Skip to content
2000
Volume 14, Issue 1
  • ISSN: 2211-5501
  • E-ISSN: 2211-551X

Abstract

Introduction

flower aqueous extract is traditionally known for its potential in treating ocular disorders and has been utilized among the local tribal population. In this study, we aimed to evaluate (HC) flower extract for diabetic cataract management using and methods.

Methods

The extract was investigated for phytochemical screening using Fourier Transformed Infrared (FTIR) and Gas Chromatography-Mass Spectrometry (GC/MS) and evaluating total phenolic content, total flavonoid content, antioxidant activity, prediction of drug-likeness activity, and and anti-cataract activity.

Results

The results demonstrated that this plant extract contained significant phenolic compounds and flavonoids, which accelerated the antioxidant activity as estimated in DPPH (IC, 139.67 ± 6.64 µl/mL) and ABTS (IC, 43.87 ± 2.18 µl/mL) assay. GC/MS screened potential compounds, including 4-ethyl-2-methoxyphenol (8.41%), 1-methyl-4-propan-2-ylidenecyclohexene (2.64%), 4-(2-hydroxypropan-2-yl)-1-methylcyclohexan-1-ol (1.9%), Creosol (1.63%), 1h-purin-6-amine, [(2-fluorophenyl) methyl]- (1.45%), Isoborneol (1.36%), (+)-alpha-terpineol (p-menth-1-en-8-ol) (1.24%), Dodec-11-enyl acetate (1.17%), 1, 8-cineol (1.13%), etc. Its therapeutic potential against diabetic cataracts was confirmed through molecular docking with γ-crystallin and aldose reductase inhibitor proteins (1ELP, 1I16, and 4IGS). The ADMET analysis and bioactivity score showed better drug-likeness behavior of identified phytochemicals. results indicated that the flower extract treated group demonstrated a restored reduced glutathione (GSH) level, catalase activity (CAT), and total soluble protein and decreased malondialdehyde (MDA) level in isolated goat lenses, confirming that it could protect from diabetic cataract.

Conclusion

The results indicated that the flower aqueous extract has therapeutic potential for diabetic cataract management and could be further explored for pre-clinical testing.

Loading

Article metrics loading...

/content/journals/cbiot/10.2174/0122115501363126250220094448
2025-03-13
2025-10-06
Loading full text...

Full text loading...

References

  1. KleinB.E.K. KleinR. MossS.E. Prevalence of cataracts in a population-based study of persons with diabetes mellitus.Ophthalmology19859291191119610.1016/S0161‑6420(85)33877‑0 4058882
    [Google Scholar]
  2. JeevanandamJ. MadhumithaR. SaraswathiN.T. Identification of potential phytochemical lead against diabetic cataract: An in silico approach.J. Mol. Struct.2021122612942810.1016/j.molstruc.2020.129428
    [Google Scholar]
  3. MrugaczM. Pony-UramM. BrylA. ZorenaK. Current approach to the pathogenesis of diabetic cataracts.Int. J. Mol. Sci.2023247631710.3390/ijms24076317 37047290
    [Google Scholar]
  4. LiuX.F. HaoJ.L. XieT. Nrf2 as a target for prevention of age‐related and diabetic cataracts by against oxidative stress.Aging Cell201716593494210.1111/acel.12645 28722304
    [Google Scholar]
  5. GuoZ. MaX. ZhangR.X. YanH. Oxidative stress, epigenetic regulation and pathological processes of lens epithelial cells underlying diabetic cataract.Adv. Ophthalmol. Pract. Res.20233418018610.1016/j.aopr.2023.10.001 38106550
    [Google Scholar]
  6. PetersonS.R. SilvaP.A. MurthaT.J. SunJ.K. Cataract surgery in patients with diabetes: Management strategies.Semin. Ophthalmol.2018331758210.1080/08820538.2017.1353817 29144826
    [Google Scholar]
  7. ChancellorJ. SolimanM.K. ShoultsC.C. Intraoperative complications and visual outcomes of cataract surgery in diabetes mellitus: A multicenter database study.Am. J. Ophthalmol.2021225475610.1016/j.ajo.2020.12.027 33422465
    [Google Scholar]
  8. BoukhatemM.N. SetzerW.N. Aromatic herbs, medicinal plant-derived essential oils, and phytochemical extracts as potential therapies for coronaviruses: Future perspectives.Plants20209680010.3390/plants9060800 32604842
    [Google Scholar]
  9. BanoA. QadriT.A. Mahnoor, Khan N. Bioactive metabolites of plants and microbes and their role in agricultural sustainability and mitigation of plant stress.S. Afr. J. Bot.20231599810910.1016/j.sajb.2023.05.049
    [Google Scholar]
  10. TakY. KumarM. Phenolics: A Key Defence Secondary Metabolite to Counter Biotic Stress.Plant Phenolics in Sustainable Agriculture.SingaporeSpringer202030932910.1007/978‑981‑15‑4890‑1_13
    [Google Scholar]
  11. ZulkifliS.A. Abd GaniS.S. ZaidanU.H. HalmiM.I.E. Optimization of total phenolic and flavonoid contents of defatted pitaya (Hylocereus polyrhizus) seed extract and its antioxidant properties.Molecules202025478710.3390/molecules25040787 32059460
    [Google Scholar]
  12. LimV. SchneiderE. WuH. PangI.H. Cataract preventive role of isolated phytoconstituents: Findings from a decade of research.Nutrients20181011158010.3390/nu10111580 30373159
    [Google Scholar]
  13. MasyitaA. SariR.M. AstutiA.D. Terpenes and terpenoids as main bioactive compounds of essential oils, their roles in human health and potential application as natural food preservatives.Food Chem. X20221310021710.1016/j.fochx.2022.100217 35498985
    [Google Scholar]
  14. PollreiszA. Schmidt-ErfurthU. Diabetic cataract-pathogenesis, epidemiology and treatment.J. Ophthalmol.201020101810.1155/2010/608751 20634936
    [Google Scholar]
  15. PatilK K MeshramR J BarageS H GaccheR N Dietary flavonoids inhibit the glycation of lens proteins: Implications in the management of diabetic cataract.3 Biotech2019924710.1007/s13205‑019‑1581‑3
    [Google Scholar]
  16. ChanE.W.C. WongS.K. Phytochemistry and pharmacology of ornamental gingers, Hedychium coronarium and Alpinia purpurata: A review.J. Integr. Med.201513636837910.1016/S2095‑4964(15)60208‑4 26559362
    [Google Scholar]
  17. AryaS. KumarR. PrakashO. Hedychium coronarium J. Koenig: Traditional uses, phytochemistry, biological activities and future aspects.Curr. Org. Chem.202226181676169010.2174/1385272827666221212161320
    [Google Scholar]
  18. TammasornP. CharoensupW. BunrodA. KanjanakawinkulW. ChaiyanaW. Promising anti-wrinkle applications of aromatic extracts of Hedychium coronarium J. Koenig via antioxidation and collagenase inhibition.Pharmaceuticals20231612173810.3390/ph16121738 38139864
    [Google Scholar]
  19. YueY. YuR. FanY. Characterization of two monoterpene synthases involved in floral scent formation in Hedychium coronarium.Planta2014240474576210.1007/s00425‑014‑2127‑x 25056927
    [Google Scholar]
  20. MatsumotoF. IdetsukiH. HaradaK. NoharaI. ToyodaT. Volatile components of Hedychium coronarium Koenig flowers.J. Essent. Oil Res.19935212313310.1080/10412905.1993.9698190
    [Google Scholar]
  21. PandyaC.V. JadejaA.J. GolakiyaB.A. 4-6 ©JK Welfare & Pharmascope Foundation2014Available from: www.ijrpp.pharmascope.org
  22. HoJ.C. Antimicrobial, mosquito larvicidal and antioxidant properties of the leaf and Rhizome of Hedychium coronarium.J. Chin. Chem. Soc.201158456356710.1002/jccs.201190021
    [Google Scholar]
  23. LuísÂ. DuarteA. GominhoJ. DominguesF. DuarteA.P. Chemical composition, antioxidant, antibacterial and anti-quorum sensing activities of Eucalyptus globulus and Eucalyptus radiata essential oils.Ind. Crops Prod.20167927428210.1016/j.indcrop.2015.10.055
    [Google Scholar]
  24. ShanmugamP.V. YadavA. ChanotiyaC.S. Enantiomer differentiation of key volatile constituents from leaves, stems, rhizome and flowers of cultivated Hedychium coronarium Koenig from India.J. Essent. Oil Res.201527210110610.1080/10412905.2014.987929
    [Google Scholar]
  25. CostaR.O. JoséC.M. Grombone-GuaratiniM.T. Silva MatosD.M. Chemical characterization and phytotoxicity of the essential oil from the invasive Hedychium coronarium on seeds of Brazilian riparian trees.Flora201925715141110.1016/j.flora.2019.05.010
    [Google Scholar]
  26. DubeyS.P. LahtinenM. SillanpääM. Green synthesis and characterizations of silver and gold nanoparticles using leaf extract of Rosa rugosa.Colloids Surf. A Physicochem. Eng. Asp.20103641-3344110.1016/j.colsurfa.2010.04.023
    [Google Scholar]
  27. KaskoosR.A. GC/MS profile and in-vitro antidiabetic activity of Cinnamomum z eylanicum Blume., bark and Trachyspermum ammi (L.) Sprague, seeds.J. Essent. Oil-Bear. Plants201922253554410.1080/0972060X.2019.1612281
    [Google Scholar]
  28. SiddiquiN. RaufA. LatifA. MahmoodZ. Spectrophotometric determination of the total phenolic content, spectral and fluorescence study of the herbal Unani drug Gul-e-Zoofa (Nepeta bracteata Benth).J. Taibah Univ. Med. Sci.201712436036310.1016/j.jtumed.2016.11.006 31435264
    [Google Scholar]
  29. El AtkiY AouamI El kamariF Total phenolic and flavonoid contents and antioxidant activities of extracts from Teucrium polium growing wild in Morocco.Mater. Today Proc.20191377778310.1016/j.matpr.2019.04.040
    [Google Scholar]
  30. SoltanianS. MohamadiN. RajaeiP. KhodamiM. MohammadiM. Phytochemical composition, and cytotoxic, antioxidant, and antibacterial activity of the essential oil and methanol extract of Semenovia suffruticosa.Avicenna J. Phytomed.201992143152 30984579
    [Google Scholar]
  31. UnuofinJ.O. OladipoA.O. MsagatiT.A.M. LebeloS.L. Meddows-TaylorS. MoreG.K. Novel silver-platinum bimetallic nanoalloy synthesized from Vernonia mespilifolia extract: Antioxidant, antimicrobial, and cytotoxic activities.Arab. J. Chem.20201386639664810.1016/j.arabjc.2020.06.019
    [Google Scholar]
  32. ThiagarajanR. VarshaM.K.N.S. SrinivasanV. RavichandranR. SarabojiK. Vitamin K1 prevents diabetic cataract by inhibiting lens aldose reductase 2 (ALR2) activity.Sci. Rep.2019911468410.1038/s41598‑019‑51059‑2 31604989
    [Google Scholar]
  33. SathayeS. KanchanD.M. KaleS.S. SomaniG.S. KaikiniA.A. Thymol, a monoterpene, inhibits aldose reductase and high-glucose-induced cataract on isolated goat lens.J. Pharm. Bioallied Sci.20168427728310.4103/0975‑7406.199348 28216950
    [Google Scholar]
  34. KadriH.S. MinocheherhomjiF.P. ADMET analysis of phyto-components of Syzygium cumini seeds and Allium cepa peels.Future J. Pharm. Sci.20206111710.1186/s43094‑020‑00136‑9
    [Google Scholar]
  35. KhanT. DixitS. AhmadR. Molecular docking, PASS analysis, bioactivity score prediction, synthesis, characterization and biological activity evaluation of a functionalized 2-butanone thiosemicarbazone ligand and its complexes.J. Chem. Biol.20171039110410.1007/s12154‑017‑0167‑y 28684996
    [Google Scholar]
  36. GaneshpurkarA. KurmiR. BansalD. AgnihotriA. DubeyN. Ethanol extract of Moringa oliefera prevents in vitro glucose induced cataract on isolated goat eye lens.Indian J. Ophthalmol.201462215415710.4103/0301‑4738.116482 24008789
    [Google Scholar]
  37. OliverH. Protein measurement with the folin phenol reagent.J. Biol. Chem.1951193126527510.1016/S0021‑9258(19)52451‑6 14907713
    [Google Scholar]
  38. EllmanG.L. Tissue sulfhydryl groups.Arch. Biochem. Biophys.19598217077
    [Google Scholar]
  39. AebiH. Catalase in vitro.Methods Enzymol198412112610.1016/S0076‑6879(84)05016‑3
    [Google Scholar]
  40. OhkawaH. OhishiN. YagiK. Assay for lipid peroxides in animal tissues by thiobarbituric acid reaction.Anal. Biochem.197995235135810.1016/0003‑2697(79)90738‑3 36810
    [Google Scholar]
  41. AkintemiE.O. GovenderK.K. SinghT. A DFT study of the chemical reactivity properties, spectroscopy and bioactivity scores of bioactive flavonols.Comput. Theor. Chem.2022121011365810.1016/j.comptc.2022.113658
    [Google Scholar]
  42. SaleemH. UsmanA. MahomoodallyM.F. AhemadN. Bougainvillea glabra (choisy): A comprehensive review on botany, traditional uses, phytochemistry, pharmacology and toxicity.J. Ethnopharmacol.202126611335610.1016/j.jep.2020.113356 32956758
    [Google Scholar]
  43. MamgainA. KenwatR. PaliwalR. Biopolymer zein nanoparticles loaded with Moringa oleifera extract for improved wound healing activity: Development, Qbd based optimization and in vivo study.Int. J. Biol. Macromol.2024263Pt 113031410.1016/j.ijbiomac.2024.130314 38382777
    [Google Scholar]
  44. FanS. ChangJ. ZongY. HuG. JiaJ. GC-MS analysis of the composition of the essential oil from Dendranthema indicum Var. Aromaticum using three extraction methods and two columns.Molecules201823357610.3390/molecules23030576 29510531
    [Google Scholar]
  45. RazackS. KumarK. NallamuthuI. NaikaM. KhanumF. Antioxidant, biomolecule oxidation protective activities of nardostachys jatamansi DC and its phytochemical analysis by RP-HPLC and GC-MS.Antioxidants20154118520310.3390/antiox4010185 26785345
    [Google Scholar]
  46. OmataA. YomogidaK. TeshimaY. Volatile components of ginger flowers (Hedychium coronarium koenig).Flavour Fragrance J.19916321722010.1002/ffj.2730060310
    [Google Scholar]
  47. BáezD. PinoJ.A. MoralesD. Floral scent composition in Hedychium coronarium J. Koenig analyzed by SPME.J. Essent. Oil Res.2011233646710.1080/10412905.2011.9700460
    [Google Scholar]
  48. EndrisY.A. AbduK.Y. AbateS.G. Investigation of bioactive phytochemical compounds of the Ethiopian medicinal plant using GC-MS and FTIR.Heliyon20241015e3468710.1016/j.heliyon.2024.e34687 39170564
    [Google Scholar]
  49. ParchetaM. ŚwisłockaR. OrzechowskaS. AkimowiczM. ChoińskaR. LewandowskiW. Recent developments in effective antioxidants: The structure and antioxidant properties.Materials2021148198410.3390/ma14081984 33921014
    [Google Scholar]
  50. PanigrahyS.K. KumarA. BhattR. Antioxidant potentials of successive solvent extracts from the unexplored Hedhychium coronarium rhizome.J. Food Sci. Technol.201754103297330610.1007/s13197‑017‑2777‑3 28974815
    [Google Scholar]
  51. BaliyanS. MukherjeeR. PriyadarshiniA. Determination of antioxidants by DPPH radical scavenging activity and quantitative phytochemical analysis of Ficus religiosa.Molecules2022274132610.3390/molecules27041326 35209118
    [Google Scholar]
  52. SultanaN. LeeN.H. Antielastase and free radical scavenging activities of compounds from the stems of Cornus kousa.Phytother. Res.200721121171117610.1002/ptr.2230 17661332
    [Google Scholar]
  53. HussenE.M. EndalewS.A. In vitro antioxidant and free-radical scavenging activities of polar leaf extracts of Vernonia amygdalina.BMC Complement. Med. Ther.202323114610.1186/s12906‑023‑03923‑y 37143058
    [Google Scholar]
  54. FloegelA. KimD.O. ChungS.J. KooS.I. ChunO.K. Comparison of ABTS/DPPH assays to measure antioxidant capacity in popular antioxidant-rich US foods.J. Food Compos. Anal.20112471043104810.1016/j.jfca.2011.01.008
    [Google Scholar]
  55. ChenT. ChenR. YouA. KouznetsovaV.L. TsigelnyI.F. Search of inhibitors of aldose reductase for treatment of diabetic cataracts using machine learning.Adv. Ophthalmol. Pract. Res.20233418719110.1016/j.aopr.2023.09.002 37928946
    [Google Scholar]
  56. HussainN. KakotiB.B. RudrapalM. Bioactive Antidiabetic Flavonoids from the Stem Bark of Cordia dichotoma Forst.: Identification, Docking and ADMET Studies.Molbank202120212M123410.3390/M1234
    [Google Scholar]
  57. MamgainA. KenwatR. PaliwalR. Phytochemical profiling and molecular investigation of Moringa oleifera Lam. leaves for anti-arthritic potential: Assessment and identification of phytopharmaceuticals through GC-MS analysis, in silico study, ADMET analysis, and in vitro evaluation.Curr. Biotechnol.202413314015810.2174/0122115501304728240523052907
    [Google Scholar]
  58. AdedotunI.O. Abdul-HammedM. HamzatB.A. Molecular docking, ADMET analysis, and bioactivity studies of phytochemicals from Phyllanthus niruri as potential inhibitors of hepatitis C virus NSB5 polymerase.J. Indian Chem. Soc.202299210032110.1016/j.jics.2021.100321
    [Google Scholar]
  59. YangC. AlamA. AlhumaydhiF.A. Bioactive phytoconstituents as potent inhibitors of tyrosine-protein kinase Yes (YES1): Implications in anticancer therapeutics.Molecules20222710306010.3390/molecules27103060 35630545
    [Google Scholar]
  60. WeirC.J. Ion channels, receptors, agonists and antagonists.Anaesth. Intensive Care Med.2020211626810.1016/j.mpaic.2019.10.022
    [Google Scholar]
  61. Gonçalves-MonteiroS. Ribeiro-OliveiraR. Vieira-RochaM.S. VojtekM. SousaJ.B. DinizC. Insights into nuclear G-protein-coupled receptors as therapeutic targets in non-communicable diseases.Pharmaceuticals202114543910.3390/ph14050439 34066915
    [Google Scholar]
  62. DegfieT. EndaleM. TafeseT. DekeboA. ShenkuteK. In vitro antibacterial, antioxidant activities, molecular docking, and ADMET analysis of phytochemicals from roots of Hydnora johannis.Appl. Biol. Chem.20226517610.1186/s13765‑022‑00740‑8
    [Google Scholar]
  63. ChandranK. ShaneD.I. ZochedhA. SultanA.B. KathiresanT. Docking simulation and ADMET prediction based investigation on the phytochemical constituents of Noni (Morinda citrifolia) fruit as a potential anticancer drug.In Silico Pharmacol.20221011410.1007/s40203‑022‑00130‑4 36034317
    [Google Scholar]
  64. ThakurS. GuptaS.K. AliV. SinghP. VermaM. Aldose Reductase: A cause and a potential target for the treatment of diabetic complications.Arch. Pharm. Res.202144765566710.1007/s12272‑021‑01343‑5 34279787
    [Google Scholar]
  65. MestryS.N. JuvekarA.R. Aldose reductase inhibitory potential and anti-cataract activity of Punica granatum Linn. leaves against glucose-induced cataractogenesis in goat eye lens.Orient. Pharm. Exp. Med.201717327728410.1007/s13596‑017‑0274‑x
    [Google Scholar]
  66. KumarP. BanikS.P. OhiaS.E. Current insights on the photoprotective mechanism of the macular Carotenoids, Lutein and Zeaxanthin: Safety, efficacy and bio-delivery.J. Am. Nutr. Assoc.202443650551810.1080/27697061.2024.2319090 38393321
    [Google Scholar]
  67. LouM.F. Glutathione and glutaredoxin in redox regulation and cell signaling of the lens.Antioxidants20221110197310.3390/antiox11101973 36290696
    [Google Scholar]
  68. CalabreseE.J. CanadaA.T. Catalase: Its role in xenobiotic detoxification.Pharmacol. Ther.198944229730710.1016/0163‑7258(89)90069‑7 2519346
    [Google Scholar]
  69. ZhangM. ZhangR. ZhaoX. The role of oxidative stress in the pathogenesis of ocular diseases: An overview.Mol. Biol. Rep.202451145410.1007/s11033‑024‑09425‑5 38536516
    [Google Scholar]
  70. BöhmE.W. BuonfiglioF. VoigtA.M. Oxidative stress in the eye and its role in the pathophysiology of ocular diseases.Redox Biol.20236810296710.1016/j.redox.2023.102967 38006824
    [Google Scholar]
  71. GalassoM. GambinoS. RomanelliM.G. DonadelliM. ScupoliM.T. Browsing the oldest antioxidant enzyme: Catalase and its multiple regulation in cancer.Free Radic. Biol. Med.202117226427210.1016/j.freeradbiomed.2021.06.010 34129927
    [Google Scholar]
  72. TakioN. YadavM. YadavH.S. Catalase-mediated remediation of environmental pollutants and potential application – A review.Biocatal. Biotransform.202139638940710.1080/10242422.2021.1932838
    [Google Scholar]
  73. RasheedR.T. MansoorH.S. AbdullahT.A. Synthesis, characterization of V2O5 nanoparticles and determination of catalase mimetic activity by new colorimetric method.J. Therm. Anal. Calorim.2021145229730710.1007/s10973‑020‑09725‑5
    [Google Scholar]
  74. ShahrakiS. DelaramiH.S. SaeidifarM. NejatR. Catalytic activity and structural changes of catalase in the presence of Levothyroxine and Isoxsuprine hydrochloride.Int. J. Biol. Macromol.202015212613610.1016/j.ijbiomac.2020.02.064 32045611
    [Google Scholar]
  75. Ali AlghamdiA. Phytoconstituents screening and antimicrobial activity of the invasive species Nicotiana glauca collected from Al-Baha region of Saudi Arabia.Saudi J. Biol. Sci.20212831544154710.1016/j.sjbs.2020.12.034 33732038
    [Google Scholar]
  76. AuwalM.S. SakaS. MairigaI.A. SandaK.A. ShuaibuA. IbrahimA. Preliminary phytochemical and elemental analysis of aqueous and fractionated pod extracts of Acacia nilotica (Thorn mimosa).Vet. Res. Forum20145295100
    [Google Scholar]
  77. GulR. JanS.U. FaridullahS. SheraniS. JahanN. Preliminary phytochemical screening, quantitative analysis of alkaloids, and antioxidant activity of crude plant extracts from Ephedra intermedia indigenous to Balochistan.ScientificWorldJournal201720171710.1155/2017/5873648 28386582
    [Google Scholar]
  78. AfsharF.H. DelazarA. AsnaashariS. VaezH. ZolaliE. AsgharianP. Screening of anti-malarial activity of different extracts obtained from three species of Scrophularia growing in Iran.Iran. J. Pharm. Res.2018172668676 29881424
    [Google Scholar]
/content/journals/cbiot/10.2174/0122115501363126250220094448
Loading
/content/journals/cbiot/10.2174/0122115501363126250220094448
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test