Skip to content
2000
Volume 14, Issue 1
  • ISSN: 2211-5501
  • E-ISSN: 2211-551X

Abstract

Introduction

Biosurfactants are the surface active reagents produced by microorganisms, which exhibit the non-toxic and augmented bioavailability potential for the decomposition of petro-based pollutants and performing microbial enhanced oil recovery (MEOR).

Methods

Thus, the present study entails the isolation of a novel biosurfactant producing bacteria in MSM medium containing crude oil as a sole carbon source. Biosurfactant screening, cultural, and statistical optimization; Plackett - Burman Design, and response surface methodology (RSM) in conjunction with the Box-Behnken experimental design was employed for examining the biosurfactant producing potential, and emulsification activity of the strain, which rendered a maximum E index as 70%, with reduced surface tension of 29 mN/m.

Results

The novel isolate was identified and named strain ANSKSLAB02 and the sequence was deposited in the NCBI-GenBank database with accession number “KU518891”.

Conclusion

The results signify that the bacterium holds the potential to burgeon in harsh conditions which is an appropriate habitat for application in MEOR, which has great potential to aid in environmental cleanup.

Loading

Article metrics loading...

/content/journals/cbiot/10.2174/0122115501370139250207053902
2025-02-17
2025-10-06
Loading full text...

Full text loading...

References

  1. SouzaE.C. Vessoni-PennaT.C. de Souza OliveiraR.P. Biosurfactant-enhanced hydrocarbon bioremediation: An overview.Int. Biodeterior. Biodegradation201489889410.1016/j.ibiod.2014.01.007
    [Google Scholar]
  2. BezzaF.A. ChirwaE.M.N. Pyrene biodegradation enhancement potential of lipopeptide biosurfactant produced by Paenibacillus dendritiformis CN5 strain.J. Hazard. Mater.201732121822710.1016/j.jhazmat.2016.08.035 27627697
    [Google Scholar]
  3. KumarA. DeviS. SinghD. Significance and approaches of microbial bioremediation in sustainable development. Microbial Bioprospecting for Sustainable Development.SingaporeSpringer20189311410.1007/978‑981‑13‑0053‑0_5
    [Google Scholar]
  4. BanatI.M. FranzettiA. GandolfiI. Microbial biosurfactants production, applications and future potential.Appl. Microbiol. Biotechnol.201087242744410.1007/s00253‑010‑2589‑0 20424836
    [Google Scholar]
  5. CooperD.G. Biosurfactants.Microbiol. Sci.198635145149 3153155
    [Google Scholar]
  6. KleknerV KosaricN. Biosurfactant for cosmetics.Surfactant science series1993373
    [Google Scholar]
  7. SoltanighiasT. SinghA.E.A. SatputeS.K. BanpurkarA.G. KoolivandA. RahiP. Assessment of biosurfactant-producing bacteria from oil contaminated soils and their hydrocarbon degradation potential.Environmental Sustainability20192328529610.1007/s42398‑019‑00074‑0
    [Google Scholar]
  8. Menezes BentoF. de Oliveira CamargoF.A. OkekeB.C. FrankenbergerW.T.Jr Diversity of biosurfactant producing microorganisms isolated from soils contaminated with diesel oil.Microbiol. Res.2005160324925510.1016/j.micres.2004.08.005 16035236
    [Google Scholar]
  9. SamsuZ.A. JeffryF.N. AzizanW.N.A.N.W.A.R. Isolation and screening of potential biosurfactant-producing bacteria from used engine oil-contaminated soil.Mater. Today Proc.202031A67A7110.1016/j.matpr.2020.12.438
    [Google Scholar]
  10. MoldesA.B. ParadeloR. RubinosD. Devesa-ReyR. CruzJ.M. BarralM.T. Ex situ treatment of hydrocarbon-contaminated soil using biosurfactants from Lactobacillus pentosus.J. Agric. Food Chem.201159179443944710.1021/jf201807r 21797277
    [Google Scholar]
  11. MuthusamyK. GopalakrishnanS. RaviT.K. SivachidambaramP. Biosurfactant: properties, commercial production and application.Curr. Sci.2008736747
    [Google Scholar]
  12. OliveiraE.M. SalesV.H.G. AndradeM.S. ZilliJ.É. BorgesW.L. SouzaT.M. Isolation and characterization of Biosurfactant-Producing bacteria from amapaense Amazon Soils.Int. J. Microbiol.2021202111110.1155/2021/9959550 34447438
    [Google Scholar]
  13. ZhouH. ChenJ. YangZ. QinB. LiY. KongX. Biosurfactant production and characterization of Bacillus sp. ZG0427 isolated from oil-contaminated soil.Ann. Microbiol.20156542255226410.1007/s13213‑015‑1066‑5
    [Google Scholar]
  14. NayarisseriA. SinghP. SinghS.K. Screening, isolation and characterization of biosurfactant producing Bacillus subtilis strain ANSKLAB03.Bioinformation201814630431410.6026/97320630014304 30237676
    [Google Scholar]
  15. LiZ. RosenzweigR. ChenF. Bioremediation of petroleum-contaminated soils with biosurfactant-producing degraders isolated from the native desert soils.Microorganisms20221011226710.3390/microorganisms10112267 36422337
    [Google Scholar]
  16. CooperD.G. ZajicJ.E. Surface-active compounds from microorganisms.Adv. Appl. Microbiol.19802622953
    [Google Scholar]
  17. WuY. XuM. XueJ. ShiK. GuM. Characterization and enhanced degradation potentials of biosurfactant-producing bacteria isolated from a marine environment.ACS Omega2019411645165110.1021/acsomega.8b02653 31459447
    [Google Scholar]
  18. SharmaK. NayarisseriA. SinghS.K. Biodegradation of plasticizers by novel strains of bacteria isolated from plastic waste near Juhu Beach, Mumbai, India.Sci. Rep.20241413082410.1038/s41598‑024‑81239‑8 39730481
    [Google Scholar]
  19. Cortés-CamargoS. Pérez-RodríguezN. OliveiraR.P.S. HuertaB.E.B. DomínguezJ.M. Production of biosurfactants from vine-trimming shoots using the halotolerant strain Bacillu s tequilensis ZSB10.Ind. Crops Prod.20167925826610.1016/j.indcrop.2015.11.003
    [Google Scholar]
  20. CameotraS.S. MakkarR.S. Biosurfactant-enhanced bioremediation of hydrophobic pollutants.Pure Appl. Chem.20108219711610.1351/PAC‑CON‑09‑02‑10
    [Google Scholar]
  21. KaranthN.G.K. DeoP.G. VeenanadigN.K. Microbial production of biosurfactant and their importance.Curr. Sci.1999116126
    [Google Scholar]
  22. RahmanP.K.S.M. GakpeE. Production, characterisation and applications of biosurfactant-Review.Biotechnology (Faisalabad)20087236037010.3923/biotech.2008.360.370
    [Google Scholar]
  23. PurwasenaI.A. AstutiD.I. SyukronM. AmaniyahM. SugaiY. Stability test of biosurfactant produced by Bacillus licheniformis DS1 using experimental design and its application for MEOR.J. Petrol. Sci. Eng.201918310638310.1016/j.petrol.2019.106383
    [Google Scholar]
  24. ZhangX. XuD. ZhuC. LundaaT. ScherrK.E. Isolation and identification of biosurfactant producing and crude oil degrading Pseudomonas aeruginosa strains.Chem. Eng. J.201220913814610.1016/j.cej.2012.07.110
    [Google Scholar]
  25. CarrilloP.G. MardarazC. Pitta-AlvarezS.I. GiuliettiA.M. Isolation and selection of biosurfactant-producing bacteria.World J. Microbiol. Biotechnol.1996121828410.1007/BF00327807 24415095
    [Google Scholar]
  26. MorikawaM. HirataY. ImanakaT. A study on the structure–function relationship of lipopeptide biosurfactant. Biochimica et Biophysica Acta (BBA)-.Mol Cell Biol Lipids20001488321121810.1016/S1388‑1981(00)00124‑4 11082531
    [Google Scholar]
  27. HuX. QiaoY. ChenL.Q. Enhancement of solubilization and biodegradation of petroleum by biosurfactant from Rhodococcus erythropolis HX-2.Geomicrobiol. J.202037215916910.1080/01490451.2019.1678702
    [Google Scholar]
  28. MulliganC.N. CooperD.G. Selection of microbes producing biosurfactants in media without hydrocarbons.J. Ferment. Technol.1984624311314
    [Google Scholar]
  29. BodourA.A. Miller-MaierR.M. Application of a modified drop-collapse technique for surfactant quantitation and screening of biosurfactant-producing microorganisms.J. Microbiol. Methods199832327328010.1016/S0167‑7012(98)00031‑1
    [Google Scholar]
  30. YoussefN.H. DuncanK.E. NagleD.P. SavageK.N. KnappR.M. McInerneyM.J. Comparison of methods to detect biosurfactant production by diverse microorganisms.J. Microbiol. Methods200456333934710.1016/j.mimet.2003.11.001 14967225
    [Google Scholar]
  31. RosenbergM. GutnickD. RosenbergE. Adherence of bacteria to hydrocarbons: A simple method for measuring cell-surface hydrophobicity.FEMS Microbiol. Lett.198091293310.1111/j.1574‑6968.1980.tb05599.x
    [Google Scholar]
  32. BatistaS.B. MounteerA.H. AmorimF.R. TótolaM.R. Isolation and characterization of biosurfactant/bioemulsifier-producing bacteria from petroleum contaminated sites.Bioresour. Technol.200697686887510.1016/j.biortech.2005.04.020 15951168
    [Google Scholar]
  33. Al-MarriS EldosHI AshfaqMY Isolation, identification, and screening of biosurfactant-producing and hydrocarbon-degrading bacteria from oil and gas industrial waste.Biotechnol Rep (Amst)202339e0080410.1016/j.btre.2023.e00804 37388572
    [Google Scholar]
  34. Yalaoui-GuellalD. BrahmiF. TouatiA. De ChampsC. BanatI.M. MadaniK. Production of Biosurfactants by Hydrocarbons degrading bacteria isolated from Soummam watershed Sediments of Bejaia in Algeria.Environ. Prog. Sustain. Energy201837118919510.1002/ep.12653
    [Google Scholar]
  35. SatputeS.K. BhawsarB.D. DhakephalkarP.K. ChopadeB.A. Assessment of different screening methods for selecting biosurfactant producing marine bacteria.Indian J. Geo-Mar. Sci.2008373243250
    [Google Scholar]
  36. BodourA.A. Guerrero-BarajasC. JiorleB.V. Structure and characterization of flavolipids, a novel class of biosurfactants produced by Flavobacterium sp. strain MTN11.Appl. Environ. Microbiol.200470111412010.1128/AEM.70.1.114‑120.2004 14711632
    [Google Scholar]
  37. ParthipanP. PreethamE. MachucaL.L. RahmanP.K.S.M. MuruganK. RajasekarA. Biosurfactant and degradative enzymes mediated crude oil degradation by bacterium Bacillus subtilis A1.Front. Microbiol.2017819310.3389/fmicb.2017.00193 28232826
    [Google Scholar]
  38. MunguiaT. SmithC.A. Surface tension determination through capillary rise and laser diffraction patterns.J. Chem. Educ.200178334310.1021/ed078p343
    [Google Scholar]
  39. RadzuanM.N. BanatI.M. WinterburnJ. Production and characterization of rhamnolipid using palm oil agricultural refinery waste.Bioresour. Technol.20172259910510.1016/j.biortech.2016.11.052 27888734
    [Google Scholar]
  40. BergeyD.H. Bergey’s manual of determinative bacteriology.Lippincott Williams & Wilkins1994
    [Google Scholar]
  41. PandaS.K. KarR.N. PandaC.R. Isolation and identification of petroleum hydrocarbon degrading microorganisms from oil contaminated environment.Int. J. Environ. Sci.20133513141321
    [Google Scholar]
  42. NakanoM.M. ZuberP. Cloning and characterization of srfB, a regulatory gene involved in surfactin production and competence in Bacillus subtilis.J. Bacteriol.1989171105347535310.1128/jb.171.10.5347‑5353.1989 2507521
    [Google Scholar]
  43. SantosD.K.F. BrandãoY.B. RufinoR.D. Optimization of cultural conditions for biosurfactant production from Candida lipolytica.Biocatal. Agric. Biotechnol.201433485710.1016/j.bcab.2014.02.004
    [Google Scholar]
  44. AnandarajB. ThivakaranP. Isolation and production of biosurfactant producing organism from oil spilled soil.J Biosci Tech201013120126
    [Google Scholar]
  45. AparnaA. SrinikethanG. SmithaH. Production and characterization of biosurfactant produced by a novel Pseudomonas sp. 2B.Colloids Surf. B Biointerfaces201295232910.1016/j.colsurfb.2012.01.043 22445235
    [Google Scholar]
  46. ZhaoF. ShiR. CuiQ. HanS. DongH. ZhangY. Biosurfactant production under diverse conditions by two kinds of biosurfactant-producing bacteria for microbial enhanced oil recovery.J. Petrol. Sci. Eng.201715712413010.1016/j.petrol.2017.07.022
    [Google Scholar]
  47. PatowaryK. PatowaryR. KalitaM.C. DekaS. Characterization of biosurfactant produced during degradation of hydrocarbons using crude oil as sole source of carbon.Front. Microbiol.2017827910.3389/fmicb.2017.00279 28275373
    [Google Scholar]
  48. JanekT. ŁukaszewiczM. RezankaT. KrasowskaA. Isolation and characterization of two new lipopeptide biosurfactants produced by Pseudomonas fluorescens BD5 isolated from water from the Arctic Archipelago of Svalbard.Bioresour. Technol.2010101156118612310.1016/j.biortech.2010.02.109 20303744
    [Google Scholar]
  49. ChenH. WangL. SuC.X. GongG.H. WangP. YuZ.L. Isolation and characterization of lipopeptide antibiotics produced by Bacillus subtilis.Lett. Appl. Microbiol.200847318018610.1111/j.1472‑765X.2008.02412.x 19552782
    [Google Scholar]
  50. PecciY. RivardoF. MartinottiM.G. AllegroneG. LC/ESI‐MS/MS characterisation of lipopeptide biosurfactants produced by the Bacillus licheniformis V9T14 strain.J. Mass Spectrom.201045777277810.1002/jms.1767 20623484
    [Google Scholar]
  51. DasK. MukherjeeA.K. Comparison of lipopeptide biosurfactants production by Bacillus subtilis strains in submerged and solid state fermentation systems using a cheap carbon source: Some industrial applications of biosurfactants.Process Biochem.20074281191119910.1016/j.procbio.2007.05.011
    [Google Scholar]
  52. SilvaE.J. Rocha e SilvaN.M.P. RufinoR.D. LunaJ.M. SilvaR.O. SarubboL.A. Characterization of a biosurfactant produced by Pseudomonas cepacia CCT6659 in the presence of industrial wastes and its application in the biodegradation of hydrophobic compounds in soil.Colloids Surf. B Biointerfaces2014117364110.1016/j.colsurfb.2014.02.012 24613853
    [Google Scholar]
  53. SanouA KonatéK kabakdéK Modelling and optimisation of ultrasound-assisted extraction of roselle phenolic compounds using the surface response method.Sci. Rep.202313135810.1038/s41598‑023‑27434‑5 36611043
    [Google Scholar]
  54. FaragS. SolimanN.A. Abdel-FattahY.R. Statistical optimization of crude oil bio-degradation by a local marine bacterium isolate Pseudomonas sp. sp48.J. Genet. Eng. Biotechnol.201816240942010.1016/j.jgeb.2018.01.001 30733754
    [Google Scholar]
  55. YaraguppiD.A. BagewadiZ.K. MuddapurU.M. MullaS.I. Response surface methodology-based optimization of biosurfactant production from isolated Bacillus aryabhattai strain ZDY2.J. Pet. Explor. Prod. Technol.20201062483249810.1007/s13202‑020‑00866‑9
    [Google Scholar]
  56. SaraçT. AnagünA.S. ÖzçelikF. Estimation of biosurfactant production parameters and yields without conducting additional experiments on a larger production scale.J. Microbiol. Methods202220210659710.1016/j.mimet.2022.106597 36210023
    [Google Scholar]
  57. SolankiJ. PatelD. IngaleS. NatarajM. Screening and Optimization of Agro-industrial wastes for glycoprotein biosurfactant production from Sphingobacterium thalpophilum DP9.Preprint202010.21203/rs.3.rs‑32779/v1
    [Google Scholar]
  58. NajafiA.R. RahimpourM.R. JahanmiriA.H. RoostaazadR. ArabianD. GhobadiZ. Enhancing biosurfactant production from an indigenous strain of Bacillus mycoides by optimizing the growth conditions using a response surface methodology.Chem. Eng. J.2010163318819410.1016/j.cej.2010.06.044
    [Google Scholar]
  59. PengX. YangG. ShiY. ZhouY. ZhangM. LiS. Box–Behnken design based statistical modeling for the extraction and physicochemical properties of pectin from sunflower heads and the comparison with commercial low-methoxyl pectin.Sci. Rep.2020101359510.1038/s41598‑020‑60339‑1 32108167
    [Google Scholar]
  60. SunS. LiuQ. ChenS. YuW. ZhaoC. ChenH. Optimization for microbial degradation of petroleum hydrocarbon (TPH) by Enterobacter sp. S-1 using response surface methodology.Petrol. Sci. Technol.201937782182810.1080/10916466.2019.1566256
    [Google Scholar]
  61. Iglesias-CarresL. Mas-CapdevilaA. BravoF.I. MuleroM. MuguerzaB. Arola-ArnalA. Optimization and characterization of royal dawn cherry (Prunus avium) phenolics extraction.Sci. Rep.2019911762610.1038/s41598‑019‑54134‑w 31772244
    [Google Scholar]
  62. FerreiraS.L.C. BrunsR.E. FerreiraH.S. Box-Behnken design: An alternative for the optimization of analytical methods.Anal. Chim. Acta2007597217918610.1016/j.aca.2007.07.011 17683728
    [Google Scholar]
  63. Roldán-CarrilloT. Martínez-GarcíaX. Zapata-PeñascoI. Evaluation of the effect of nutrient ratios on biosurfactant production by Serratia marcescens using a Box-Behnken design.Colloids Surf. B Biointerfaces201186238438910.1016/j.colsurfb.2011.04.026 21592747
    [Google Scholar]
  64. EbadipourN. LotfabadT.B. YaghmaeiS. RoostaAzad R. Optimization of low-cost biosurfactant production from agricultural residues through response surface methodology.Prep. Biochem. Biotechnol.2016461303810.1080/10826068.2014.979204 25748124
    [Google Scholar]
  65. MnifI. ElleuchM. ChaabouniS.E. GhribiD. Bacillus subtilis SPB1 biosurfactant: Production optimization and insecticidal activity against the carob moth Ectomyelois ceratoniae.Crop Prot.201350667210.1016/j.cropro.2013.03.005
    [Google Scholar]
  66. CoutteF. NiehrenJ. DhaliD. JohnM. VersariC. JacquesP. Modeling leucine’s metabolic pathway and knockout prediction improving the production of surfactin, a biosurfactant from Bacillus subtilis.Biotechnol. J.20151081216123410.1002/biot.201400541 26220295
    [Google Scholar]
  67. FangY. XuM. ChenX. Modified pretreatment method for total microbial DNA extraction from contaminated river sediment.Front. Environ. Sci. Eng.20159344445210.1007/s11783‑014‑0679‑4
    [Google Scholar]
  68. KingM.D. McFarlandA.R. Bioaerosol sampling with a wetted wall cyclone: cell culturability and DNA integrity of Escherichia coli bacteria.Aerosol Sci. Technol.2012461829310.1080/02786826.2011.605400
    [Google Scholar]
  69. KnebelsbergerT. StögerI. DNA extraction, preservation, and amplification.Totowa, NJHumana Press2012311338
    [Google Scholar]
  70. LinH.H. YinL.J. JiangS.T. Expression and purification of pseudomonas aeruginosa keratinase in Bacillus subtilis DB104 expression system.J. Agric. Food Chem.200957177779778410.1021/jf901903p 19722707
    [Google Scholar]
  71. wishardR JaiswalM ParvedaM Identification and characterization of alkaline protease producing Bacillus firmus species EMBS023 by 16S rRNA gene sequencing.Interdiscip Sci20146427127810.1007/s12539‑014‑0187‑z 25118655
    [Google Scholar]
  72. NadhG. Identification of azo dye degrading Sphingomonas strain EMBS022 and EMBS023 using 16S rRNA gene sequencing.Curr. Bioinform.201510559960510.2174/1574893610666151008012312
    [Google Scholar]
  73. BhatiaM. GirdharA. TiwariA. NayarisseriA. Implications of a novel Pseudomonas species on low density polyethylene biodegradation: an in vitro to in silico approach.Springerplus20143149710.1186/2193‑1801‑3‑497 25932357
    [Google Scholar]
  74. NayarisseriA. SuppahiaA. NadhA.G. NairA.S. Identification and characterization of a pesticide degrading Flavobacterium species EMBS0145 by 16S rRNA gene sequencing.Interdiscip. Sci.201572939910.1007/s12539‑015‑0016‑z 26202942
    [Google Scholar]
  75. AmareshwariP. BhatiaM. VenkateshK. Isolation and characterization of a novel chlorpyrifos degrading flavobacterium species EMBS0145 by 16S rRNA gene sequencing.Interdiscip. Sci.2015711610.1007/s12539‑012‑0207‑9 25248957
    [Google Scholar]
  76. ChandokH. ShahP. AkareU.R. Screening, isolation and identification of Probiotic producing Lactobacillus acidophilus strains EMBS081 & EMBS082 by 16S rRNA gene sequencing.Interdiscip. Sci.20157324224810.1007/s12539‑015‑0002‑5 26199209
    [Google Scholar]
  77. NayarisseriA. SinghP. SinghS.K. Screening, isolation and characterization of biosurfactant-producing Bacillus tequilensis strain ANSKLAB04 from brackish river water.Int. J. Environ. Sci. Technol.201916117103711210.1007/s13762‑018‑2089‑9
    [Google Scholar]
  78. NayarisseriA. KhandelwalR. SinghS.K. Identification and Characterization of Lipopeptide Biosurfactant Producing Microbacterium sp Isolated from Brackish River Water.Curr. Top. Med. Chem.202020242221223410.2174/1568026620666200628144716 32598258
    [Google Scholar]
  79. PydeA.N. Nagaraja RaoP. JainA. Identification and characterization of foodborne pathogen Listeria monocytogenes strain Pyde1 and Pyde2 using 16S rRNA gene sequencing.J. Pharm. Res.20136773674110.1016/j.jopr.2013.07.009
    [Google Scholar]
  80. PhanseN. RathoreP. PatelB. NayarisseriA. Characterization of an industrially important alkalophilic bacterium, Bacillus agaradhaerens strain nandiniphanse5.J. Pharm. Res.20136554355010.1016/j.jopr.2013.04.035
    [Google Scholar]
  81. NayarisseriA. YadavM. BhatiaM. Impact of Next-Generation Whole-Exome sequencing in molecular diagnostics.Drug Invent. Today20135432733410.1016/j.dit.2013.07.005
    [Google Scholar]
  82. NayarisseriA. HoodE.A. Advancement in microbial cheminformatics.Curr. Top. Med. Chem.201918292459246110.2174/1568026619666181120121528 30457050
    [Google Scholar]
  83. KrishnanS.N. NayarisseriA. RajamanickamU. Identification and characterization of cresol degrading Pseudomonas monteilii strain SHY from Soil samples.Bioinformation201814945546410.6026/97320630014455 31223203
    [Google Scholar]
  84. SharmaB. TiwariS. BishtS. BhrdwajA. NayarisseriA. TewariL. Coupling effect of ionophore and oxidoreductases produced by halotolerant novel fungal strain Trametes flavida WTFP2 on dye wastewater treatment: An optimized green bioprocess.J. Environ. Chem. Eng.202311310962910.1016/j.jece.2023.109629
    [Google Scholar]
  85. NayarisseriA. BhrdwajA. KhanA. Promoter–motif extraction from co-regulated genes and their relevance to co-expression using E. coli as a model.Brief. Funct. Genomics202322220421610.1093/bfgp/elac043 37053503
    [Google Scholar]
  86. NayarisseriA. SinghS.K. Genome analysis of biosurfactant producing bacterium, Bacillus tequilensis.PLoS One2023186e028599410.1371/journal.pone.0285994 37267268
    [Google Scholar]
  87. TamuraK. StecherG. KumarS. MEGA11: molecular evolutionary genetics analysis version 11.Mol. Biol. Evol.20213873022302710.1093/molbev/msab120 33892491
    [Google Scholar]
  88. JaegerJ.A. SantaLuciaJ.Jr TinocoI.Jr Determination of RNA structure and thermodynamics.Annu. Rev. Biochem.199362125528510.1146/annurev.bi.62.070193.001351 7688943
    [Google Scholar]
  89. ReuterJ.S. MathewsD.H. RNAstructure: Software for RNA secondary structure prediction and analysis.BMC Bioinformatics201011112910.1186/1471‑2105‑11‑129 20230624
    [Google Scholar]
  90. SchroederS.J. Advances in RNA structure prediction from sequence: New tools for generating hypotheses about viral RNA structure-function relationships.J. Virol.200983136326633410.1128/JVI.00251‑09 19369331
    [Google Scholar]
  91. AhmadN.A. Mohamed ZulkifliR. HussinH. NadriM.H. In silico approach for Post-SELEX DNA aptamers: A mini-review.J. Mol. Graph. Model.202110510787210.1016/j.jmgm.2021.107872 33765525
    [Google Scholar]
  92. LorenzR. BernhartS.H. Höner zu SiederdissenC. ViennaRNA package 2.0.Algorithms Mol. Biol.2011612610.1186/1748‑7188‑6‑26 22115189
    [Google Scholar]
  93. ZhaoC. SahniS. Efficient RNA folding using Zuker’s method.In: 2017 IEEE 7th International Conference on Computational Advances in Bio and Medical Sciences (ICCABS).Orlando, FL, USA: IEEE20171610.1109/ICCABS.2017.8114309
    [Google Scholar]
  94. AntoniouE. FodelianakisS. KorkakakiE. KalogerakisN. Biosurfactant production from marine hydrocarbon-degrading consortia and pure bacterial strains using crude oil as carbon source.Front. Microbiol.2015627410.3389/fmicb.2015.00274 25904907
    [Google Scholar]
  95. BanatI.M. MakkarR.S. CameotraS.S. Potential commercial applications of microbial surfactants.Appl. Microbiol. Biotechnol.200053549550810.1007/s002530051648 10855707
    [Google Scholar]
  96. DasN. ChandranP. Microbial degradation of petroleum hydrocarbon contaminants: an overview.Biotechnol. Res. Int.20112011111310.4061/2011/941810 21350672
    [Google Scholar]
  97. MakkarR.S. CameotraS.S. Effects of various nutritional supplements on biosurfactant production by a strain of Bacillus subtilis at 45°C.J. Surfactants Deterg.200251111710.1007/s11743‑002‑0199‑8
    [Google Scholar]
  98. PlanteC.J. CoeK.M. PlanteR.G. Isolation of surfactant-resistant bacteria from natural, surfactant-rich marine habitats.Appl. Environ. Microbiol.200874165093509910.1128/AEM.02734‑07 18586977
    [Google Scholar]
  99. MesbaiahF.Z. EddouaoudaK. BadisA. Preliminary characterization of biosurfactant produced by a PAH-degrading Paenibacillus sp. under thermophilic conditions.Environ. Sci. Pollut. Res. Int.20162314142211423010.1007/s11356‑016‑6526‑3 27053051
    [Google Scholar]
  100. NajafiA.R. RahimpourM.R. JahanmiriA.H. Interactive optimization of biosurfactant production by Paenibacillus alvei ARN63 isolated from an Iranian oil well.Colloids Surf. B Biointerfaces2011821333910.1016/j.colsurfb.2010.08.010 20846835
    [Google Scholar]
/content/journals/cbiot/10.2174/0122115501370139250207053902
Loading
/content/journals/cbiot/10.2174/0122115501370139250207053902
Loading

Data & Media loading...

Supplements

Supplementary material is available on the publisher’s website along with the published article.

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test