Skip to content
2000
Volume 14, Issue 1
  • ISSN: 2211-5447
  • E-ISSN: 2211-5455

Abstract

Introduction

Many important drugs contain a class of preferred motifs called bisindoles. The development of synthetic approaches for bis(indolyl)methanes (BIMs) offers numerous advantages. However, most methods for synthesizing BIM derivatives require metal catalysts.

Aim

This study aimed to synthesize bisindoles oxidative cleavage of 1,2-diols using periodic. acid.

Methods

For the synthesis of bisindoles oxidative cleavage of 1,2-diols, periodic acid was used. It is a gentle, reasonably priced, and effective testing agent for the synthesis of bisindole analogs from a range of 1,2-diols. Aldehydes were produced by the oxidation of 1,2-diols by periodic acid, and they reacted with indoles to generate a range of bisindoles. The HIO generated from periodic acid accelerated the reaction. The structures of the compounds were confirmed by NMR (1H and 13C), high-resolution mass spectrometry (HRMS), and elemental analysis using a CHNSO analyzer.

Results and Discussion

A variety of BIMs derivatives were produced by oxidatively breaking down 1,2-diols using periodic acid. The appealing aspects of this procedure include its high yield, rapid response time, and catalyst-free conditions.

Conclusion

In this study, a productive and sustainable method for creating BIMs derivatives is presented. The procedure is genuinely green since it uses periodic acid as an oxidizing agent rather than a conventional catalyst, has a clean reaction profile, quick reaction times, and is inexpensive.

Loading

Article metrics loading...

/content/journals/ccat/10.2174/0122115447369647250526115445
2025-06-19
2025-12-19
Loading full text...

Full text loading...

References

  1. KulikA. JanzA. PohlM.M. MartinA. KöckritzA. Gold‐catalyzed synthesis of dicarboxylic and monocarboxylic acids.Eur. J. Lipid Sci. Technol.2012114111327133210.1002/ejlt.201200027
    [Google Scholar]
  2. WongA.W.H. ShingT.K.M. Glycol cleavage reactions, comprehensive organic synthesis.Oxidation2nd ed; Elsevier201480181710.1016/C2011‑1‑05331‑6
    [Google Scholar]
  3. KulikA. MartinA. PohlM.M. FischerC. KöckritzA. Insights into gold-catalyzed synthesis of azelaic acid.Green Chem.20141641799180610.1039/C3GC41822G
    [Google Scholar]
  4. LuM. PengL. XieQ. NieY. LiuX. LuX. JiJ. Oxidative cleavage of methyl 9,10-epoxystearate over WO3/MCM-41 for methyl 9-oxononanoate production.Eur. J. Lipid Sci. Technol.20181207170041510.1002/ejlt.201700415
    [Google Scholar]
  5. LuM. PengL. XieQ. YangN. JinH. WuZ. NieY. LiuX. LuX. JiJ. Solvent-free oxidative cleavage of epoxy fatty acid methyl esters by a “release and capture” catalytic system.Green Chem.201921356056610.1039/C8GC03201G
    [Google Scholar]
  6. GartiN. AvniE. The oxidation of oleic acid by permanganate in oil in water emulsion.Colloids Surf.198241334110.1016/0166‑6622(82)80087‑5
    [Google Scholar]
  7. HenryJ.R. WeinrebS.M. A convenient, mild method for oxidative cleavage of alkenes with Jones reagent/osmium tetraoxide.J. Org. Chem.19935817474510.1021/jo00069a047
    [Google Scholar]
  8. TravisB.R. NarayanR.S. BorhanB. Osmium tetroxide-promoted catalytic oxidative cleavage of olefins: An organometallic ozonolysis.J. Am. Chem. Soc.2002124153824382510.1021/ja017295g 11942807
    [Google Scholar]
  9. SantacesariaE. SorrentinoA. RainoneF. Di SerioM. SperanzaF. Oxidative cleavage of the double bond of monoenic fatty chains in two steps: A new promising route to azelaic acid and other industrial products.Ind. Eng. Chem. Res.20003982766277110.1021/ie990920u
    [Google Scholar]
  10. SpannringP. PratI. CostasM. LutzM. BruijnincxP.C.A. WeckhuysenB.M. Klein GebbinkR.J.M. Fe(6-Me-PyTACN)-catalyzed, one-pot oxidative cleavage of methyl oleate and oleic acid into carboxylic acids with H2O2 and NaIO4.Catal. Sci. Technol.20144370871610.1039/c3cy00851g
    [Google Scholar]
  11. BenessereV. CucciolitoM.E. De SantisA. Di SerioM. EspositoR. RuffoF. TurcoR. Sustainable process for production of azelaic acid through oxidative cleavage of oleic acid.J. Am. Oil Chem. Soc.20159211-121701170710.1007/s11746‑015‑2727‑z
    [Google Scholar]
  12. DeruerE. DuguetN. LemaireM. Thiazolylidene-catalyzed cleavage of methyl oleate-derived α-hydroxy ketone to the corresponding free aldehydes.ChemSusChem20158152481248610.1002/cssc.201500462 26120006
    [Google Scholar]
  13. GuicheretB. BertholoY. BlachP. RaoulY. MétayE. LemaireM. A two-step oxidative cleavage of 1,2-diol fatty esters into acids or nitriles by a dehydrogenation-oxidative cleavage sequence.ChemSusChem201811193431343710.1002/cssc.201801640 30058760
    [Google Scholar]
  14. ZhouZ. LiuM. LvL. LiC.J. Silver(I)-Catalyzed widely applicable aerobic 1,2-diol oxidative cleavage.Angew. Chem. Int. Ed.201857102616262010.1002/anie.201711531 29336100
    [Google Scholar]
  15. ObaraN. HirasawaS. TamuraM. NakagawaY. TomishigeK. Oxidative cleavage of vicinal diols with the combination of platinum and vanadium catalysts and molecular oxygen.ChemCatChem2016891732173810.1002/cctc.201600153
    [Google Scholar]
  16. EscandeV. LamC.H. CoishP. AnastasP.T. Heterogeneous sodium-manganese oxide catalyzed aerobic oxidative cleavage of 1,2-diols.Angew. Chem. Int. Ed.201756329561956510.1002/anie.201705934 28621829
    [Google Scholar]
  17. LuoH. WangL. ShangS. NiuJ. GaoS. Aerobic oxidative cleavage of 1,2-diols catalyzed by atomic-scale cobalt-based heterogeneous catalyst.Commun. Chem.2019211710.1038/s42004‑019‑0116‑5
    [Google Scholar]
  18. JagadishbabuN. ShivashankarK. Pseudo Multicomponent Reaction: Synthesis of Fused Pyrano Biscoumarin Analogs from 1,2‐diols.J. Heterocycl. Chem.20175421543154910.1002/jhet.2742
    [Google Scholar]
  19. JagadishbabuN. ShivashankarK. One pot synthesis of acridine analogues from 1,2-diols as key reagents.RSC Advances20155115952409524610.1039/C5RA19595K
    [Google Scholar]
  20. JagadishbabuN. ShivashankarK. One-pot synthesis of 2,4,5-triphenyl imidazoles from 1,2-diols as key reagents.J. Chin. Chem. Soc. (Taipei)201764547448010.1002/jccs.201600746
    [Google Scholar]
  21. JagadishbabuN. ShivashankarK. Biginelli Reaction of Vicinal Diols: A New Route for One-Pot Synthesis of 3,4-Dihydropyrimidin-2(1H)-One Derivatives.Lett. Org. Chem.201714533033610.2174/1570178614666170310123511
    [Google Scholar]
  22. JagadishbabuN. ShivashankarK. A facile, efficient and convenient one pot synthesis of benzoxazoles from 1,2-diols and 2-aminophenols with Pb(OAc)4 reagent.Nat. Prod. J.20188320120610.2174/2210315508666180101161803
    [Google Scholar]
  23. ShibuyaM. ShibutaT. FukudaH. IwabuchiY. Nitroxyl radical/PhI(OAc)2: one-pot oxidative cleavage of vicinal diols to (di)carboxylic acids.Org. Lett.201214195010501310.1021/ol3021435 22991946
    [Google Scholar]
  24. DoradoV. HerreríasC.I. FraileJ.M. Simple metal-free oxidative cleavage of 1,2-diols.Tetrahedron202313913345010.1016/j.tet.2023.133450
    [Google Scholar]
  25. ZhangM.Z. ChenQ. YangG.F. A review on recent developments of indole-containing antiviral agents.Eur. J. Med. Chem.20158942144110.1016/j.ejmech.2014.10.065 25462257
    [Google Scholar]
  26. ScottL.J. PerryC.M. Delavirdine.Drugs20006061411144410.2165/00003495‑200060060‑00013 11152019
    [Google Scholar]
  27. BlaisingJ. PolyakS.J. PécheurE.I. Arbidol as a broad-spectrum antiviral: An update.Antiviral Res.2014107849410.1016/j.antiviral.2014.04.006 24769245
    [Google Scholar]
  28. YangC.G. HuangH. JiangB. Progress in studies of novel marine bis(indole) alkaloids.Curr. Org. Chem.20048171691172010.2174/1385272043369656
    [Google Scholar]
  29. SinghA. KaurG. BanerjeeB. Recent developments on the synthesis of biologically significant bis/tris(indolyl)methanes under various reaction conditions: A review.Curr. Org. Chem.202024658362110.2174/1385272824666200228092752
    [Google Scholar]
  30. BiswasN. SharmaR. SrimaniD. Ruthenium pincer complex catalyzed selective synthesis of C‐3 alkylated indoles and bisindolylmethanes directly from indoles and alcohols.Adv. Synth. Catal.2020362142902291010.1002/adsc.202000326
    [Google Scholar]
  31. SaehlimN. KasemsukT. SirionU. SaeengR. One-Pot Approach for the Synthesis of Bis-indole-1,4-disubstituted-1,2,3-triazoles.J. Org. Chem.20188321132331324210.1021/acs.joc.8b02056 30298733
    [Google Scholar]
  32. AziziN. GholibeghloE. ManocheriZ. Green procedure for the synthesis of bis(indolyl)methanes in water.Sci. Iran.201219357457810.1016/j.scient.2011.11.043
    [Google Scholar]
  33. RaniM. UtrejaD. DhillonN.K. KaurK. A convenient one-pot synthesis of bis(indolyl)methane derivatives and evaluation of their nematicidal activity against the root knot nematode meloidogyne incognita.Russ. J. Org. Chem.202258101527153310.1134/S107042802210021928155278
    [Google Scholar]
  34. LeeS.O. ChoiJ. KookS. LeeS.Y. Lewis acid-catalyzed double addition of indoles to ketones: synthesis of bis(indolyl)methanes with all-carbon quaternary centers.Org. Biomol. Chem.202018449060906410.1039/D0OB01916J 33124627
    [Google Scholar]
  35. HeY.Y. SunX.X. LiG.H. MeiG.J. ShiF. Substrate-controlled regioselective arylations of 2-indolylmethanols with indoles: Synthesis of bis(indolyl)methane and 3,3′-bisindole derivatives.J. Org. Chem.20178252462247110.1021/acs.joc.6b02850
    [Google Scholar]
  36. ChenX.B. XiongS.L. XieZ.X. WangY.C. LiuW. Three-component one-pot synthesis of highly functionalized bis-indole derivatives.ACS Omega201947118321183710.1021/acsomega.9b01159 31460292
    [Google Scholar]
  37. GantaR. MadhuC. HymavathiA. RaviK.M. VenkateswaraR.B. Synthesis of pyrazolyl methylene bisindoles by using recyclable nano copper ferrite catalyst and their anti bacterial studies.Orient. J. Chem.20163252673268310.13005/ojc/320540
    [Google Scholar]
  38. AlmshantafM. KesheM. MerzaJ. KaramA. Synthesis of bis(indolyl) methane and some devices using hydrogenous catalysts (acidic) in ecofriendly media.Chem. Mater. Res.201689
    [Google Scholar]
  39. RahimiS. AmrollahiM.A. KheilkordiZ. An efficient ultrasound-promoted method for the synthesis of bis(indole) derivatives.C. R. Chim.201518555856310.1016/j.crci.2014.10.005
    [Google Scholar]
  40. HalawaA.H. BedairA.H. El-AgrodyA.M. EliwaE.M. FreseM. SewaldN. ShaabanM. Synthesis and biological activities of new bis-indole derivatives via microwave irradiation.Z. Naturforsch. B. J. Chem. Sci.201772963964610.1515/znb‑2017‑0039
    [Google Scholar]
  41. TokushigeK. AbeT. On demand synthesis of C3−N1′ bisindoles by a formal umpolung strategy: First total synthesis of (±)‐rivularin A.Chemistry20243011e20230296310.1002/chem.202302963 37988219
    [Google Scholar]
  42. KaduV.D. PatilA.A. ShendageP.R. Oxone-promoted synthesis of bis(indolyl)methanes from arylmethylamines and indoles.J. Mol. Struct.2022126713350210.1016/j.molstruc.2022.133502
    [Google Scholar]
  43. AzevedoP. BehenckL. ForeroJ. MunozJ. CavalhoE. JuniorJ. Silva. A sustainable approach to bis-indole synthesis using propylene carbonate as an eco-friendly solvent.Curr. Org. Synth.201411460561110.2174/1570179411666140115225758
    [Google Scholar]
  44. NadafA.N. ShivashankarK. CFL light promoted one-pot synthesis of pyrano[3,2- c]chromen-5(4 H) -ones.Synth. Commun.201848780981510.1080/00397911.2018.1426101
    [Google Scholar]
  45. NadafA.N. ShivashankarK. Visible light‐induced synthesis of biscoumarin analogs under catalyst‐free conditions.J. Heterocycl. Chem.20185561375138110.1002/jhet.3171
    [Google Scholar]
  46. NadafA.N. ShivashankarK. Facile synthesis of imidazo[1,2-a]pyridines via LED light induced reaction between 2-aminopyridines and acetophenones.Asian J. Chem.2024371485210.14233/ajchem.2025.32798
    [Google Scholar]
  47. NadafA.N. ShivashankarK. Visible light assisted hantzsch reaction: Synthesis of polycyclic dihydropyridines.Lett. Org. Chem.201916867668210.2174/1570178615666181107095151
    [Google Scholar]
  48. JagadishbabuN. ShivashankarK. RasalV.P. EluruJ.R. KoyyeE. Synthesis and cytotoxic studies of a new series of pyridinoxymethylcoumarins.Int. J. Chem. Pharm. Sci.201347278
    [Google Scholar]
  49. ShamalaD. ShivashankarK. Chandra; Mahendra, M. Synthesis of N 1 and N 2 coumarin substituted 1,2,3-triazole isomers via click chemistry approach.Synth. Commun.201646543344110.1080/00397911.2016.1140785
    [Google Scholar]
  50. ShamalaD. ShivashankarK. Synthesis of pyridazinones via molecular-iodine-mediated cleavage of 4-bromomethylcoumarin precursors.Synth. Commun.201646211735174010.1080/00397911.2016.1223310
    [Google Scholar]
  51. ShamalaD. ShivashankarK. Synthesis of 4-phenyloxazinones via DBU-catalyzed cleavage of 4-bromomethylcoumarins.Synth. Commun.201747210511010.1080/00397911.2016.1252045
    [Google Scholar]
  52. ShamalaD. ShivashankarK. Chandra; Mahendra, M. Zinc chloride catalyzed multicomponent synthesis of pyrazolopyridocoumarin scaffolds.J. Chem. Sci.201913142910.1007/s12039‑019‑1610‑0
    [Google Scholar]
  53. PuttarajuK.B. ShivashankarK. Iodine-catalyzed three component reaction: A novel synthesis of 2-aryl-imidazo[1,2-a]pyridine scaffolds.RSC Advances2013343208832089010.1039/c3ra43407a
    [Google Scholar]
  54. PuttarajuK.B. ShivashankarK. Chandra; Mahendra, M.; Rasal, V.P.; Venkata Vivek, P.N.; Rai, K.; Chanu, M.B. Microwave assisted synthesis of dihydrobenzo[4,5]imidazo[1,2-a]pyrimidin-4-ones; synthesis, in vitro antimicrobial and anticancer activities of novel coumarin substituted dihydrobenzo[4,5]imidazo[1,2-a]pyrimidin-4-ones.Eur. J. Med. Chem.20136931632210.1016/j.ejmech.2013.07.015 24056147
    [Google Scholar]
  55. BasanagoudaM. ShivashankarK. KulkarniM.V. RasalV.P. PatelH. MuthaS.S. MohiteA.A. Synthesis and antimicrobial studies on novel sulfonamides containing 4-azidomethyl coumarin.Eur. J. Med. Chem.20104531151115710.1016/j.ejmech.2009.12.022 20047777
    [Google Scholar]
  56. RenukaC.G. ShivashankarK. BoregowdaP. BelladS.S. MuregendrappaM.V. NadafY.F. An experimental and computational study of 2-(3-Oxo-3H-benzo [f] chromen-1-ylmethoxy)-benzoic acid methyl ester.J. Solution Chem.20174681535155510.1007/s10953‑017‑0661‑4
    [Google Scholar]
  57. ShastriL. KalegowdaS. KulkarniM. The synthesis of pyrrole bis-coumarins, new structures for fluorescent probes.Tetrahedron Lett.200748407215721710.1016/j.tetlet.2007.07.189
    [Google Scholar]
  58. ShivashankarK. KulkarniM.V. ShastriL.A. RasalV.P. RajendraS.V. The synthesis and biological evaluation of regioisomeric benzothiazolyl coumarins.Phosphorus Sulfur Silicon Relat. Elem.200618192187220010.1080/10426500600614550
    [Google Scholar]
  59. ShivashankarK. ShastriL.A. KulkarniM.V. RasalV.P. RajendraS.V. Synthetic and biological studies on 4-aryloxymethyl coumarinyl thiazolidinones.Phosphorus Sulfur Silicon Relat. Elem.20071831566810.1080/10426500701555801
    [Google Scholar]
  60. BeerappaM. ShivashankarK. Four component synthesis of highly functionalized pyrano[2,3- c]pyrazoles from benzyl halides.Synth. Commun.201848214615410.1080/00397911.2017.1386788
    [Google Scholar]
  61. BeerappaM. ShivashankarK. Multicomponent reaction of benzyl halides: Synthesis of [1,2,4]triazolo/benzimidazolo quinazolinones.Synth. Commun.201646542143210.1080/00397911.2016.1140784
    [Google Scholar]
  62. BeerappaM. ShivashankarK. One pot synthesis of pyran-based heterocycles from benzyl halides as key reagents.RSC Advances2015538303643037110.1039/C4RA17219A
    [Google Scholar]
  63. BeerappaM. ShivashankarK. One‐pot three‐component synthesis of furan‐based heterocycles from benzyl halides.J. Heterocycl. Chem.20175442197220510.1002/jhet.2806
    [Google Scholar]
  64. JayashreeS. ShivashankarK. Montmorillonite K-10 catalyzed Mannich reaction: Synthesis of aminonaphthoquinone derivatives from Lawsone.Synth. Commun.201848141805181510.1080/00397911.2018.1466334
    [Google Scholar]
  65. ChackoP. ShivashankarK.I. 2 -catalyzed one-pot synthesis of benzofuro/thieno[2,3- b]pyrrole motifs.Tetrahedron201874131520152610.1016/j.tet.2018.02.013
    [Google Scholar]
  66. ChackoP. ShivashankarK. Nano structured spinel Co3O4-catalyzed four component reaction: A novel synthesis of Ugi adducts from aryl alcohols as a key reagent.Chin. Chem. Lett.20172871619162410.1016/j.cclet.2017.04.015
    [Google Scholar]
  67. ChackoP. ShivashankarK. Montmorillonite K10-catalyzed synthesis of N-fused imino-1,2,4-thiadiazolo isoquinoline derivatives.Synth. Commun.201848111363137610.1080/00397911.2018.1448419
    [Google Scholar]
  68. ChackoP. ShivashankarK. Synthesis of aminomethylphenol derivatives via magnetic nano catalyzed one pot Petasis borono-Mannich reaction.J. Chem. Sci.201813011110.1007/s12039‑018‑1560‑y
    [Google Scholar]
  69. BeerappaM. ShivashankarK. Synthesis of 4,6-diarylpyrimidin-2(1H)-one derivatives from benzyl halides and (1-bromoethyl)benzene under solvent-free conditions.Synth. Commun.201848172150215810.1080/00397911.2018.1479757
    [Google Scholar]
  70. ChackoP. ShivashankarK. Nano structured bi2o3 catalyzed synthesis of 3-phenyl-[1,2,4]triazolo[3,4- a]phthalazines and their cross-coupling reaction under aqueous conditions.Polycycl. Aromat. Compd.202141236838610.1080/10406638.2019.1585375
    [Google Scholar]
  71. ShivashankarK. ShastriL.A. KulkarniM.V. Multi-component reactions of formyl-4-aryloxymethylcoumarins under microwave irradiation.J. Indian Chem. Soc.200986265
    [Google Scholar]
  72. ImrankhanM. ShivashankarK. Iodine catalyzed one-pot four component synthesis of coumarinyl phosphoramidates via sequential addition of reactants.New J. Chem.20204443185731857810.1039/D0NJ04445H
    [Google Scholar]
  73. JayashreeS. ShivashankarK. Sulfated copper oxide catalyzed one-pot synthesis of N-fused benzimidazolo/benzothiazolo pyrimidines.Polycycl. Aromat. Compd.202141485887010.1080/10406638.2019.1625065
    [Google Scholar]
  74. KołodziejczykA. BłaziakM. PodgórniakK. JezierskaA. BłaziakK. The Malaprade reaction mechanism for ethylene glycol oxidation by periodic acid based on density functional theory (DFT).Phys. Chem. Chem. Phys.20232532214482145510.1039/D2CP04764K 37539449
    [Google Scholar]
/content/journals/ccat/10.2174/0122115447369647250526115445
Loading
/content/journals/ccat/10.2174/0122115447369647250526115445
Loading

Data & Media loading...

Supplements

Supplementary material is available on the publisher’s website along with the published article.

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test