Skip to content
2000
Volume 14, Issue 1
  • ISSN: 2211-5447
  • E-ISSN: 2211-5455

Abstract

Introduction

The breakdown of organic contaminants from wastewater can be facilitated by metal-organic frameworks, which are three-dimensional coordination polymers with a large number of active sites and an organised porosity architecture.

Methods

Using Zn, Cu, Mn, Cd, and Cr metal salts together with 1,4-benzenedicarboxylic acid as the organic linker, three novel trimetallic metal-organic frameworks; ZnCuMnBDC MOF, ZnCdMnBDC MOF, and ZnCrMnBDC MOF were developed in this study using a solvothermal strategy. They have been characterised using various analytical techniques, including FT-IR, ultraviolet/visible diffuse reflectance spectroscopy (UV-DRS), X-ray powder diffraction studies, N adsorption–desorption analysis, scanning electron microscopy (SEM) with energy-dispersive spectroscopy (EDS), and X-ray photoelectron spectroscopy (XPS). These MOFs are explored as catalysts for the photocatalytic degradation of Congo Red dye. Moreover, the catalytic activity of the as-prepared catalysts was assessed in terms of the degradation efficiency.

Results and Discussion

Among these MOFs, ZnCrMnBDC MOF exhibited the highest performance, achieving 98.4% degradation of Congo Red, followed by ZnCdMnBDC MOF at 88.0% and ZnCuMnBDC MOF at 85.89% within 30 minutes of irradiation. These findings underscore the potential of MOFs as effective photocatalysts for environmental remediation under visible light, offering a promising avenue for wastewater treatment.

Conclusion

These results highlight that MOFs are potentially efficient photocatalysts for environmental remediation in the presence of visible light, providing an effective wastewater treatment method.

Loading

Article metrics loading...

/content/journals/ccat/10.2174/0122115447368577250601021036
2025-06-20
2025-12-23
Loading full text...

Full text loading...

References

  1. ZhangK.D. TsaiF.C. MaN. XiaY. LiuH.L. ZhanX.Q. YuX.Y. ZengX.Z. JiangT. ShiD. ChangC.J. Adsorption behavior of high stable Zr-based MOFs for the removal of acid organic dye from water.Materials201710220510.3390/ma1002020528772564
    [Google Scholar]
  2. ZhangM. WangL. ZengT. ShangQ. ZhouH. PanZ. ChengQ. Two pure MOF-photocatalysts readily prepared for the degradation of methylene blue dye under visible light.Dalton Trans.201847124251425810.1039/C8DT00156A29485653
    [Google Scholar]
  3. ErdemoğluS. AksuS.K. SayılkanF. İzgiB. AsiltürkM. SayılkanH. FrimmelF. GüçerŞ. Photocatalytic degradation of Congo Red by hydrothermally synthesized nanocrystalline TiO2 and identification of degradation products by LC–MS.J. Hazard. Mater.2008155346947610.1016/j.jhazmat.2007.11.08718378395
    [Google Scholar]
  4. PournaraA.D. MargaritiA. TarlasG.D. KourtelarisA. PetkovV. KokkinosC. EconomouA. PapaefstathiouG.S. ManosM.J. A Ca 2+ MOF combining highly efficient sorption and capability for voltammetric determination of heavy metal ions in aqueous media.J. Mater. Chem. A Mater. Energy Sustain.2019725154321544310.1039/C9TA03337H
    [Google Scholar]
  5. ZhangH. YanY. QiaoG. LiJ. Multi-emissive room temperature phosphorescence of a two-dimensional metal-organic framework.Inorg. Chem. Commun.201910411912310.1016/j.inoche.2019.03.023
    [Google Scholar]
  6. BoukayouhtK. BazziL. DaouliA. MaurinG. El HankariS. Ultrarapid and sustainable synthesis of Trimetallic-Based MOF (CrNiFe-MOF) from stainless steel and disodium terephthalate-derived PET wastes.ACS Appl. Mater. Interfaces20241622497250810.1021/acsami.3c1566938178626
    [Google Scholar]
  7. ChenI.W.P. ChenW.Y. LiuT.Y. Pioneering ultra-efficient oxygen evolution reaction: A breakthrough in tri-metallic organic frameworks synthesis.Mater. Today Chem.20243510187310.1016/j.mtchem.2023.101873
    [Google Scholar]
  8. LuoX. AbazariR. TahirM. FanW.K. KumarA. KalhorizadehT. KirillovA.M. Amani-GhadimA.R. ChenJ. ZhouY. Trimetallic metal–organic frameworks and derived materials for environmental remediation and electrochemical energy storage and conversion.Coord. Chem. Rev.202246121450510.1016/j.ccr.2022.214505
    [Google Scholar]
  9. WeiF. ChenD. LiangZ. ZhaoS. LuoY. Synthesis and characterization of metal–organic frameworks fabricated by microwave-assisted ball milling for adsorptive removal of Congo red from aqueous solutions.RSC Advances2017773465204652810.1039/C7RA09243A
    [Google Scholar]
  10. ShiD. CuiC.J. HuM. RenA.H. SongL.B. LiuC.S. DuM. A microporous mixed-metal (Na/Cu) mixed-ligand (flexible/rigid) metal–organic framework for photocatalytic H 2 generation.J. Mater. Chem. C Mater. Opt. Electron. Devices2019733102111021710.1039/C9TC03342D
    [Google Scholar]
  11. WangX. WangQ. WangQ. GaoF. GaoF. YangY. GuoH. Highly dispersible and stable copper terephthalate metal-organic framework-graphene oxide nanocomposite for an electrochemical sensing application.ACS Appl. Mater. Interfaces2014614115731158010.1021/am501991825000168
    [Google Scholar]
  12. ZhaoS.S. YangJ. LiuY.Y. MaJ.F. Fluorescent aromatic tag-functionalized MOFs for highly selective sensing of metal ions and small organic molecules.Inorg. Chem.20165552261227310.1021/acs.inorgchem.5b0266626895464
    [Google Scholar]
  13. GuoY. FengT. YangJ. GongF. ChenC. XuZ. HuC. LengS. WangJ. WuM. MOF-derived manganese monoxide nanosheet-assembled microflowers for enhanced lithium-ion storage.Nanoscale20191122107631077310.1039/C9NR02206F31123734
    [Google Scholar]
  14. ClausenH.F. PoulsenR.D. BondA.D. ChevallierM.A.S. IversenB.B. Solvothermal synthesis of new metal organic framework structures in the zinc–terephthalic acid–dimethyl formamide system.J. Solid State Chem.2005178113342335110.1016/j.jssc.2005.08.013
    [Google Scholar]
  15. CarsonC.G. HardcastleK. SchwartzJ. LiuX. HoffmannC. GerhardtR.A. TannenbaumR. Synthesis and structure characterization of copper terephthalate metal–organic frameworks.Eur. J. Inorg. Chem.20092009162338234310.1002/ejic.200801224
    [Google Scholar]
  16. AdpakpangK. PratanpornlerdW. PonchaiP. TranganphaibulW. ThongratkaewS. FaungnawakijK. HorikeS. SiritanonT. RujiwatraA. OgawaM. BureekaewS. Unsaturated Mn(II)-Centered [Mn(BDC)]n metal–organic framework with strong water binding ability and its potential for dehydration of an Ethanol/Water mixture.Inorg. Chem.20185721130751307810.1021/acs.inorgchem.8b0224530351083
    [Google Scholar]
  17. Díaz-GarcíaM. Sánchez-SánchezM. Synthesis and characterization of a new Cd-based metal-organic framework isostructural with MOF-74/CPO-27 materials.Microporous Mesoporous Mater.201419024825410.1016/j.micromeso.2014.02.021
    [Google Scholar]
  18. BrombergL. DiaoY. WuH. SpeakmanS.A. HattonT.A. Chromium(III) terephthalate metal organic framework (MIL-101): HF-Free synthesis, structure, polyoxometalate composites, and catalytic properties.Chem. Mater.20122491664167510.1021/cm2034382
    [Google Scholar]
  19. RiveraJ.M. RincónS. Ben YoussefC. ZepedaA. Highly Efficient Adsorption of Aqueous Pb(II) with mesoporous metal-organic framework-5: An equilibrium and kinetic study.J. Nanomater.20168095737110.1155/2016/8095737
    [Google Scholar]
  20. MoulderJ.F. Handbook of X-ray Photoelectron Spectroscopy.2nd edPerkin-Elmer Corporation1992
    [Google Scholar]
  21. WangF. XueR. MaY. GeY. WangZ. QiaoX. ZhouP. Study on the performance of a MOF-808-based photocatalyst prepared by a microwave-assisted method for the degradation of antibiotics.RSC Advances20211152329553296410.1039/D1RA05058C35493585
    [Google Scholar]
  22. BediaJ. Muelas-RamosV. Peñas-GarzónM. Gómez-AvilésA. RodríguezJ. BelverC. A review on the synthesis and characterization of metal organic frameworks for photocatalytic water purification.Catalysts2019915210.3390/catal9010052
    [Google Scholar]
  23. HendrickxK. VanpouckeD.E.P. LeusK. LejaeghereK. Van Yperen-De DeyneA. Van SpeybroeckV. Van Der VoortP. HemelsoetK. Understanding intrinsic light absorption properties of UiO-66 frameworks: A combined theoretical and experimental study.Inorg. Chem.20155422107011071010.1021/acs.inorgchem.5b0159326540517
    [Google Scholar]
  24. WangX. WangQ. WangQ. GaoF. GaoF. YangY. GuoH. ACS Appl. Mater. Interfaces201844275
    [Google Scholar]
  25. MukherjeeA. DhakP. DhakD. The solvothermal synthesis of a 3D rod-like Fe–Al bimetallic metal–organic-framework for efficient fluoride adsorption and photodegradation of water-soluble carcinogenic dyes. Environment.Sci. Adv.20221212113710.1039/D1VA00019E
    [Google Scholar]
  26. CostaA.L. GomesA.C. PillingerM. GonçalvesI.S. PinaJ. Seixas de MeloJ.S. Insights into the photophysics and supramolecular organization of congo red in solution and the solid state.ChemPhysChem201718556457510.1002/cphc.20160123627992104
    [Google Scholar]
  27. ZhaoS. ChenD. WeiF. ChenN. LiangZ. LuoY. Removal of Congo red dye from aqueous solution with nickel-based metal-organic framework/graphene oxide composites prepared by ultrasonic wave-assisted ball milling.Ultrason. Sonochem.20173984585210.1016/j.ultsonch.2017.06.013
    [Google Scholar]
  28. BhatS.S.M. SundaramN.G. Efficient visible light photocatalysis of Bi4TaO8Cl nanoparticles synthesized by solution combustion technique.RSC Advances20133341437110.1039/c3ra40240a
    [Google Scholar]
  29. ZhangX. WangL.J. HanZ. MengX. WangH.N. ZhouZ.Y. SuZ.M. Degradation of azo dyes under visible light with stable MOF based on tetrastyrene imidazole ligand.Dalton Trans.202049144352435710.1039/D0DT00415D32163083
    [Google Scholar]
  30. GoyalS. RaguiP. YadavA. RaniS. DwivediP. SharmaR.K. A facile synthesis of bimetallic Ni/Co-BTC hollow MOFs for effective removal of congo red.Sep. Sci. Technol.202459120210.1080/01496395.2024.2366901
    [Google Scholar]
  31. SomnathN. BharatiA.K. AhmadM. LaDucaR.L. Jahan WahidiA. SiddiquiK.A. 1D + 3D → 3D zinc polyrotaxane MOF: Selective fluorescent detection of nitrobenzene, uric acid and sucrose and photocatalytic degradation of Rose Bengal and Congo Red dyes.J. Mol. Struct.2024129913720010.1016/j.molstruc.2023.137200
    [Google Scholar]
  32. ThomasM. NaikooG.A. SheikhM.U.D. BanoM. KhanF. Effective photocatalytic degradation of Congo red dye using alginate/carboxymethyl cellulose/TiO2 nanocomposite hydrogel under direct sunlight irradiation.J. Photochem. Photobiol. Chem.2016327334310.1016/j.jphotochem.2016.05.005
    [Google Scholar]
  33. ZhouL. YanJ. WangJ. ChiX. AfzalM. Efficient photodegradation of dyes by a new 3D Cd(ii) MOF with a rare fsh topology.CrystEngComm20222426467910.1039/D2CE00590E
    [Google Scholar]
  34. ZhengY. SunF. ZengP. SuY. LiuG. Constructing of core–satellite structure Bimetallic MOFs for synergistic enhanced adsorption–photocatalytic degradation.Langmuir20244040209662097610.1021/acs.langmuir.4c0223039319825
    [Google Scholar]
  35. LadeH. GovindwarS. PaulD. Mineralization and detoxification of the carcinogenic Azo Dye congo red and real textile effluent by a Polyurethane foam immobilized microbial Consortium in an upflow column bioreactor.Int. J. Environ. Res. Public Health20151266894691810.3390/ijerph12060689426086710
    [Google Scholar]
  36. KimH. ParkC. ChoiN. ChoK. Congo red dye degradation using Fe-containing mineral as a reactive material derived from waste foundry dust.Environ. Sci. Pollut. Res. Int.20243119284432845338546920
    [Google Scholar]
  37. MuneerM. SaeedM. BhattiI.A. HaqA. KhosaM.K. JamalM.A. AliS. Radiation induced degradation of Congo red dye: A mechanistic study.Nukleonika2019644910.2478/nuka‑2019‑0006
    [Google Scholar]
  38. ZhouH. QiuY. YangC. ZangJ. SongZ. YangT. LiJ. FanY. DangF. WangW. Efficient degradation of congo red in water by UV-Vis Driven CoMoO4/PDS photo-fenton system.Molecules20222724864236557777
    [Google Scholar]
/content/journals/ccat/10.2174/0122115447368577250601021036
Loading
/content/journals/ccat/10.2174/0122115447368577250601021036
Loading

Data & Media loading...

Supplements

Supplementary material is available on the publisher’s website along with the published article.

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test