MitalipovP.A. MitalipovS.M. Principles of and strategies for germline gene therapy.Nat. Med.201925689089710.1038/s41591‑019‑0473‑831160821
    [Google Scholar]
  51. ZhangH. VandesompeleJ. BraeckmansK. De SmedtS.C. RemautK. Nucleic acid degradation as barrier to gene delivery: A guide to understand and overcome nuclease activity.Chem. Soc. Rev.202453131736010.1039/D3CS00194F38073448
    [Google Scholar]
  52. GuanX. PeiY. SongJ. DNA-based nonviral gene therapy—challenging but promising.Mol. Pharm.20232145310.1021/ACS.MOLPHARMACEUT.3C00907/ASSET/IMAGES/LARGE/MP3C00907_0009.JPEG
    [Google Scholar]
  53. LundstromK. Viral vectors in gene therapy: Where do we stand in 2023?Viruses202315369810.3390/v1503069836992407
    [Google Scholar]
  54. SinghS. KumarR. AgrawalB. Adenoviral Vector-Based Vaccines and Gene Therapies: Current Status and Future Prospects.Adenoviruses201910.5772/intechopen.79697
    [Google Scholar]
  55. ZhangW.W. The first approved gene therapy product for cancer Ad-p53 (Gendicine): 12 years in the clinic.Hum Gene Ther.201829216017910.1089/hum.2017.218
    [Google Scholar]
  56. YaoJ. AtashevaS. WagnerN. Di PaoloN.C. StewartP.L. ShayakhmetovD.M. Targeted, safe, and efficient gene delivery to human hematopoietic stem and progenitor cells >in vivo using the engineered AVID adenovirus vector platform.Mol. Ther.202432110312310.1016/j.ymthe.2023.10.02337919899
    [Google Scholar]
  57. SłykŻ. WrzesieńR. BarszczS. GawrychowskiK. MałeckiM. Adeno-associated virus vector hydrogel formulations for brain cancer gene therapy applications.Biomed. Pharmacother.202417011606110.1016/j.biopha.2023.11606138154269
    [Google Scholar]
  58. TakayamaK. MizuguchiH. Generation of optogenetically modified adenovirus vector for spatiotemporally controllable gene therapy.ACS Chem Biol.201813244945410.1021/acschembio.7b01058
    [Google Scholar]
  59. LeeC.S. BishopE.S. ZhangR. YuX. FarinaE.M. YanS. ZhaoC. ZhengZ. ShuY. WuX. LeiJ. LiY. ZhangW. YangC. WuK. WuY. HoS. AthivirahamA. LeeM.J. WolfJ.M. ReidR.R. HeT.C. Adenovirus-mediated gene delivery: Potential applications for gene and cell-based therapies in the new era of personalized medicine.Genes Dis.201742436310.1016/j.gendis.2017.04.00128944281
    [Google Scholar]
  60. CoffinJ. BlombergJ. FanH. GiffordR. HatziioannouT. LindemannD. MayerJ. StoyeJ. TristemM. JohnsonW. Ictv Report Consortium ICTV virus taxonomy profile: Retroviridae 2021.J. Gen. Virol.20211021200171210.1099/jgv.0.00171234939563
    [Google Scholar]
  61. TrobridgeG.D. Foamy virus vectors for gene transfer.Expert Opin. Biol. Ther.20099111427143610.1517/1471259090324638819743892
    [Google Scholar]
  62. LindemannD. RethwilmA. Foamy virus biology and its application for vector development.Viruses2011356158510.3390/v3050561
    [Google Scholar]
  63. LindelF. DodtC.R. WeidnerN. NollM. BergemannF. BehrendtR. FischerS. DietrichJ. CartellieriM. HamannM.V. LindemannD. TraFo-CRISPR: Enhanced genome engineering by transient foamy virus vector-mediated delivery of CRISPR/Cas9 components.Mol. Ther. Nucleic Acids201918December70872610.1016/j.omtn.2019.10.00631726388
    [Google Scholar]
  64. BudzikK.M. NaceR.A. IkedaY. RussellS.J. Evaluation of the stability and intratumoral delivery of foreign transgenes encoded by an oncolytic Foamy Virus vector.Cancer Gene Ther.2022298-91240125110.1038/s41417‑022‑00431‑y35145270
    [Google Scholar]
  65. LuginM.L. LeeR.T. KwonY.J. Synthetically engineered adeno-associated virus for efficient, safe, and versatile gene therapy applications.ACS Nano20201411142621428310.1021/acsnano.0c0385033073995
    [Google Scholar]
  66. ModyP.H. PathakS. HansonL.K. SpencerJ.V. Herpes simplex virus: A versatile tool for insights into evolution, gene delivery, and tumor immunotherapy.Virology202011X2091327410.1177/1178122X2091327434093008
    [Google Scholar]
  67. KaufmanH.L. KohlhappF.J. ZlozaA. Oncolytic viruses: A new class of immunotherapy drugs.Nat. Rev. Drug Discov.201514964266210.1038/nrd466326323545
    [Google Scholar]
  68. HuH. ZhangS. CaiL. DuanH. LiY. YangJ. WangY. LiuB. DongS. FangZ. LiuB. A novel cocktail therapy based on quintuplet combination of oncolytic herpes simplex virus-2 vectors armed with interleukin-12, interleukin-15, GM-CSF, PD1v, and IL-7 × CCL19 results in enhanced antitumor efficacy.Virol. J.20221917410.1186/s12985‑022‑01795‑135459242
    [Google Scholar]
  69. HallB.L. LeronniD. MiyagawaY. GoinsW.F. GloriosoJ.C. CohenJ.B. Generation of an oncolytic herpes simplex viral vector completely retargeted to the GDNF receptor GFRα1 for specific infection of breast cancer cells.Int. J. Mol. Sci.20202122881510.3390/ijms2122881533233403
    [Google Scholar]
  70. PalomäkiJ. KalkeK. OrpanaJ. LundL. FrejborgF. PaavilainenH. JärveläinenH. HukkanenV. Attenuated replication-competent herpes simplex virus expressing an ECM-modifying transgene hyaluronan synthase 2 of naked mole rat in oncolytic gene therapy.Microorganisms20231111265710.3390/microorganisms1111265738004669
    [Google Scholar]
  71. Torres-DomínguezL.E. McFaddenG. Poxvirus oncolytic virotherapy.Expert Opin. Biol. Ther.201919656157310.1080/14712598.2019.160066930919708
    [Google Scholar]
  72. HusainS.R. SatoY. VatsanR. JoshiB.H. PuriR.K. A novel recombinant modified vaccinia ankara virus expressing interleukin-13 receptor α2 antigen for potential cancer immunotherapy.Curr. Mol. Med.20232310.2174/1566524023666230331085007
    [Google Scholar]
  73. LiM. ZhangM. YeQ. LiuY. QianW. Preclinical and clinical trials of oncolytic vaccinia virus in cancer immunotherapy: A comprehensive review.Cancer Biol. Med.202320964666110.20892/j.issn.2095‑3941.2023.020237615308
    [Google Scholar]
  74. SungY.K. KimS.W. Recent advances in the development of gene delivery systems.Biomater. Res.2019231810.1186/s40824‑019‑0156‑z30915230
    [Google Scholar]
  75. SomiariS. Glasspool-MaloneJ. DrabickJ.J. GilbertR.A. HellerR. JaroszeskiM.J. MaloneR.W. Theory and >in vivo application of electroporative gene delivery.Mol. Ther.20002317818710.1006/mthe.2000.012410985947
    [Google Scholar]
  76. ShiJ. MaY. ZhuJ. ChenY. SunY. YaoY. YangZ. XieJ. A review on electroporation-based intracellular delivery.Molecules20182311304410.3390/molecules2311304430469344
    [Google Scholar]
  77. MukhopadhyayA. WrightJ. ShirleyS. CantonD.A. BurkartC. ConnollyR.J. CampbellJ.S. PierceR.H. Characterization of abscopal effects of intratumoral electroporation-mediated IL-12 gene therapy.Gene Ther.2019261-211510.1038/s41434‑018‑0044‑530323352
    [Google Scholar]
  78. de CaroA. BellardE. Kolosnjaj-TabiJ. GolzioM. RolsM.P. Gene electrotransfer efficiency in 2d and 3d cancer cell models using different electroporation protocols: A comparative study.Pharmaceutics2023153100410.3390/pharmaceutics1503100436986866
    [Google Scholar]
  79. PrabhakarP. AvudaiappanA.P. SandmanM. EldefrawyA. CasoJ. NarayananG. ManoharanM. Irreversible electroporation as a focal therapy for localized prostate cancer: A systematic review.Indian J. Urol.202440161610.4103/iju.iju_370_2338314081
    [Google Scholar]
  80. Gajewska-NarynieckaA. SzwedowiczU. ŁapińskaZ. Rudno-RudzińskaJ. KielanW. KulbackaJ. Irreversible electroporation in pancreatic cancer—an evolving experimental and clinical method.Int. J. Mol. Sci.2023245438110.3390/ijms2405438136901812
    [Google Scholar]
  81. RamamoorthM. NarvekarA. Non viral vectors in gene therapy- An overview.J. Clin. Diagn. Res.201591GE01GE0610.7860/JCDR/2015/10443.539425738007
    [Google Scholar]
  82. SharmaD. AroraS. SinghJ. LayekB. A review of the tortuous path of nonviral gene delivery and recent progress.Int. J. Biol. Macromol.2021183April2055207310.1016/j.ijbiomac.2021.05.19234087309
    [Google Scholar]
  83. WangM. ZhangY. CaiC. TuJ. GuoX. ZhangD. Sonoporation-induced cell membrane permeabilization and cytoskeleton disassembly at varied acoustic and microbubble-cell parameters.Sci. Rep.201881388510.1038/s41598‑018‑22056‑829497082
    [Google Scholar]
  84. RicciM. BarbiE. DimitriM. DurantiC. ArcangeliA. CorviA. Sonoporation, a novel frontier for cancer treatment: A review of the literature.Appl. Sci.202414251510.3390/app14020515
    [Google Scholar]
  85. PlankC. ZelphatiO. MykhaylykO. Magnetically enhanced nucleic acid delivery. Ten years of magnetofection-progress and prospects.Adv. Drug Deliv. Rev.20116314-151300133110.1016/j.addr.2011.08.00221893135
    [Google Scholar]
  86. ZuvinM. Magnetofection of green fluorescent protein encoding dna-bearing polyethyleneimine-coated superparamagnetic iron oxide nanoparticles to human breast cancer cells.ACS Omega.201947123661237410.1021/acsomega.9b01000
    [Google Scholar]
  87. YangN. An overview of viral and nonviral delivery systems for microRNA.Int. J. Pharm. Investig.20155417918110.4103/2230‑973X.16764626682187
    [Google Scholar]
  88. WasunguL. HoekstraD. Cationic lipids, lipoplexes and intracellular delivery of genes.J. Control. Release2006116225526410.1016/j.jconrel.2006.06.02416914222
    [Google Scholar]
  89. Tros de IlarduyaC. SunY. DüzgüneşN. Gene delivery by lipoplexes and polyplexes.Eur. J. Pharm. Sci.201040315917010.1016/j.ejps.2010.03.01920359532
    [Google Scholar]
  90. Al-DosariM.S. GaoX. Nonviral gene delivery: Principle, limitations, and recent progress.AAPS J.200911467168110.1208/s12248‑009‑9143‑y19834816
    [Google Scholar]
  91. Fus-KujawaA. PrusP. Bajdak-RusinekK. TeperP. GawronK. KowalczukA. SieronA.L. An overview of methods and tools for transfection of eukaryotic cells in vitro. Front. Bioeng. Biotechnol.20219July70103110.3389/fbioe.2021.70103134354988
    [Google Scholar]
  92. LiuC. ZhangL. ZhuW. GuoR. SunH. ChenX. DengN. Barriers and strategies of cationic liposomes for cancer gene therapy.Mol. Ther. Methods Clin. Dev.202018September75176410.1016/j.omtm.2020.07.01532913882
    [Google Scholar]
  93. ZhangS. XuY. WangB. QiaoW. LiuD. LiZ. Cationic compounds used in lipoplexes and polyplexes for gene delivery.J. Control. Release2004100216518010.1016/j.jconrel.2004.08.01915544865
    [Google Scholar]
  94. KlyS. AndrewL.J. MoloneyE.G. HuangY. WulffJ.E. MoffittM.G. Hierarchical self-assembly route to “polyplex-in-hydrophobic-core” micelles for gene delivery.Chem. Mater.202133176860687510.1021/acs.chemmater.1c01695
    [Google Scholar]
  95. WangG. ChenS. QiuN. WuB. ZhuD. ZhouZ. PiaoY. TangJ. ShenY. Virus-mimetic DNA-ejecting polyplexes for efficient intracellular cancer gene delivery.Nano Today20213910121510.1016/j.nantod.2021.101215
    [Google Scholar]
  96. KhanM.I. HossainM.I. HossainM.K. RubelM.H.K. HossainK.M. MahfuzA.M.U.B. AnikM.I. Recent progress in nanostructured smart drug delivery systems for cancer therapy: A review.ACS Appl. Bio Mater.202253971101210.1021/acsabm.2c0000235226465
    [Google Scholar]
  97. WangX. YangL. ChenZ.G. ShinD.M. Application of nanotechnology in cancer therapy and imaging.CA Cancer J. Clin.20085829711010.3322/CA.2007.000318227410
    [Google Scholar]
  98. BazakR. HouriM. AchyS.E. HusseinW. RefaatT. Passive targeting of nanoparticles to cancer: A comprehensive review of the literature.Mol. Clin. Oncol.20142690490810.3892/mco.2014.35625279172
    [Google Scholar]
  99. KamalyN. YameenB. WuJ. FarokhzadO.C. Degradable controlled-release polymers and polymeric nanoparticles: Mechanisms of controlling drug release.Chem. Rev.201611642602266310.1021/acs.chemrev.5b0034626854975
    [Google Scholar]
  100. HarishV. AnsariM.M. TewariD. GaurM. YadavA.B. García-BetancourtM.L. Abdel-HaleemF.M. BechelanyM. BarhoumA. Nanoparticle and nanostructure synthesis and controlled growth methods.Nanomaterials20221218322610.3390/nano1218322636145012
    [Google Scholar]
  101. NittaS.K. NumataK. Biopolymer-based nanoparticles for drug/gene delivery and tissue engineering.Int. J. Mol. Sci.20131411629165410.3390/ijms1401162923344060
    [Google Scholar]
  102. BahadarH. MaqboolF. NiazK. AbdollahiM. Toxicity of nanoparticles and an overview of current experimental models.Iran. Biomed. J.201620111110.7508/ibj.2016.01.00126286636
    [Google Scholar]
  103. AnsariM.O. AhmadM.F. ShadabG.G.H.A. SiddiqueH.R. Superparamagnetic iron oxide nanoparticles based cancer theranostics: A double edge sword to fight against cancer.J. Drug Deliv. Sci. Technol.20184517718310.1016/j.jddst.2018.03.017
    [Google Scholar]
  104. VangijzegemT. LecomteV. TernadI. Van LeuvenL. MullerR.N. StanickiD. LaurentS. Superparamagnetic iron oxide nanoparticles (SPION): From fundamentals to state-of-the-art innovative applications for cancer therapy.Pharmaceutics202315123610.3390/pharmaceutics1501023636678868
    [Google Scholar]
  105. PalanisamyS. WangY.M. Superparamagnetic iron oxide nanoparticulate system: Synthesis, targeting, drug delivery and therapy in cancer.Dalton Trans.201948269490951510.1039/C9DT00459A31211303
    [Google Scholar]
  106. KievitF.M. ZhangM. Surface engineering of iron oxide nanoparticles for targeted cancer therapy.Acc. Chem. Res.2011441085386210.1021/ar200027721528865
    [Google Scholar]
  107. Wahajuddin AroraS. Superparamagnetic iron oxide nanoparticles: Magnetic nanoplatforms as drug carriers.Int. J. Nanomedicine201273445347110.2147/IJN.S3032022848170
    [Google Scholar]
  108. LoY.L. ChouH.L. LiaoZ.X. HuangS.J. KeJ.H. LiuY.S. ChiuC.C. WangL.F. Chondroitin sulfate-polyethylenimine copolymer-coated superparamagnetic iron oxide nanoparticles as an efficient magneto-gene carrier for microRNA-encoding plasmid DNA delivery.Nanoscale20157188554856510.1039/C5NR01404B25897645
    [Google Scholar]
  109. MirzaieV. AnsariM. Nematollahi-MahaniS.N. Moballegh NaseryM. KarimiB. EslaminejadT. PourshojaeiY. Nano-graphene oxide-supported APTESspermine, as gene delivery system, for transfection of pEGFP-p53 into breast cancer cell lines.Drug Des. Devel. Ther.2020143087309710.2147/DDDT.S25100532801647
    [Google Scholar]
  110. ElbazN.M. OwenA. RannardS. McDonaldT.O. Controlled synthesis of calcium carbonate nanoparticles and stimuli-responsive multi-layered nanocapsules for oral drug delivery.Int. J. Pharm.202057411886610.1016/j.ijpharm.2019.11886631765776
    [Google Scholar]
  111. Maleki DizajS. SharifiS. AhmadianE. EftekhariA. AdibkiaK. LotfipourF. An update on calcium carbonate nanoparticles as cancer drug/gene delivery system.Expert Opin. Drug Deliv.201916433134510.1080/17425247.2019.158740830807242
    [Google Scholar]
  112. PengJ.Q. FumotoS. SugaT. MiyamotoH. KurodaN. KawakamiS. NishidaK. Targeted co-delivery of protein and drug to a tumor >in vivo by sophisticated RGD-modified lipid-calcium carbonate nanoparticles.J. Control. Release2019302425310.1016/j.jconrel.2019.03.02130926479
    [Google Scholar]
  113. LiuY. YuB. DaiX. ZhaoN. XuF.J. Biomineralized calcium carbonate nanohybrids for mild photothermal heating-enhanced gene therapy.Biomaterials2021274April12088510.1016/j.biomaterials.2021.12088534022740
    [Google Scholar]
  114. RothR. SchoelkopfJ. HuwylerJ. PuchkovM. Functionalized calcium carbonate microparticles for the delivery of proteins.Eur. J. Pharm. Biopharm.20181229610310.1016/j.ejpb.2017.10.01229054385
    [Google Scholar]
  115. KumarS. Functionalized gold nanostructures: Promising gene delivery vehicles in cancer treatmentRSC Adv.20199238942390710.1039/C9RA03608C
    [Google Scholar]
  116. KotcherlakotaR. Applications and health restoration of p53 function in ovarian cancer mediated by gold nanoparticles based EGFR targeted gene delivery system.ACS Biomater. Sci. Eng2019573631364410.1021/acsbiomaterials.9b00006
    [Google Scholar]
  117. ZhangS. ChenC. XueC. ChangD. XuH. SalenaB.J. LiY. WuZ.S. Ribbon of DNA lattice on gold nanoparticles for selective drug delivery to cancer cells.Angew. Chem. Int. Ed. Engl.20205934145841459210.1002/anie.20200562432470152
    [Google Scholar]
  118. LiangR. XieJ. LiJ. WangK. LiuL. GaoY. HussainM. ShenG. ZhuJ. TaoJ. Liposomes-coated gold nanocages with antigens and adjuvants targeted delivery to dendritic cells for enhancing antitumor immune response.Biomaterials2017149415010.1016/j.biomaterials.2017.09.02928992509
    [Google Scholar]
  119. HuoS. JinS. MaX. XueX. YangK. KumarA. WangP.C. ZhangJ. HuZ. LiangX.J. Ultrasmall gold nanoparticles as carriers for nucleus-based gene therapy due to size-dependent nuclear entry.ACS Nano2014865852586210.1021/nn500857224824865
    [Google Scholar]
  120. AhmedW. ElhissiA. DhanakV. SubramaniK. Carbon nanotubes: Applications in cancer therapy and drug delivery research.Elsevier Inc.201810.1016/B978‑0‑12‑812291‑4.00018‑2
    [Google Scholar]
  121. AlshehriR. IlyasA.M. HasanA. ArnaoutA. AhmedF. MemicA. Carbon nanotubes in biomedical applications: Factors, mechanisms, and remedies of toxicity.J. Med. Chem.201659188149816710.1021/acs.jmedchem.5b0177027142556
    [Google Scholar]
  122. ChenX. KisA. ZettlA. BertozziC.R. A cell nanoinjector based on carbon nanotubes.Proc. Natl. Acad. Sci. USA2007104208218822210.1073/pnas.070056710417485677
    [Google Scholar]
  123. PunethaV.D. RanaS. YooH.J. ChaurasiaA. McLeskeyJ.T.Jr RamasamyM.S. SahooN.G. ChoJ.W. Functionalization of carbon nanomaterials for advanced polymer nanocomposites: A comparison study between CNT and graphene.Prog. Polym. Sci.20176714710.1016/j.progpolymsci.2016.12.010
    [Google Scholar]
  124. TaghaviS. HashemNiaA. MosaffaF. AskarianS. AbnousK. RamezaniM. Preparation and evaluation of polyethylenimine-functionalized carbon nanotubes tagged with 5TR1 aptamer for targeted delivery of Bcl-xL shRNA into breast cancer cells.Colloids Surf. B Biointerfaces2016140283910.1016/j.colsurfb.2015.12.02126731195
    [Google Scholar]
  125. SauS. Polymer-coated carbon nanotube hybrids with functional peptides for gene delivery into plant mitochondria.Nat Commun. 2022131241710.1038/s41467‑022‑30185‑y
    [Google Scholar]
  126. ZhaoY. Temperature-sensitive lipid-coated carbon nanotubes for synergistic photothermal therapy and gene therapy.ACS Nano20211546517652910.1021/acsnano.0c08790
    [Google Scholar]
  127. BaoH. PanY. PingY. SahooN.G. WuT. LiL. LiJ. GanL.H. Chitosan-functionalized graphene oxide as a nanocarrier for drug and gene delivery.Small20117111569157810.1002/smll.20110019121538871
    [Google Scholar]
  128. ZhangL. XiaJ. ZhaoQ. LiuL. ZhangZ. Functional graphene oxide as a nanocarrier for controlled loading and targeted delivery of mixed anticancer drugs.Small20106453754410.1002/smll.20090168020033930
    [Google Scholar]
  129. Di SantoR. DigiacomoL. PalchettiS. PalmieriV. PeriniG. PozziD. PapiM. CaraccioloG. Microfluidic manufacturing of surface-functionalized graphene oxide nanoflakes for gene delivery.Nanoscale20191162733274110.1039/C8NR09245A30672541
    [Google Scholar]
  130. WangZ. ShenH. SongS. ZhangL. ChenW. DaiJ. ZhangZ. Graphene oxide incorporated PLGA nanofibrous scaffold for solid phase gene delivery into mesenchymal stem cells.J. Nanosci. Nanotechnol.20181842286229310.1166/jnn.2018.1436229442894
    [Google Scholar]
  131. HuangX. ChenJ. WuW. YangW. ZhongB. QingX. ShaoZ. Delivery of MutT homolog 1 inhibitor by functionalized graphene oxide nanoparticles for enhanced chemo-photodynamic therapy triggers cell death in osteosarcoma.Acta Biomater.202010922924310.1016/j.actbio.2020.04.00932294550
    [Google Scholar]
  132. NairA. HaponiukJ.T. ThomasS. GopiS. Natural carbon-based quantum dots and their applications in drug delivery: A review.Biomed. Pharmacother.202013211083410.1016/j.biopha.2020.11083433035830
    [Google Scholar]
  133. MolaeiM.J. Carbon quantum dots and their biomedical and therapeutic applications: A review.RSC Advances20199126460648110.1039/C8RA08088G35518468
    [Google Scholar]
  134. MartinsC.S.M. LaGrowA.P. PriorJ.A.V. Quantum dots for cancer-related miRNA monitoring.ACS Sens.2022751269129910.1021/acssensors.2c0014935486955
    [Google Scholar]
  135. LoP.Y. LeeG.Y. ZhengJ.H. HuangJ.H. ChoE.C. LeeK.C. GFP plasmid and chemoreagent conjugated with graphene quantum dots as a novel gene delivery platform for colon cancer inhibition in vitro and in vivo.ACS Appl. Bio Mater.2020395948595610.1021/acsabm.0c0063135021823
    [Google Scholar]
  136. KimM.W. JeongH.Y. KangS.J. JeongI.H. ChoiM.J. YouY.M. ImC.S. SongI.H. LeeT.S. LeeJ.S. LeeA. ParkY.S. Anti-EGF receptor aptamer-guided co-delivery of anti-cancer siRNAs and quantum dots for theranostics of triple-negative breast cancer.Theranostics20199383785210.7150/thno.3022830809312
    [Google Scholar]
  137. KandilR. MerkelO.M. Recent progress of polymeric nanogels for gene delivery.Curr. Opin. Colloid Interface Sci.201939112310.1016/j.cocis.2019.01.00530853837
    [Google Scholar]
  138. MassiL. NajerA. ChapmanR. SpicerC.D. NeleV. CheJ. BoothM.A. DoutchJ.J. StevensM.M. Tuneable peptide cross-linked nanogels for enzyme-triggered protein delivery.J. Mater. Chem. B Mater. Biol. Med.20208388894890710.1039/D0TB01546F33026394
    [Google Scholar]
  139. JoudehN. LinkeD. Nanoparticle classification, physicochemical properties, characterization, and applications: A comprehensive review for biologists.J. Nanobiotechnology202220126210.1186/s12951‑022‑01477‑835672712
    [Google Scholar]
  140. CarvalhoA.M. CordeiroR.A. FanecaH. Silica-based gene delivery systems: From design to therapeutic applications.Pharmaceutics202012764910.3390/pharmaceutics12070649
    [Google Scholar]
  141. SinghD. DubeyP. PradhanM. SinghM.R. Ceramic nanocarriers: Versatile nanosystem for protein and peptide delivery.Expert Opin. Drug Deliv.201310224125910.1517/17425247.2012.74584823265137
    [Google Scholar]
  142. MatosJ.C. MatosJ.C. PereiraL.C.J. WaerenborghJ.C. GonçalvesM.C. Encapsulation of active molecules in pharmaceutical sector: The role of ceramic nanocarriers.Elsevier,2020538310.1016/B978‑0‑12‑819363‑1.00004‑1
    [Google Scholar]
  143. ShaoD. LiM. WangZ. ZhengX. LaoY.H. ChangZ. ZhangF. LuM. YueJ. HuH. YanH. ChenL. DongW.F. LeongK.W. Bioinspired diselenide-bridged mesoporous silica nanoparticles for dual-responsive protein delivery.Adv. Mater.20183029e180119810.1002/adma.20180119829808576
    [Google Scholar]
  144. XiaoX. HeQ. HuangK. Novel amino-modified silica nanoparticles as efficient vector for hepatocellular carcinoma gene therapy.Med. Oncol.20102741200120710.1007/s12032‑009‑9359‑919949900
    [Google Scholar]
  145. RejeethC. SalemA. Novel luminescent silica nanoparticles (LSN): P53 gene delivery system in breast cancer in vitro and in vivo.J. Pharm. Pharmacol.201668330531510.1111/j.2042‑7158.2012.01547.x27085860
    [Google Scholar]
  146. LinJ.T. LiuZ.K. ZhuQ.L. RongX.H. LiangC.L. WangJ. MaD. SunJ. WangG.H. Redox-responsive nanocarriers for drug and gene co-delivery based on chitosan derivatives modified mesoporous silica nanoparticles.Colloids Surf. B Biointerfaces2017155415010.1016/j.colsurfb.2017.04.00228407530
    [Google Scholar]
  147. WangZ. Shape-controlled magnetic mesoporous silica nanoparticles for magnetically-mediated suicide gene therapy of hepatocellular carcinoma.Elsevier Ltd2018Vol. 15410.1016/j.biomaterials.2017.10.047
    [Google Scholar]
  148. YuanP. MaoX. WuX. LiewS.S. LiL. YaoS.Q. Mitochondria-targeting, intracellular delivery of native proteins using biodegradable silica nanoparticles.Angew. Chem. Int. Ed. Engl.201958237657766110.1002/anie.20190169930994955
    [Google Scholar]
  149. WangS. LiuX. ChenS. LiuZ. ZhangX. LiangX.J. LiL. Regulation of Ca2+ signaling for drug-resistant breast cancer therapy with mesoporous silica nanocapsule encapsulated doxorubicin/siRNA cocktail.ACS Nano201913127428310.1021/acsnano.8b0563930566319
    [Google Scholar]
  150. XuX. LiZ. ZhaoX. KeenL. KongX. Calcium phosphate nanoparticles-based systems for siRNA delivery.Regen. Biomater.20163318719510.1093/rb/rbw01027252888
    [Google Scholar]
  151. TangJ. HowardC.B. MahlerS.M. ThurechtK.J. HuangL. XuZ.P. Enhanced delivery of siRNA to triple negative breast cancer cells in vitro and in vivo through functionalizing lipid-coated calcium phosphate nanoparticles with dual target ligands.Nanoscale20181094258426610.1039/C7NR08644J29436549
    [Google Scholar]
  152. HuM. WangY. XuL. AnS. TangY. ZhouX. LiJ. LiuR. HuangL. Relaxin gene delivery mitigates liver metastasis and synergizes with check point therapy.Nat. Commun.2019101299310.1038/s41467‑019‑10893‑831278269
    [Google Scholar]
  153. OsterriethJ.W.M. Fairen-jimenezD. Metal-organic framework composites for theragnostics and drug delivery applications.Biotechnol J.2021162e200000510.1002/biot.202000005
    [Google Scholar]
  154. FurukawaH. FurukawaH. CordovaK. E. KeeffeM. O. YaghiO. M. The chemistry and applications of metal-organic frameworks.Science20133416149123044410.1126/science.1230444
    [Google Scholar]
  155. ZhangY. YangL. WangH. HuangJ. LinY. ChenS. GuanX. YiM. LiS. ZhangL. Bioinspired metal–organic frameworks mediated efficient delivery of siRNA for cancer therapy.Chem. Eng. J.2021426August13192610.1016/j.cej.2021.131926
    [Google Scholar]
  156. ShaoL. GaoX. LiuJ. ZhengQ. LiY. YuP. WangM. MaoL. Biodegradable metal-organic-frameworks-mediated protein delivery enables intracellular cascade biocatalysis and pyroptosis in vivo. ACS Appl. Mater. Interfaces20221442474724748110.1021/acsami.2c1495736227724
    [Google Scholar]
  157. WangH. ChenY. WangH. LiuX. ZhouX. WangF. DNAzyme-loaded metal-organic frameworks (MOFs) for self-sufficient gene therapy.Angew. Chem. Int. Ed. Engl.201958227380738410.1002/ange.20190271430916460
    [Google Scholar]
  158. ChengM.H.Y. BrimacombeC.A. VerbekeR. CullisP.R. Exciting times for lipid nanoparticles: how canadian discoveries are enabling gene therapies.Mol. Pharm.20221961663166810.1021/acs.molpharmaceut.2c0036535583489
    [Google Scholar]
  159. NsairatH. KhaterD. SayedU. OdehF. Al BawabA. AlshaerW. Liposomes: Structure, composition, types, and clinical applications.Heliyon202285e0939410.1016/j.heliyon.2022.e0939435600452
    [Google Scholar]
  160. NakhaeiP. MargianaR. BokovD.O. AbdelbassetW.K. Jadidi KouhbananiM.A. VarmaR.S. MarofiF. JarahianM. BeheshtkhooN. Liposomes: Structure, biomedical applications, and stability parameters with emphasis on cholesterol.Front. Bioeng. Biotechnol.20219September70588610.3389/fbioe.2021.70588634568298
    [Google Scholar]
  161. AntimisiarisS.G. MourtasS. MaraziotiA. Exosomes and exosome-inspired vesicles for targeted drug delivery.Pharmaceutics201810421810.3390/pharmaceutics1004021830404188
    [Google Scholar]
  162. HongY. NamG-H. KohE. JeonS. KimG.B. JeongC. KimD-H. YangY. KimI-S. Exosome as a vehicle for delivery of membrane protein therapeutics, PH20, for enhanced tumor penetration and antitumor efficacy.Adv. Funct. Mater.2018285170307410.1002/adfm.201703074
    [Google Scholar]
  163. MunagalaR. Exosome-mediated delivery of RNA and DNA for gene therapy.Cancer Lett2021505587210.1016/j.canlet.2021.02.011
    [Google Scholar]
  164. SharmaR. BorahS.J. Bhawna KumarS. GuptaA. SinghP. GoelV.K. KumarR. KumarV. Functionalized peptide-based nanoparticles for targeted cancer nanotherapeutics: A state-of-the-art review.ACS Omega2022741360923610710.1021/acsomega.2c0397436278104
    [Google Scholar]
  165. KangZ. MengQ. LiuK. Peptide-based gene delivery vectors.J. Mater. Chem. B Mater. Biol. Med.20197111824184110.1039/C8TB03124J32255045
    [Google Scholar]
  166. DelfiM. SartoriusR. AshrafizadehM. SharifiE. ZhangY. De BerardinisP. ZarrabiA. VarmaR.S. TayF.R. SmithB.R. MakvandiP. Self-assembled peptide and protein nanostructures for anti-cancer therapy: Targeted delivery, stimuli-responsive devices and immunotherapy.Nano Today20213810111910.1016/j.nantod.2021.10111934267794
    [Google Scholar]
  167. LangJ. ZhaoX. QiY. ZhangY. HanX. Reshaping prostate tumor microenvironment to suppress metastasis via cancer-associated fibroblast inactivation with peptide-assembly-based nanosystem.ACS Nano.20191311123571237110.1021/acsnano.9b04857
    [Google Scholar]
  168. OnlineV.A. Novel layer-by-layer self-assembled peptide nanocarriers for siRNA delivery.RSC Advances20177475924760110.1039/C7RA08460A
    [Google Scholar]
  169. DongY. A dual targeting dendrimer-mediated sirna delivery system for effective gene silencing in cancer therapy.J. Am. Chem. Soc.201814047162641627410.1021/jacs.8b10021
    [Google Scholar]
  170. HadianamreiR. ZhaoX. Current state of the art in peptide-based gene delivery.J. Control. Release202234360061910.1016/j.jconrel.2022.02.01035157938
    [Google Scholar]
  171. DasS.S. BharadwajP. BilalM. BaraniM. RahdarA. TaboadaP. BungauS. KyzasG.Z. Stimuli-responsive polymeric nanocarriers for drug delivery, imaging, and theragnosis.Polymers2020126139710.3390/polym1206139732580366
    [Google Scholar]
  172. WongC.K. QiangX. MüllerA.H.E. GröschelA.H. Self-assembly of block copolymers into internally ordered microparticles.Prog. Polym. Sci.202010210121110.1016/j.progpolymsci.2020.101211
    [Google Scholar]
  173. IqbalS. BlennerM. Alexander-BryantA. LarsenJ. Polymersomes for therapeutic delivery of protein and nucleic acid macromolecules: From design to therapeutic applications.Biomacromolecules20202141327135010.1021/acs.biomac.9b0175432078290
    [Google Scholar]
  174. RileyM.K.II VermerrisW. Recent advances in nanomaterials for gene delivery-a review.Nanomaterials (Basel)2017759410.3390/nano705009428452950
    [Google Scholar]
  175. BeginesB. Polymeric nanoparticles for drug delivery: Recent developments and future prospects.Nanomaterials 2020107140310.3390/nano10071403
    [Google Scholar]
  176. KumariA. YadavS.K. YadavS.C. Biodegradable polymeric nanoparticles based drug delivery systems.Colloids Surf B Biointerfaces.201075111810.1016/j.colsurfb.2009.09.001
    [Google Scholar]
  177. BiswasS. KumariP. LakhaniP.M. GhoshB. Recent advances in polymeric micelles for anti-cancer drug delivery.Eur J Pharm Sci.20158318420210.1016/j.ejps.2015.12.031
    [Google Scholar]
  178. MarzbaliM. Y. KhosroushahiA. Y. Polymeric micelles as mighty nanocarriers for cancer gene therapy: A review.Cancer Chemother Pharmacol. 201779463764910.1007/s00280‑017‑3273‑1
    [Google Scholar]
  179. HaoX. LiQ. WangH. MuhammadK. GuoJ. CAGW modified polymeric micelles with different hydrophobic cores for efficient gene delivery and capillary-like tube formation. ACS Biomater Sci Eng. 2018482870287810.1021/acsbiomaterials.8b00529
    [Google Scholar]
  180. HouJ. JiQ. JiJ. Co-delivery of siPTPN13 and siNOX4 via (myo)fibroblast-targeting polymeric micelles for idiopathic pulmonary fibrosis therapy.Theranostics20211173244326110.7150/thno.54217
    [Google Scholar]
  181. El-HusseinyH.M. MadyEA. HamabeL. Smart/stimuli-responsive hydrogels: Cutting-edge platforms for tissue engineering and other biomedical applications.Mater Today Bio.20221310018610.1016/j.mtbio.2021.100186
    [Google Scholar]
  182. XiangY. OoN.N.L. LeeJ.P. LiZ. LohX.J. Recent development of synthetic nonviral systems for sustained gene delivery.Drug Discov. Today20172291318133510.1016/j.drudis.2017.04.00128428056
    [Google Scholar]
  183. Carballo-PedraresN. Fuentes-BoqueteI. Díaz-PradoS. Rey-RicoA. Hydrogel-based localized nonviral gene delivery in regenerative medicine approaches-an overview.Pharmaceutics202012875210.3390/pharmaceutics1208075232785171
    [Google Scholar]
  184. LiJ. ZhengC. CansizS. WuC. XuJ. CuiC. LiuY. HouW. WangY. ZhangL. TengI.T. YangH.H. TanW. Self-assembly of DNA nanohydrogels with controllable size and stimuli-responsive property for targeted gene regulation therapy.J. Am. Chem. Soc.201513741412141510.1021/ja512293f25581100
    [Google Scholar]
  185. ChungC.K. FransenM.F. van der MaadenK. CamposY. García-CouceJ. KralischD. ChanA. OssendorpF. CruzL.J. Thermosensitive hydrogels as sustained drug delivery system for CTLA-4 checkpoint blocking antibodies.J. Control. Release202032311110.1016/j.jconrel.2020.03.05032247805
    [Google Scholar]
  186. WangF. XiaoJ. ChenS. SunH. YangB. JiangJ. ZhouX. DuJ. Polymer vesicles: Modular platforms for cancer theranostics.Adv. Mater.20183017e170567410.1002/adma.20170567429450915
    [Google Scholar]
  187. YaoP. ZhangY. MengH. SunH. ZhongZ. Smart polymersomes dually functionalized with cRGD and fusogenic GALA peptides enable specific and high-efficiency cytosolic delivery of apoptotic proteins.Biomacromolecules201920118419110.1021/acs.biomac.8b0124330289705
    [Google Scholar]
  188. RobertsonJ.D. YeallandG. Avila-OliasM. ChiericoL. BandmannO. RenshawS.A. BattagliaG. pH-sensitive tubular polymersomes: Formation and applications in cellular delivery.ACS Nano2014854650466110.1021/nn500408824724711
    [Google Scholar]
  189. SherjeA.P. JadhavM. DravyakarB.R. KadamD. Dendrimers: A versatile nanocarrier for drug delivery and targeting.Int. J. Pharm.2018548170772010.1016/j.ijpharm.2018.07.03030012508
    [Google Scholar]
  190. Abedi-GaballuF. DehghanG. GhaffariM. YektaR. Abbaspour-RavasjaniS. BaradaranB. DolatabadiJ.E.N. HamblinM.R. PAMAM dendrimers as efficient drug and gene delivery nanosystems for cancer therapy.Appl. Mater. Today20181217719010.1016/j.apmt.2018.05.00230511014
    [Google Scholar]
  191. LiuC. WanT. WangH. ZhangS. PingY. ChengY. A boronic acid-rich dendrimer with robust and unprecedented efficiency for cytosolic protein delivery and CRISPR-Cas9 gene editing.Sci. Adv.201956eaaw892210.1126/sciadv.aaw892231206027
    [Google Scholar]
  192. XuJ. WangH. XuL. ChaoY. WangC. HanX. DongZ. ChangH. PengR. ChengY. LiuZ. Nanovaccine based on a protein-delivering dendrimer for effective antigen cross-presentation and cancer immunotherapy.Biomaterials20192071910.1016/j.biomaterials.2019.03.03730947117
    [Google Scholar]
/content/journals/ccdt/10.2174/0115680096288917240404060506
Loading
/content/journals/ccdt/10.2174/0115680096288917240404060506
Loading

Data & Media loading...


  • Article Type:
    Review Article
Keyword(s): biomaterial; cancer; Drug delivery; gene therapy; nanoparticle; stimuli-responsive
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test