Skip to content
2000
Volume 14, Issue 1
  • ISSN: 2211-5447
  • E-ISSN: 2211-5455

Abstract

Introduction

A class of desirable hybrid motifs seen in a number of significant medications includes indoles and coumarins, known as 3-((1H-indol-3-yl)(phenyl)methyl)-4-hydroxy-2H-chromen-2-ones. However, the development of the indole coumarins synthesis technique has many benefits.

Methods

We wish to investigate the significance of 3-((1H-indol-3-yl)(phenyl)methyl)-4-hydroxy-2H-chromen-2-one's molecules and develop a productive method that employs a wider variety of benzaldehydes, 4-hydroxycoumarin, and indoles that react under mild conditions.

Results

As a catalyst, iodine has several advantages over traditional reagents, such as high yields and purity, no toxicity, broad functional group tolerance and simplicity of workup. Molecular iodine has been demonstrated to be a mild, cost-effective and efficient catalyst for the synthesis of 3-((1H-indol-3-yl)(phenyl)methyl)-4-hydroxy-2H-chromen-2-one molecular analogs.

Discussion

Polar protic solvents, such as ethanol, have been found to decrease the synthesis of indole coumarins, and the limited solubility of 4-hydroxycoumarin in nonpolar solvents explains why nonpolar solvents are unwilling to produce biscoumarins and bisindoles.

Conclusion

In conclusion, we discovered a sustainable and effective way to synthesize derivatives of hybrid indole coumarins. Because it employs iodine as a traditional catalyst, it has a clean reaction profile, fast reaction times, and is reasonably priced, the process is truly environmentally friendly.

Loading

Article metrics loading...

/content/journals/ccat/10.2174/0122115447381679250713102708
2025-07-29
2025-12-24
Loading full text...

Full text loading...

References

  1. ZhdankinV.V. Hypervalent Iodine Chemistry: Preparation, Structure, and Synthetic Applications of Polyvalent Iodine Compounds.In: Chichester.Chichester, UKWiley201310.1002/9781118341155
    [Google Scholar]
  2. TremblayJ.F. Earthquake rattles iodine market.Chem. Eng. News20118949222410.1021/cen‑v089n049.p022
    [Google Scholar]
  3. KaihoT. Iodine Chemistry and Applications.In: Chichester.Chichester, UKWiley201410.1002/9781118909911
    [Google Scholar]
  4. YusubovM.S. ZhdankinV.V. Iodine catalysis: A green alternative to transition metals in organic chemistry and technology.Resource-Efficient Technologies201511496710.1016/j.reffit.2015.06.001
    [Google Scholar]
  5. PathakT.P. GligorichK.M. WelmB.E. SigmanM.S. Synthesis and preliminary biological studies of 3-substituted indoles accessed by a palladium-catalyzed enantioselective alkene difunctionalization reaction.J. Am. Chem. Soc.2010132237870787110.1021/ja103472a 20486685
    [Google Scholar]
  6. NadafA.N. ShivashankarK. Visible Light-induced synthesis of biscoumarin analogs under catalyst-free conditions.Synth. Commun.20185561375138110.1080/00397911.2018.1426101
    [Google Scholar]
  7. AbdelhamidA. GomhaS. AbdelriheemN. KandeelS. Synthesis of new 3-heteroarylindoles as potential anticancer agents.Molecules201621792910.3390/molecules21070929 27438822
    [Google Scholar]
  8. XueL. PestkaJ. LiM. FirestoneG. BjeldanesL. 3,3′-Diindolylmethane stimulates murine immune function in vitro and in vivo.J. Nutr. Biochem.200819533634410.1016/j.jnutbio.2007.05.004 17707631
    [Google Scholar]
  9. WatsujiT. YamadaS. YamabeT. WatanabeY. KatoT. SaitoT. UedaK. BeppuT. Identification of indole derivatives as self-growth inhibitors of Symbiobacterium thermophilum, a unique bacterium whose growth depends on coculture with a Bacillus sp.Appl. Environ. Microbiol.200773196159616510.1128/AEM.02835‑06 17693561
    [Google Scholar]
  10. BorgneM.L. MarchandP. SeillerD.B. RobertJ.M. BautG.L. HartmannR.W. PalzerM. Synthesis and biological evaluation of 3-(azolylmethyl)-1H-indoles and 3-(alpha-azolylbenzyl)-1H-indoles as selective aromatase inhibitors.J. Enzyme Inhib. Med. Chem.2007225667676October10.1080/14756360701652658
    [Google Scholar]
  11. AppendinoG. OttinoM. MarquezN. BianchiF. GianaA. BalleroM. SternerO. FiebichB.L. MunozE. Arzanol, an anti-inflammatory and anti-HIV-1 phloroglucinol α-pyrone from Helichrysum italicum ssp. microphyllum.J. Nat. Prod.200770460861210.1021/np060581r 17315926
    [Google Scholar]
  12. AnsellJ. HirshJ. HylekE. JacobsonA. CrowtherM. PalaretiG. G. Pharmacology and management of the vitamin K antagonists: American College of Chest Physicians Evidence-Based Clinical Practice Guidelines.Chest8th Edition2008133(6)160S198S10.1378/chest.08‑0670
    [Google Scholar]
  13. ContractorR. SamudioI.J. EstrovZ. HarrisD. McCubreyJ.A. SafeS.H. AndreeffM. KonoplevaM. A novel ring-substituted diindolylmethane,1,1-bis[3′-(5-methoxyindolyl)]-1-(p-t-butylphenyl) methane, inhibits extracellular signal-regulated kinase activation and induces apoptosis in acute myelogenous leukemia.Cancer Res.20056572890289810.1158/0008‑5472.CAN‑04‑3781 15805291
    [Google Scholar]
  14. DengJ. SanchezT. NeamatiN. BriggsJ.M. Dynamic pharmacophore model optimization: identification of novel HIV-1 integrase inhibitors.J. Med. Chem.20064951684169210.1021/jm0510629 16509584
    [Google Scholar]
  15. ZavršnikD. MuratovićS. MakucD. PlavecJ. CetinaM. NaglA. ClercqE.D. BalzariniJ. MintasM. Benzylidene-bis-(4-hydroxycoumarin) and benzopyrano-coumarin derivatives: synthesis, 1H/13 C-NMR conformational and X-ray crystal structure studies and in vitro antiviral activity evaluations.Molecules20111676023604010.3390/molecules16076023 21772234
    [Google Scholar]
  16. MousavizadehF. HekmatshoarR. BeheshtihaS.Y.S. RahnamafarR. Highly selective one-pot coupling reaction of indole, aromatic aldehydes, and 4-hydroxycoumarin using copper octoate as a homogeneous catalyst.Synth. Commun.201444101483149110.1080/00397911.2013.862723
    [Google Scholar]
  17. BrahmachariG. DasS. l-Proline catalyzed multicomponent one-pot synthesis of gem-diheteroarylmethane derivatives using facile grinding operation under solvent-free conditions at room temperature.RSC Advances2014415738010.1039/c3ra44568b
    [Google Scholar]
  18. RameshK.B. ManjunathaA.S. SrinivasM. PashaM.A. Eco-friendly synthesis of indole-4-hydroxy-chromen-2-ones using green zinc oxide nanocatalyst and its assessment of anti-cancer studies against A549 cells.Inorg. Chem. Commun.202416911301210.1016/j.inoche.2024.113012
    [Google Scholar]
  19. PodderS. ChoudhuryJ. RoyU.K. RoyS. Dual-reagent catalysis within Ir-Sn domain: highly selective alkylation of arenes and heteroarenes with aromatic aldehydes.J. Org. Chem.20077283100310310.1021/jo062633n 17371074
    [Google Scholar]
  20. KumarS. KumarV. ChimniS.S. Novel indium-mediated ternary reactions between indole-3-carboxaldehydes–allyl bromide–enamines: facile synthesis of bisindolyl- and indolyl-heterocyclic alkanes.Tetrahedron Lett.200344102101210410.1016/S0040‑4039(03)00168‑0
    [Google Scholar]
  21. ZengX.F. JiS.J. WangS.Y. Novel method for synthesis of unsymmetrical bis(indolyl)alkanes catalyzed by ceric ammonium nitrate (CAN) under ultrasonic irradiation.Tetrahedron20056143102351024110.1016/j.tet.2005.08.040
    [Google Scholar]
  22. KaiserH.M. LoW.F. RiahiA.M. SpannenbergA. BellerM. TseM.K. New synthetic protocols for the preparation of unsymmetrical bisindoles.Org. Lett.20068255761576410.1021/ol062338p 17134266
    [Google Scholar]
  23. HeQ.L. SunF.L. ZhengX.J. YouS.L. Brønsted acid–catalyzed synthesis of unsymmetrical arylbis(3-indolyl)methanes.Synlett200911111114
    [Google Scholar]
  24. EsquiviasJ. Gómez ArrayásR. CarreteroJ.C. A copper(II)-catalyzed aza-Friedel-Crafts reaction of N-(2-pyridyl)sulfonyl aldimines: synthesis of unsymmetrical diaryl amines and triaryl methanes.Angew. Chem. Int. Ed.200645462963310.1002/anie.200503305 16345106
    [Google Scholar]
  25. RaoP. KondaS. IqbalJ. OrugantiS. InCl3 catalyzed three-component synthesis of α-benzylamino coumarins and diketones.Tetrahedron Lett.201253395314531710.1016/j.tetlet.2012.07.098
    [Google Scholar]
  26. QuY. KeF. ZhouL. LiZ. XiangH. WuD. ZhouX. Synthesis of 3-indole derivatives by copper sulfonato Salen catalyzed three-component reactions in water.Chem. Commun. (Camb.)201147133912391410.1039/c0cc05695b 21340052
    [Google Scholar]
  27. WangM.Z. ZhouC.Y. WongM.K. CheC.M. Ruthenium-catalyzed alkylation of indoles with tertiary amines by oxidation of a sp3 C-H bond and Lewis acid catalysis.Chemistry201016195723573510.1002/chem.200902387 20391566
    [Google Scholar]
  28. NadafA.N. ShivashankarK. CFL light promoted one-pot synthesis of pyrano[3,2- c]chromen-5(4 H)-ones.Synth. Commun.201848780981510.1080/00397911.2018.1426101
    [Google Scholar]
  29. JagadishbabuN. ShivashankarK. Pseudo Multicomponent Reaction: Synthesis of Fused Pyrano Biscoumarin Analogs from 1,2‐diols.J. Heterocycl. Chem.20175421543154910.1002/jhet.2742
    [Google Scholar]
  30. JagadishbabuN. ShivashankarK. One pot synthesis of acridine analogues from 1,2-diols as key reagents.RSC Advances20155115952409524610.1039/C5RA19595K
    [Google Scholar]
  31. JagadishbabuN. ShivashankarK. One-Pot Synthesis of 2,4,5-Triphenyl Imidazoles from 1,2-Diols as Key Reagents.J. Chin. Chem. Soc. (Taipei)201764547448010.1002/jccs.201600746
    [Google Scholar]
  32. JagadishbabuN. ShivashankarK. Biginelli Reaction of Vicinal Diols: A New Route for One-Pot Synthesis of 3,4-Dihydropyrimidin-2(1H)-One Derivatives.Lett. Org. Chem.201714533033610.2174/1570178614666170310123511
    [Google Scholar]
  33. JagadishbabuN. ShivashankarK.A. Facile, Efficient and Convenient One Pot Synthesis of Benzoxazoles from 1,2-diols and 2-aminophenols with Pb(OAc)4 Reagent.Nat. Prod. J.20188320120610.2174/2210315508666180101161803
    [Google Scholar]
  34. JagadishbabuN. ShivashankarK. RasalV.P. EluruJ.R. KoyyeE. Synthesis and cytotoxic studies of a new series of pyridinoxymethylcoumarins.Int. J. Chem. Pharm. Sci.201347278
    [Google Scholar]
  35. NadafA.N. ShivashankarK. Facile Synthesis of Imidazo[1,2-a]pyridines via LED Light Induced Reaction between 2-Aminopyridines and Acetophenones.Asian J. Chem.2024371485210.14233/ajchem.2025.32798
    [Google Scholar]
  36. NadafA.N. ShivashankarK. visible light assisted hantzsch reaction: synthesis of polycyclic dihydropyridines.Lett. Org. Chem.201916867668210.2174/1570178615666181107095151
    [Google Scholar]
  37. Noorahmadsab NadafA. ShivashankarK. Led light enhanced synthesis of 1,2-dihydro-1-phenylnaphtho[1,2-E] [1,3]oxazine-3-one derivatives.Rasayan J. Chem.202518151752210.31788/RJC.2025.1819122
    [Google Scholar]
  38. ShamalaD. ShivashankarK. Chandra; Mahendra, M. Synthesis of N1 and N2 coumarin substituted 1,2,3-triazole isomers via click chemistry approach.Synth. Commun.201646543344110.1080/00397911.2016.1140785
    [Google Scholar]
  39. ShamalaD. ShivashankarK. Synthesis of pyridazinones via molecular-iodine-mediated cleavage of 4-bromomethylcoumarin precursors.Synth. Commun.201646211735174010.1080/00397911.2016.1223310
    [Google Scholar]
  40. ShamalaD. ShivashankarK. Synthesis of 4-phenyloxazinones via DBU-catalyzed cleavage of 4-bromomethylcoumarins.Synth. Commun.201747210511010.1080/00397911.2016.1252045
    [Google Scholar]
  41. NiriD.R. SayahiM.H. BehrouzS. MoazzamA. MojtabaviS. FaramarziM. LarijaniB. RastegarH. MaryamM.K. MahdaviM. Design, synthesis, in vitro, and in silico biological evaluations of coumarin-indole hybrids as new anti-α-glucosidase agents.BMC Chem.20028416 36329490
    [Google Scholar]
  42. EmadiM. Mosavizadeh-MarvestF. AsadipourA. PourshojaeiY. HosseiniS. MojtabaviS. FaramarziM.A. LarijaniB. Mohammadi-KhanaposhtaniM. MahdaviM. Indole-carbohydrazide linked phenoxy-1,2,3-triazole-N-phenylacetamide derivatives as potent α-glucosidase inhibitors: design, synthesis, in vitro α-glucosidase inhibition, and computational studies.BMC Chem.20231715610.1186/s13065‑023‑00971‑w 37316931
    [Google Scholar]
  43. SharmaA. NarangA. KumarN. RanaR. Megha; Pooja; Dhir, M.; Gulati, H.K.; Jyoti; Khanna, A.; Singh, J.V.; Kaur, S.; Bedi, P.M.S. CADD based designing and biological evaluation of novel triazole based thiazolidinedione coumarin hybrids as antidiabetic agent.Sci. Rep.2025151430210.1038/s41598‑025‑88944‑y 39905269
    [Google Scholar]
  44. GanjehM.S. MazlomifarA. ShahvelaytiA.S. MoghaddamS.K. Coumarin linked to 2-phenylbenzimidazole derivatives as potent α-glucosidase inhibitors.Sci. Rep.2024141740810.1038/s41598‑024‑57673‑z 38548784
    [Google Scholar]
  45. ZhuX. ZhuJ. XuZ. LiuX. Spermacoce alata Aubl. Essential Oil: chemical composition, in vitro antioxidant activity, and inhibitory effects of acetylcholinesterase, α-glucosidase and β-lactamase.Molecules20242912286910.3390/molecules29122869 38930934
    [Google Scholar]
  46. LiS.R. ZengC.M. PengX.M. ChenJ.P. LiS. ZhouC.H. Benzopyrone-mediated quinolones as potential multitargeting antibacterial agents.Eur. J. Med. Chem.202326211587810.1016/j.ejmech.2023.115878 37866337
    [Google Scholar]
  47. PravinN.J. KavalapureR.S. AlegaonS.G. GhargeS. RanadeS.D. Indoles as promising Therapeutics: A review of recent drug discovery efforts.Bioorg. Chem.202515410809210.1016/j.bioorg.2024.108092 39740309
    [Google Scholar]
  48. ShamalaD. ShivashankarK. Chandra; Mahendra, M. Zinc chloride catalyzed multicomponent synthesis of pyrazolopyridocoumarin scaffolds.J. Chem. Sci.201913142910.1007/s12039‑019‑1610‑0
    [Google Scholar]
  49. PuttarajuK.B. ShivashankarK. Iodine-catalyzed three component reaction: a novel synthesis of 2-aryl-imidazo[1,2-a]pyridine scaffolds.RSC Advances2013343208832089010.1039/c3ra43407a
    [Google Scholar]
  50. PuttarajuK.B. ShivashankarK. Chandra; Mahendra, M.; Rasal, V.P.; Venkata Vivek, P.N.; Rai, K.; Chanu, M.B. Microwave assisted synthesis of dihydrobenzo[4,5]imidazo[1,2-a]pyrimidin-4-ones; synthesis, in vitro antimicrobial and anticancer activities of novel coumarin substituted dihydrobenzo[4,5]imidazo[1,2-a]pyrimidin-4-ones.Eur. J. Med. Chem.20136931632210.1016/j.ejmech.2013.07.015 24056147
    [Google Scholar]
  51. BasanagoudaM. ShivashankarK. KulkarniM.V. RasalV.P. PatelH. MuthaS.S. MohiteA.A. Synthesis and antimicrobial studies on novel sulfonamides containing 4-azidomethyl coumarin.Eur. J. Med. Chem.20104531151115710.1016/j.ejmech.2009.12.022 20047777
    [Google Scholar]
  52. RenukaC.G. ShivashankarK. BoregowdaP. BelladS.S. MuregendrappaM.V. NadafY.F. An experimental and computational study of 2-(3-Oxo-3H-benzo [f] chromen-1-ylmethoxy)-benzoic acid methyl ester.J. Solution Chem.20174681535155510.1007/s10953‑017‑0661‑4
    [Google Scholar]
  53. ShastriL. KalegowdaS. KulkarniM. The synthesis of pyrrole bis-coumarins, new structures for fluorescent probes.Tetrahedron Lett.200748407215721710.1016/j.tetlet.2007.07.189
    [Google Scholar]
  54. Anjan KumarG.C. BodkeY.D. ManjunathaB. SatyanarayanN.D. NippuB.N. JoyM.N. Novel synthesis of 3-(Phenyl) (ethylamino) methyl)-4-hydroxy-2H-chromen-2-one derivatives using biogenic ZnO nanoparticles and their applications.Chimica Techno Acta.2022912022910410.15826/chimtech.2022.9.1.04
    [Google Scholar]
  55. MishraD.R. PandaB.S. NayakS. RautaN.K. MohapatraS. SahooC.R. PadhyR.N. One-pot multicomponent synthesis of 4-((2H-chromen-3-yl)/(2-phenyl-2H-chromen-3-yl)methylene)-3-methylisoxazol-5(4H)-ones and evaluation of their antibacterial activity.Tetrahedron202212413301510.1016/j.tet.2022.133015
    [Google Scholar]
  56. Raju DatlaV.R.K. JhaA. Eco-friendly Synthesis of Indole Conjugated Chromeno[d]Pyrimidines as Anti-cancer Agents and their Molecular Modelling Studies.Curr. Green Chem.202411322122810.2174/0122133461267868231018100148
    [Google Scholar]
  57. YinC.L. QinR.Z. QinH.L. One-Pot Three-Component Synthesis of Indolyl-4 H -chromene-3-sulfonyl Fluoride: A Class of Important Pharmacophore.J. Org. Chem.20248953618362810.1021/acs.joc.3c02706 38358945
    [Google Scholar]
  58. ZeydiM.M. KalantarianS.J. KazeminejadZ. Overview on developed synthesis procedures of coumarin heterocycles.J. Indian Chem. Soc.202017123031309410.1007/s13738‑020‑01984‑1
    [Google Scholar]
  59. BrahmachariG. BanerjeeB. Facile and One-Pot Access of 3,3-Bis(indol-3-yl)indolin-2-ones and 2,2-Bis(indol-3-yl)acenaphthylen-1(2 H )-one Derivatives via an Eco-Friendly Pseudo-Multicomponent Reaction at Room Temperature Using Sulfamic Acid as an Organo-Catalyst.ACS Sustainable Chemistry and Engineering20142122802281210.1021/sc500575h
    [Google Scholar]
  60. ShivashankarK. KulkarniM.V. ShastriL.A. RasalV.P. RajendraS.V. The synthesis and biological evaluation of regioisomeric benzothiazolyl coumarins.Phosphorus Sulfur Silicon Relat. Elem.200618192187220010.1080/10426500600614550
    [Google Scholar]
  61. ShivashankarK. ShastriL.A. KulkarniM.V. RasalV.P. RajendraS.V. Synthetic and biological studies on 4-aryloxymethyl coumarinyl thiazolidinones.Phosphorus Sulfur Silicon Relat. Elem.20071831566810.1080/10426500701555801
    [Google Scholar]
  62. BeerappaM. ShivashankarK. Four component synthesis of highly functionalized pyrano[2,3- c]pyrazoles from benzyl halides.Synth. Commun.201848214615410.1080/00397911.2017.1386788
    [Google Scholar]
  63. BeerappaM. ShivashankarK. Multicomponent reaction of benzyl halides: Synthesis of [1,2,4]triazolo/benzimidazolo quinazolinones.Synth. Commun.201646542143210.1080/00397911.2016.1140784
    [Google Scholar]
  64. BeerappaM. ShivashankarK. One pot synthesis of pyran-based heterocycles from benzyl halides as key reagents.RSC Advances2015538303643037110.1039/C4RA17219A
    [Google Scholar]
  65. BeerappaM. ShivashankarK. One‐pot Three‐component Synthesis of Furan‐based Heterocycles from Benzyl Halides.J. Heterocycl. Chem.20175442197220510.1002/jhet.2806
    [Google Scholar]
  66. JayashreeS. ShivashankarK. Montmorillonite K-10 catalyzed Mannich reaction: Synthesis of aminonaphthoquinone derivatives from Lawsone.Synth. Commun.201848141805181510.1080/00397911.2018.1466334
    [Google Scholar]
  67. ChackoP. ShivashankarK.I. 2 -catalyzed one-pot synthesis of benzofuro/thieno[2,3- b]pyrrole motifs.Tetrahedron201874131520152610.1016/j.tet.2018.02.013
    [Google Scholar]
  68. ChackoP. ShivashankarK. Nano structured spinel Co3O4 -catalyzed four component reaction: A novel synthesis of Ugi adducts from aryl alcohols as a key reagent.Chin. Chem. Lett.20172871619162410.1016/j.cclet.2017.04.015
    [Google Scholar]
  69. ChackoP. ShivashankarK. Montmorillonite K10-catalyzed synthesis of N -fused imino-1,2,4-thiadiazolo isoquinoline derivatives.Synth. Commun.201848111363137610.1080/00397911.2018.1448419
    [Google Scholar]
  70. ChackoP. ShivashankarK. Synthesis of aminomethylphenol derivatives via magnetic nano catalyzed one pot Petasis borono-Mannich reaction.J. Chem. Sci.201813011110.1007/s12039‑018‑1560‑y
    [Google Scholar]
  71. BeerappaM. ShivashankarK. Synthesis of 4,6-diarylpyrimidin-2(1 H)-one derivatives from benzyl halides and (1-bromoethyl)benzene under solvent-free conditions.Synth. Commun.201848172150215810.1080/00397911.2018.1479757
    [Google Scholar]
  72. ChackoP. ShivashankarK. Nano Structured Bi 2 O 3 Catalyzed Synthesis of 3-Phenyl-[1,2,4]Triazolo[3,4- a]Phthalazines and Their Cross-coupling Reaction Under Aqueous Conditions.Polycycl. Aromat. Compd.202141236838610.1080/10406638.2019.1585375
    [Google Scholar]
  73. ImrankhanM. ShivashankarK. Iodine catalyzed one-pot four component synthesis of coumarinyl phosphoramidates via sequential addition of reactants.New J. Chem.20204443185731857810.1039/D0NJ04445H
    [Google Scholar]
  74. JayashreeS. ShivashankarK. Sulfated Copper Oxide Catalyzed One-Pot Synthesis of N- Fused Benzimidazolo/Benzothiazolo Pyrimidines.Polycycl. Aromat. Compd.202141485887010.1080/10406638.2019.1625065
    [Google Scholar]
  75. BreugstM. von der HeidenD. Mechanisms in Iodine Catalysis.Chemistry201824379187919910.1002/chem.201706136 29469220
    [Google Scholar]
/content/journals/ccat/10.2174/0122115447381679250713102708
Loading
/content/journals/ccat/10.2174/0122115447381679250713102708
Loading

Data & Media loading...

Supplements

Supplementary material is available on the publisher’s website along with the published article.

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test