Skip to content
2000
Volume 25, Issue 8
  • ISSN: 1568-0096
  • E-ISSN: 1873-5576

Abstract

Central nervous system tumors are abnormal proliferations of neuronal cells within the brain and spinal cord. They can be primary or secondary and place a heavy financial, psychological, and physical burden on individuals. The highly selective blood-brain barrier, which only permits specific molecules to flow into the brain parenchyma, inhibits the efficacy of pharmacological medicines. Treatment options include surgery, chemoradiotherapy, and targeted therapy. Despite advances in therapy over the past few decades, the overall morbidity and mortality rates are still high, emphasizing the need for improved therapeutic choices to improve survival and quality of life further. Nano pharmaceuticals have demonstrated encouraging outcomes in trials using microscopic particles to enhance bioavailability and selectivity. The most successful clinical results to date have been achieved by liposomes, extracellular vesicles, and biomimetic nanoparticles; nevertheless, clinical trials are required to confirm their safety, efficacy, affordability, long-term impact, and success in patients from various demographics. Nano pharmaceuticals have the potential to change the paradigm of therapy for brain tumors, allowing better outcomes as primary and adjunctive therapy.

Loading

Article metrics loading...

/content/journals/ccdt/10.2174/0115680096286740240507092553
2024-05-30
2025-10-23
Loading full text...

Full text loading...

References

  1. Children's cancers mortality statistics.2015https://www.cancerresearchuk.org/health-professional/cancer-statistics/childrens-cancers/mortality
  2. Data visualization tools for exploring the global cancer burden.2022http://gco.iarc.fr/today/home
  3. ComelliI. LippiG. CampanaV. ServadeiF. CervellinG. Clinical presentation and epidemiology of brain tumors firstly diagnosed in adults in the Emergency Department: a 10-year, single center retrospective study.Ann. Transl. Med.201751326910.21037/atm.2017.06.1228758095
    [Google Scholar]
  4. MajosA. TyborK. StefańczykL. GórajB. Cortical mapping by functional magnetic resonance imaging in patients with brain tumors.Eur. Radiol.20051561148115810.1007/s00330‑004‑2565‑015627188
    [Google Scholar]
  5. KadryH. NooraniB. CuculloL. A blood–brain barrier overview on structure, function, impairment, and biomarkers of integrity.Fluids Barriers CNS20201716910.1186/s12987‑020‑00230‑333208141
    [Google Scholar]
  6. GoelN.J. BirdC.E. HicksW.H. AbdullahK.G. Economic implications of the modern treatment paradigm of glioblastoma: an analysis of global cost estimates and their utility for cost assessment.J. Med. Econ.20212411018102410.1080/13696998.2021.196477534353213
    [Google Scholar]
  7. KreuterJ. Colloidal drug delivery systems.1994https://www.semanticscholar.org/paper/Colloidal-drug-delivery-systems%3A-J.-Kreuter-(Ed.)%2C-Peracchia/b75f231644029d6e7b45effb87b6372f79363683
  8. CanoA. EttchetoM. ChangJ.H. BarrosoE. EspinaM. KühneB.A. BarenysM. AuladellC. FolchJ. SoutoE.B. CaminsA. TurowskiP. GarcíaM.L. Dual-drug loaded nanoparticles of Epigallocatechin-3-gallate (EGCG)/Ascorbic acid enhance therapeutic efficacy of EGCG in a APPswe/PS1dE9 Alzheimer’s disease mice model.J. Control. Release2019301627510.1016/j.jconrel.2019.03.01030876953
    [Google Scholar]
  9. CanoA. Sánchez-LópezE. EttchetoM. López-MachadoA. EspinaM. SoutoE.B. GalindoR. CaminsA. GarcíaM.L. TurowskiP. Current advances in the development of novel polymeric nanoparticles for the treatment of neurodegenerative diseases.Nanomedicine202015121239126110.2217/nnm‑2019‑044332370600
    [Google Scholar]
  10. OwensD.III PeppasN. Opsonization, biodistribution, and pharmacokinetics of polymeric nanoparticles.Int. J. Pharm.200630719310210.1016/j.ijpharm.2005.10.01016303268
    [Google Scholar]
  11. LosaC. CalvoP. CastroE. Vila-JatoJ.L. AlonsoM.J. Improvement of ocular penetration of amikacin sulphate by association to poly(butylcyanoacrylate) nanoparticles.J. Pharm. Pharmacol.201143854855210.1111/j.2042‑7158.1991.tb03534.x1681069
    [Google Scholar]
  12. WashingtonC. Drug release from microdisperse systems: a critical review.Int. J. Pharm.199058111210.1016/0378‑5173(90)90280‑H
    [Google Scholar]
  13. WagnerV. DullaartA. BockA.K. ZweckA. The emerging nanomedicine landscape.Nat. Biotechnol.200624101211121710.1038/nbt1006‑121117033654
    [Google Scholar]
  14. MeyersJ.D. DoaneT. BurdaC. BasilionJ.P. Nanoparticles for imaging and treating brain cancer.Nanomedicine20138112314310.2217/nnm.12.18523256496
    [Google Scholar]
  15. CostantinoL. BoraschiD. Is there a clinical future for polymeric nanoparticles as brain-targeting drug delivery agents?Drug Discov. Today2012177-836737810.1016/j.drudis.2011.10.02822094246
    [Google Scholar]
  16. ChengY. MeyersJ.D. AgnesR.S. DoaneT.L. KenneyM.E. BroomeA.M. BurdaC. BasilionJ.P. Addressing brain tumors with targeted gold nanoparticles: a new gold standard for hydrophobic drug delivery?Small20117162301230610.1002/smll.20110062821630446
    [Google Scholar]
  17. LetfullinR.R. IversenC.B. GeorgeT.F. Modeling nanophotothermal therapy: kinetics of thermal ablation of healthy and cancerous cell organelles and gold nanoparticles.Nanomedicine20117213714510.1016/j.nano.2010.06.01120732456
    [Google Scholar]
  18. DanemanR. PratA. The blood-brain barrier.Cold Spring Harb. Perspect. Biol.201571a02041210.1101/cshperspect.a02041225561720
    [Google Scholar]
  19. AbbottN.J. Dynamics of CNS barriers: evolution, differentiation, and modulation.Cell. Mol. Neurobiol.200525152310.1007/s10571‑004‑1374‑y15962506
    [Google Scholar]
  20. AbbottN.J. RönnbäckL. HanssonE. Astrocyte–endothelial interactions at the blood–brain barrier.Nat. Rev. Neurosci.200671415310.1038/nrn182416371949
    [Google Scholar]
  21. BrownP.D. DaviesS.L. SpeakeT. MillarI.D. Molecular mechanisms of cerebrospinal fluid production.Neuroscience2004129495596810.1016/j.neuroscience.2004.07.00315561411
    [Google Scholar]
  22. WolburgH. NoellS. Wolburg-BuchholzK. MackA. Fallier-BeckerP. Agrin, aquaporin-4, and astrocyte polarity as an important feature of the blood-brain barrier.Neuroscientist200915218019310.1177/107385840832950919307424
    [Google Scholar]
  23. HamiltonR.D. FossA.J. LeachL. Establishment of a human in vitro model of the outer blood–retinal barrier.J. Anat.2007211670771610.1111/j.1469‑7580.2007.00812.x17922819
    [Google Scholar]
  24. XieJ. ShenZ. AnrakuY. KataokaK. ChenX. Nanomaterial-based blood-brain-barrier (BBB) crossing strategies.Biomaterials201922411949110.1016/j.biomaterials.2019.11949131546096
    [Google Scholar]
  25. MittalD. AliA. MdS. BabootaS. SahniJ.K. AliJ. Insights into direct nose to brain delivery: current status and future perspective.Drug Deliv.2014212758610.3109/10717544.2013.83871324102636
    [Google Scholar]
  26. FoleyC.P. RubinD.G. SantillanA. SondhiD. DykeJ.P. Pierre GobinY. CrystalR.G. BallonD.J. Intra-arterial delivery of AAV vectors to the mouse brain after mannitol mediated blood brain barrier disruption.J. Control. Release2014196717810.1016/j.jconrel.2014.09.01825270115
    [Google Scholar]
  27. KozlerP. PokornyJ. Effect of methylprednisolone on the axonal impairment accompanying cellular brain oedema induced by water intoxication in rats.Neuroendocrinol. Lett.201233878278623391979
    [Google Scholar]
  28. CurleyC.T. SheybaniN.D. BullockT.N. PriceR.J. Focused ultrasound immunotherapy for central nervous system pathologies: Challenges and opportunities.Theranostics20177153608362310.7150/thno.2122529109764
    [Google Scholar]
  29. FungL.K. SaltzmanW.M. Polymeric implants for cancer chemotherapy.Adv. Drug Deliv. Rev.1997262-320923010.1016/S0169‑409X(97)00036‑710837544
    [Google Scholar]
  30. ChakrounRW ZhangP LinR SchiapparelliP Quinones-HinojosaA CuiH Nanotherapeutic systems for local treatment of brain tumors.Wiley Interdiscip Rev Nanomed Nanobiotechnol201810110.1002/wnan.147928544801
    [Google Scholar]
  31. NeevesK.B. SawyerA.J. FoleyC.P. SaltzmanW.M. OlbrichtW.L. Dilation and degradation of the brain extracellular matrix enhances penetration of infused polymer nanoparticles.Brain Res.2007118012113210.1016/j.brainres.2007.08.05017920047
    [Google Scholar]
  32. YoungJ.S. BernalG. PolsterS.P. NunezL. LarsenG.F. MansourN. PodellM. YaminiB. Convection-enhanced delivery of polymeric nanoparticles encapsulating chemotherapy in canines with spontaneous supratentorial tumors.World Neurosurg.2018117e698e70410.1016/j.wneu.2018.06.11429960096
    [Google Scholar]
  33. LiuH. XieY. ZhangY. CaiY. LiB. MaoH. LiuY. LuJ. ZhangL. YuR. Development of a hypoxia-triggered and hypoxic radiosensitized liposome as a doxorubicin carrier to promote synergetic chemo-/radio-therapy for glioma.Biomaterials201712113014310.1016/j.biomaterials.2017.01.00128088075
    [Google Scholar]
  34. VieiraD. GamarraL. Getting into the brain: liposome-based strategies for effective drug delivery across the blood–brain barrier.Int. J. Nanomedicine2016115381541410.2147/IJN.S11721027799765
    [Google Scholar]
  35. ArcellaA. PalchettiS. DigiacomoL. PozziD. CapriottiA.L. FratiL. OlivaM.A. TsaouliG. RotaR. ScrepantiI. MahmoudiM. CaraccioloG. Brain targeting by liposome–biomolecular corona boosts anticancer efficacy of temozolomide in glioblastoma cells.ACS Chem. Neurosci.20189123166317410.1021/acschemneuro.8b0033930015470
    [Google Scholar]
  36. LajoieJ.M. ShustaE.V. Targeting receptor-mediated transport for delivery of biologics across the blood-brain barrier.Annu. Rev. Pharmacol. Toxicol.201555161363110.1146/annurev‑pharmtox‑010814‑12485225340933
    [Google Scholar]
  37. Mojarad-JabaliS. FarshbafM. WalkerP.R. HemmatiS. FatahiY. Zakeri-MilaniP. SarfrazM. ValizadehH. An update on actively targeted liposomes in advanced drug delivery to glioma.Int. J. Pharm.202160212064510.1016/j.ijpharm.2021.12064533915182
    [Google Scholar]
  38. LiuC. LiuX.N. WangG.L. HeiY. MengS. YangL.F. YuanL. XieY. A dual-mediated liposomal drug delivery system targeting the brain: rational construction, integrity evaluation across the blood–brain barrier, and the transporting mechanism to glioma cells.Int. J. Nanomedicine2017122407242510.2147/IJN.S13136728405164
    [Google Scholar]
  39. QinY. FanW. ChenH. YaoN. TangW. TangJ. YuanW. KuaiR. ZhangZ. WuY. HeQ. In vitro and in vivo investigation of glucose-mediated brain-targeting liposomes.J. Drug Target.201018753654910.3109/1061186100358723520132091
    [Google Scholar]
  40. XieF. XieF. QinY. Yuan Tang Zhang Fan Chen Hai Yao Li HeQ. HeQ. Investigation of glucose-modified liposomes using polyethylene glycols with different chain lengths as the linkers for brain targeting.Int. J. Nanomedicine2012716317510.2147/IJN.S2377122275832
    [Google Scholar]
  41. HultqvistG. SyvänenS. FangX.T. LannfeltL. SehlinD. Bivalent brain shuttle increases antibody uptake by monovalent binding to the transferrin receptor.Theranostics20177230831810.7150/thno.1715528042336
    [Google Scholar]
  42. ImmordinoM.L. DosioF. CattelL. Stealth liposomes: review of the basic science, rationale, and clinical applications, existing and potential.Int. J. Nanomedicine20061329731517717971
    [Google Scholar]
  43. MitchellM.J. BillingsleyM.M. HaleyR.M. WechslerM.E. PeppasN.A. LangerR. Engineering precision nanoparticles for drug delivery.Nat. Rev. Drug Discov.202120210112410.1038/s41573‑020‑0090‑833277608
    [Google Scholar]
  44. Campbell-RickettsT. E. J. KleemansN. A. J. M. NötzelR. SilovA. Yu. KoenraadP. M. The role of dot height in determining exciton lifetimes in shallow InAs/GaAs quantum dots.Appl. Phys. Lett.201096303310210.1063/1.3293294
    [Google Scholar]
  45. RodeA. SharmaS. MishraD.K. Carbon nanotubes: Classification, method of preparation and pharmaceutical application.Curr. Drug Deliv.201815562062910.2174/156720181566617122112471129268686
    [Google Scholar]
  46. BurkertS.C. StarA. Corking nitrogen‐doped carbon nanotube cups with gold nanoparticles for biodegradable drug delivery applications.Curr. Protoc. Chem. Biol.20157424926210.1002/9780470559277.ch15009326629615
    [Google Scholar]
  47. ZareH. AhmadiS. GhasemiA. GhanbariM. RabieeN. BagherzadehM. KarimiM. WebsterT.J. HamblinM.R. MostafaviE. Carbon nanotubes: Smart drug/gene delivery carriers.Int. J. Nanomedicine2021161681170610.2147/IJN.S29944833688185
    [Google Scholar]
  48. OroojalianF. BeygiM. BaradaranB. MokhtarzadehA. ShahbaziM.A. Immune cell membrane‐coated biomimetic nanoparticles for targeted cancer therapy.Small20211712200648410.1002/smll.20200648433577127
    [Google Scholar]
  49. LiY.J. WuJ.Y. LiuJ. QiuX. XuW. TangT. XiangD.X. From blood to brain: blood cell-based biomimetic drug delivery systems.Drug Deliv.20212811214122510.1080/10717544.2021.193738434142628
    [Google Scholar]
  50. LiangT. ZhangR. LiuX. DingQ. WuS. LiC. LinY. YeY. ZhongZ. ZhouM. Recent advances in macrophage-mediated drug delivery systems.Int. J. Nanomedicine2021162703271410.2147/IJN.S29815933854316
    [Google Scholar]
  51. WuH.H. ZhouY. TabataY. GaoJ.Q. Mesenchymal stem cell-based drug delivery strategy: from cells to biomimetic.J. Control. Release201929410211310.1016/j.jconrel.2018.12.01930553849
    [Google Scholar]
  52. ChenH. ZhouM. ZengY. MiaoT. LuoH. TongY. ZhaoM. MuR. GuJ. YangS. HanL. Biomimetic lipopolysaccharide‐free bacterial outer membrane‐functionalized nanoparticles for brain‐targeted drug delivery.Adv. Sci.2022916210585410.1002/advs.20210585435355446
    [Google Scholar]
  53. SunH. ChoiD. HeoJ. JungS.Y. HongJ. Studies on the drug loading and release profiles of degradable chitosan-based multilayer films for anticancer treatment.Cancers202012359310.3390/cancers1203059332150885
    [Google Scholar]
  54. LiuW. ZhangW. JinH. ZhangQ. ChenY. JiangX. ZhangG. ZhangL. ZhangW. SheZ. ZhangC. Genome mining of marine-derived streptomyces sp. SCSIO 40010 leads to cytotoxic new polycyclic tetramate macrolactams.Mar. Drugs2019171266310.3390/md1712066331775228
    [Google Scholar]
  55. MehtaN. LyonJ.G. PatilK. MokarramN. KimC. BellamkondaR.V. Bacterial carriers for glioblastoma therapy.Mol. Ther. Oncolytics2017411710.1016/j.omto.2016.12.00328345020
    [Google Scholar]
  56. ChoiJ. PernotM. SmallS. KonofagouE.E. Feasibility of transcranial, localized drug-delivery in the brain of Alzheimer’s-model mice using focused ultrasound.IEEE Ultrasonics Symposium18-21 September 2005, Rotterdam, Netherlands, pp. 988-991, 2005.10.1109/ULTSYM.2005.1603016
    [Google Scholar]
  57. BakayL. BallantineH.T.Jr HueterT.F. SosaD. Ultrasonically produced changes in the blood-brain barrier.Arch. Neurol. Psychiatry195676545746710.1001/archneurpsyc.1956.0233029000100113371961
    [Google Scholar]
  58. BallantineH.T.Jr BellE. ManlapazJ. Progress and problems in the neurological applications of focused ultrasound.J. Neurosurg.196017585887610.3171/jns.1960.17.5.085813686380
    [Google Scholar]
  59. PatrickJ.T. NoltingM.N. GossS.A. DinesK.A. ClendenonJ.L. ReaM.A. HeimburgerR.F. Ultrasound and the blood-brain barrier.Adv. Exp. Med. Biol.199026736938110.1007/978‑1‑4684‑5766‑7_362088054
    [Google Scholar]
  60. VykhodtsevaN.I. HynynenK. DamianouC. Histologic effects of high intensity pulsed ultrasound exposure with subharmonic emission in rabbit brain in vivo.Ultrasound Med. Biol.199521796997910.1016/0301‑5629(95)00038‑S7491751
    [Google Scholar]
  61. MesiwalaA.H. FarrellL. WenzelH.J. SilbergeldD.L. CrumL.A. WinnH.R. MouradP.D. High-intensity focused ultrasound selectively disrupts the blood-brain barrier in vivo.Ultrasound Med. Biol.200228338940010.1016/S0301‑5629(01)00521‑X11978420
    [Google Scholar]
  62. HynynenK. McDannoldN. VykhodtsevaN. JoleszF.A. Noninvasive MR imaging-guided focal opening of the blood-brain barrier in rabbits.Radiology2001220364064610.1148/radiol.220200180411526261
    [Google Scholar]
  63. McDannoldN. KingR.L. HynynenK. MRI monitoring of heating produced by ultrasound absorption in the skull: In vivo study in pigs.Magn. Reson. Med.20045151061106510.1002/mrm.2004315122691
    [Google Scholar]
  64. SheikovN. McDannoldN. VykhodtsevaN. JoleszF. HynynenK. Cellular mechanisms of the blood-brain barrier opening induced by ultrasound in presence of microbubbles.Ultrasound Med. Biol.200430797998910.1016/j.ultrasmedbio.2004.04.01015313330
    [Google Scholar]
  65. HynynenK. McDannoldN. SheikovN.A. JoleszF.A. VykhodtsevaN. Local and reversible blood–brain barrier disruption by noninvasive focused ultrasound at frequencies suitable for trans-skull sonications.Neuroimage2005241122010.1016/j.neuroimage.2004.06.04615588592
    [Google Scholar]
  66. McDannoldN. VykhodtsevaN. RaymondS. JoleszF.A. HynynenK. MRI-guided targeted blood-brain barrier disruption with focused ultrasound: Histological findings in rabbits.Ultrasound Med. Biol.200531111527153710.1016/j.ultrasmedbio.2005.07.01016286030
    [Google Scholar]
  67. HynynenK. McDannoldN. VykhodtsevaN. RaymondS. WeisslederR. JoleszF.A. SheikovN. Focal disruption of the blood–brain barrier due to 260-kHz ultrasound bursts: a method for molecular imaging and targeted drug delivery.J. Neurosurg.2006105344545410.3171/jns.2006.105.3.44516961141
    [Google Scholar]
  68. McDannoldN. VykhodtsevaN. HynynenK. Targeted disruption of the blood–brain barrier with focused ultrasound: association with cavitation activity.Phys. Med. Biol.200651479380710.1088/0031‑9155/51/4/00316467579
    [Google Scholar]
  69. MaekawaT. NairS.D. MohamedS.M. VeeranarayananS. RGD and transferrin nanoparticle composition.US10765637B22020
  70. HuS.H. SuY.L. Hybrid nanoparticles containing boron-doped graphene quantum dots and applications thereof.US10894020B22019
  71. LintaoC. ShengpingZ. RuijingL. HuaqingC. LanlanL. HuameiH. Brain tumor targeted bionic drug-loaded nanoparticle and preparation method and application thereof.CN110859826B2019
  72. PottierA. LevyL. MeyreM.E. Nanoparticles comprising metallic and hafnium oxide materials, preparation and uses thereof.CA2857260C2012
  73. HanesJ. WoodworthG.F. NanceE.A. Rapid diffusion of large polymeric nanoparticles in the mammalian brain.US10307372B22011
  74. ChenS.Y. HuS.H. LiuD.M. KuoK.T. Drug delivery nanodevice, its preparation method and uses thereof.US20070190160A12004
  75. BinglinW. LiouD. DelaroccaJ. Metal bisphosphonate nanoparticles for anti-cancer treatment and imaging and bone disorder treatment.JP6049712B22012
  76. Soon-hongY. Ik-chanK. Geun-sangO. Preparation of biocompatible polymeric drug delivery system with advanced tumor accumulation.KR101308746B12010
  77. ZhouJ. PatelT.R. PiepmeierJ.M. SaltzmanW.M. Highly penetrative nanocarriers for treatment of CNS disease.US10555911B22013
  78. Di PasquaA.J. BalkusK.J.Jr MunaweeraI.S. ShiY. Iron garnet nanoparticles for cancer radiotherapy and chemotherapy.US10195297B22017
  79. LevyL. MeyreM.E. PottierA. Nanoparticles comprising metallic and hafnium oxide materials, preparation and uses thereof.WO2013087920A12012
  80. RingeK. RadunzH.E. KubaschJ. Nanoparticles designed for drug delivery.WO2007088066A32007
  81. GengmeiX. JuanL. KuiC. YananC. Preparation of boron-containing carbon quantum dots and application of boron-containing carbon quantum dots in medicines for tumor diagnosis and boron neutron capture treatment.CN111204736B2021
  82. McCarthyS.P. KoroskenyiB. NicolosiR.J. Polysaccharide-containing block copolymer particles and uses thereof.US20110020227A12002
  83. SabelB.A. SchroederU. Drug targeting system, method of its preparation and its use.US7025991B22012
  84. Bethesda (MD): National Library of Medicine (US), National Center for Biotechnology Information.WO-2006107903-A22004
  85. ForniF. VandelliM.A. ConstantinoL. Drug delivery peptides for crossing blood-brain barrier.EP1819723A22006
  86. PatilR. HollerE. BlackK.L. LjubimovaJ.Y. Drug delivery of temozolomide for systemic based treatment of cancer.US201203285552017
  87. NicholsM. FoleyM. KeithC. PadvalM. ElliottP. Formulations, conjugates, and combinations of drugs for the treatment of neoplasms.WO2005020913A22004
  88. KuchiiwaS. KuchiiwaT. Agent for targeted drug delivery to cerebral neurons.WO2007086587A12011
  89. PanyamJ. ChavanpatilM.D. Lipid-derived nanoparticles for brain-targeted drug delivery.US20100076092A12007
  90. CatchpoleI.R. GoughG.W. PapanicolaouI. Encapsulation of biologically active agents.US20020025313A12011
  91. MicklusM. GreigN. RapoportS. Targeting of liposomes to the blood-brain barrier.US200200253132002
  92. DrummondD. KirpotinD. Liposomes useful for drug delivery to the brain.US9737528B22002
  93. BroadheadJ. Formulation containing a nucleotide analogue.US6130208A2000
  94. NelsonT. QuattroneA. AlkonD. Artificial low-density lipoprotein carriers for transport of substances across the blood-brain barrier.CA2507762A12007
  95. ForteT.M. NikanjamM. Synthetic LDL as targeted drug delivery vehicle.WO2007145659A12012
  96. ChangW.H. KaoC.H. LinC.I. WangS.J. Thermosensitive nanostructure for hyperthermia treatment.US20070154397A12007
  97. LabhasetwarV. JainT. Leslie-PeleckyD. Magnetic nanoparticle composition and methods for using the same.US20130006092A12012
  98. AkhtariM. EngelJ. Functionalized magnetic nanoparticles and methods of use thereof.AU2013203241A12016
  99. YangV.C. ChertokB. DavidA.E. Compositions and methods for targeting tumors.US20110054236A12011
  100. HainfeldJ.F. SlatkinD.N. Methods of enhancing radiation effects with metal nanoparticles.US7367934B22008
  101. PomperM. BhujwallaZ. ChenZ. Theranostic imaging agents and methods of use.WO2012135592A22012
  102. Catalan-FigueroaJ. Palma-FlorezS. AlvarezG. FritzH.F. JaraM.O. MoralesJ.O. Nanomedicine and nanotoxicology: the pros and cons for neurodegeneration and brain cancer.Nanomedicine201611217118710.2217/nnm.15.18926653284
    [Google Scholar]
  103. NeganovaM.E. AleksandrovaY.R. SukochevaO.A. KlochkovS.G. Benefits and limitations of nanomedicine treatment of brain cancers and age-dependent neurodegenerative disorders.Semin. Cancer Biol.202286Pt 280583310.1016/j.semcancer.2022.06.01135779712
    [Google Scholar]
/content/journals/ccdt/10.2174/0115680096286740240507092553
Loading
/content/journals/ccdt/10.2174/0115680096286740240507092553
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test