Current Bioinformatics - Online First
Description text for Online First listing goes here...
21 - 35 of 35 results
-
-
Single-Cell RNA Sequencing to Identify Natural Killer Cell-Linked Genetic Markers and Regulatory Biomolecules in Coronary Heart Disease
Available online: 25 April 2025More LessIntroductionBacterial and viral infections have been linked to an increased risk of coronary heart disease (CHD), potentially through natural killer (NK) cell-mediated innate immune mechanisms. This study aimed to integrate single-cell RNA sequencing (scRNA-seq) and bulk transcriptomics data to identify NK cell-associated genetic biomarkers that could aid in the diagnosis and assessment of CHD.
MethodsPublicly available single-cell and bulk RNA-seq datasets were analyzed to identify differentially expressed genes (DEGs). Functional enrichment analysis, protein-protein interaction (PPI) network construction, and biomarker validation were performed using standard bioinformatics pipelines.
ResultsA total of 106 shared DEGs were identified through integrated cross-comparative analysis. Enrichment analysis revealed involvement in immune activation, signal transduction, T-cell receptor signaling, and TYROBP signaling pathways. PPI network analysis identified key hub proteins, including CDK1 and PTPRC, as potential biomarkers. Regulatory analysis revealed transcription factors (TP53, YY1, and RELA) and post-transcriptional miRNAs (hsa-miR-195-5p, hsa-miR-34a-5p, and hsa-miR-16-5p) that may influence CHD-associated gene expression. Several small molecules were also predicted to interact with these targets, suggesting potential therapeutic applications.
DiscussionThe findings underscore the role of NK cell-mediated immune pathways in CHD pathogenesis. Hub genes such as CDK1 (involved in cell cycle regulation) and PTPRC (an immune signaling regulator) show promise as diagnostic biomarkers. The discovery of regulatory factors and druggable targets supports a complex, multi-level mechanism involving transcriptional and immune modulation.
ConclusionThis integrative study identifies novel NK cell-related molecular signatures and therapeutic targets, offering promising avenues for CHD diagnosis and the development of personalized treatment strategies.
-
-
-
Innovative Insights into Liver Cancer: Multi-Omics Reveals Critical Subtypes and Hub Genes
Authors: Jin-Yuan Cheng, Zi Liu, Xin Liu, Muhammad Kabir and Wang-Ren QiuAvailable online: 24 April 2025More LessIntroduction/ObjectiveHepatocellular carcinoma (HCC) is a highly heterogeneous malignant tumor, characterized by elevated mortality rates and poor diagnostic outcomes. Accurate identification of cancer subtypes is crucial for guiding personalized treatment and improving patient prognosis.
MethodsA method for precisely identifying HCC subtypes by integrating multi-omics data was presented. This approach combines the GRACES dimensionality reduction technique with the hMKL subtype identification model to analyze data from 266 HCC patients.
ResultsWe identified two subtypes more accurately, both significantly associated with overall survival. Their respective three-year mortality rates were 55.9% and 27.9%. Additionally, we observed significant differences in the activity of five pathways between these two subtypes, along with notable variations in the abundance and status of seven types of immune cells. Through further determination of the PPI network and centrality indicators, 13 up-regulated hub genes and 14 down-regulated hub genes were identified.
DiscussionBased on the above results, we compared and discussed the hub genes with the textual data, examined differences in gene upregulation and downregulation, and evaluated findings from other bioinformatics analyses to identify potential biomarkers.
ConclusionLimited research on ENPP3 and C3 in HCC suggests their potential as biomarkers. Additionally, low expression levels of PIK3R1, KDR, and CYP3A5, along with high expression levels of EGLN3 and EPO, may indicate a higher risk of liver cancer in patients. Single-gene survival analysis highlighted the significant impact of highly expressed genes on HCC prognosis, with PKM, RRM2, and EPO playing crucial roles in the risk scores.
-
-
-
Explainable Colon Cancer Stage Prediction with Multimodal Biodata through the Attention-based Transformer and Squeeze-Excitation Framework
Authors: Olalekan Ogundipe, Bing Zhai, Zeyneb Kurt and Wai Lok WooAvailable online: 12 March 2025More LessIntroductionThe heterogeneity in tumours poses significant challenges to the accurate prediction of cancer stages, necessitating the expertise of highly trained medical professionals for diagnosis. Over the past decade, the integration of deep learning into medical diagnostics, particularly for predicting cancer stages, has been hindered by the black-box nature of these algorithms, which complicates the interpretation of their decision-making processes.
MethodThis study seeks to mitigate these issues by leveraging the complementary attributes found within functional genomics datasets (including mRNA, miRNA, and DNA methylation) and stained histopathology images. We introduced the Extended Squeeze- and-Excitation Multiheaded Attention (ESEMA) model, designed to harness these modalities. This model efficiently integrates and enhances the multimodal features, capturing biologically pertinent patterns that improve both the accuracy and interpretability of cancer stage predictions.
ResultOur findings demonstrate that the explainable classifier utilised the salient features of the multimodal data to achieve an area under the curve (AUC) of 0.9985, significantly surpassing the baseline AUCs of 0.8676 for images and 0.995 for genomic data.
ConclusionFurthermore, the extracted genomics features were the most relevant for cancer stage prediction, suggesting that these identified genes are promising targets for further clinical investigation.
-
-
-
Multiple Approaches to Identifying Key Genes Linked to the Anti-inflammatory Effects of Ginsenosides
Authors: Gui-Fang Xiang, Fei-Ran Zhou, Chun-Yan Cui, Qing Liu, An-Qiong Mao and Ying ZhangAvailable online: 10 March 2025More LessGinsenoside is a naturally occurring active ingredient in ginseng, which mainly consists of four components, including Rb1, Rb2, Rc, and Rd, which are considered to be an important part of ginseng's medicinal effects. Ginsenosides can enhance the anti-fatigue ability of the body, regulate immune function, improve cardiovascular function, and have anti-aging, antioxidant, and neuroprotective effects. In recent years, many studies have found that ginsenosides have anti-inflammatory properties and are used in the treatment of many inflammatory diseases, such as endodontitis, bronchitis, and many others. Ginsenosides reduce inflammation by suppressing the release of inflammatory mediators, modulating inflammatory signaling pathways, scavenging free radicals, and modulating the immune system in a variety of ways. However, existing studies have not investigated the specific genes underlying the inflammation-reducing properties of ginsenosides. In this study, we analyzed two publicly accessible datasets from the GEO database (GSE255672 and GSE173990) to investigate the molecular basis of the anti-inflammatory effects of ginsenosides. This study aims to advance our understanding of how ginsenosides exert their anti-inflammatory properties, providing preliminary findings for identifying gene targets for their anti-inflammatory effects, thereby enhancing our understanding of their biological function and identifying new therapeutic pathways in the management of inflammation. It paves the way for further research of ginsenosides and therapeutic application of inflammation-related diseases.
-
-
-
Single-Cell RNA Sequence Analysis to Identify Lymphatic Cell-Specific Biomarkers of Guillain-Barre Syndrome by Using Bioinformatics Approaches
Available online: 28 February 2025More LessBackgroundAn uncommon neurological condition known as Guillain-Barre syndrome (GBS) develops when the body's immunological system unintentionally targets peripheral nerves.
AimThis work aimed to compare scRNA-seq and transcriptome data to find novel gene biomarkers linked to CD4+ T cells and B cells that might potentially be utilized for the diagnosis and assessment of GBS. It aimed to employ scRNA-seq data and bioinformatics tools analysis to identify cell-specific biomarkers for GBS diagnosis and prognosis.
MethodologyscRNA-seq and microarray datasets from the GEO database were utilized to identify differentially expressed genes (DEGs). Pathway enrichment, identification of potential hub genes, and gene regulatory studies were employed using FunRich, DAVID, STRING, and NetworkAnalyst tools.
ResultsAfter integrating the DEGs and performing a comparative analysis, it was discovered that there were 84 DEGs shared between scRNA-seq and microarray datasets. The presence of signal transduction, immune system, cytokine signaling, NOD-like receptor signaling, and focal adhesion was detected in the most significant gene ontology and metabolic pathways. After generating a protein-protein interaction (PPI) network, we used eleven topological algorithms of the cytoHubba plugin for identifying six key hub genes, including CDC42, PTPRC, SRSF1, HNRNPA2B1, NIPBL, and FOS. Several crucial transcription factors (CHD1, IRF1, FOXC1, GATA2, YY1, E2F1, and CREB1) and two significant microRNAs (hsa-mir-20a-5p and hsa-mir-16-5p) were also discovered as hub gene regulators. The receiver operating characteristics (ROC) curve was used to evaluate the prognostic, expression, and diagnostic capabilities of the six major hub genes, indicating a good scoring value.
ConclusionFinally, functional enrichment pathway analysis, PPI, and regulatory networks analysis demonstrated the critical functions of the identified key hub genes. After further wet lab research is validated, our research work may offer useful predicted potential biomarkers for the diagnosis and prognosis of GBS.
-
-
-
Integrative Analysis of Single Cell and Bulk RNA Sequencing Data Reveals T-Cell Specific Biomarkers for Diagnosis and Assessment of Celiac Disease: A Comprehensive Bioinformatics Approach
Available online: 10 February 2025More LessBackgroundCeliac Disease (CD) is a common autoimmune disorder caused by the activation of CD4+ T cells that specifically target gluten and CD8+ T cells, further causing cell death inside the epithelial layer despite no available established biomarkers of CD diagnosis.
ObjectiveThis work aimed to compare scRNA-seq and transcriptome data to find novel gene biomarkers linked to T cells that might potentially be utilized for the diagnosis and assessment of CD.
MethodsCollecting the scRNA and RNAseq datasets from the NCBI database, the Seurat package of R studio, and the statistical analysis tool GREIN server were employed to identify Differentially Expressed Genes (DEGs). Then, DAVID, FunRich, STRING, and NetworkAnalyst tools were utilized to explore significant pathways, key hub proteins, and gene regulators.
ResultsAfter integrating genes and conducting a comparative analysis, a total of 115 genes were identified as DEGs. Exosomes, MHC class II receptor activity, immune response, interferon gamma signaling, and bystander B cell activation within the immune system pathways were the significant Gene Ontology (GO) and metabolic pathways identified. Besides, eleven topological algorithms discovered two hub proteins, namely HLA-DRA and HLA-DRB1, from the PPI network. Through the analysis of the regulatory network, we have identified four crucial Transcription Factors (TFs), including YY1, FOXC1, GATA2, and USF2, and seven significant miRNAs (hsa-mir-129-2-3p, and hsa-mir-155-5p, etc.) in transcriptionally and post-transcriptionally regulated. Validation of hub proteins and transcription factors using Receiver Operating Characteristic (ROC) analysis indicates the acceptable value of the Area Under the Curve (AUC).
ConclusionThis study utilized single-cell RNA sequencing and transcriptomics data analysis to define unique protein biomarkers associated with T cells throughout the progression of CD. Furthermore, wet lab studies will be needed to validate the potential hub proteins, TFs, and miRNAs as clinical biomarkers.
-
-
-
An Analysis of the Interactions between the 5' UTR and Introns in Mitochondrial Ribosomal Protein Genes
Authors: Junchao Deng, Ruifang Li, Xinwei Song, Shan Gao, Shiya Peng and Xu TianAvailable online: 10 February 2025More LessBackgroundThe 5' UTR plays a crucial role in gene regulation, which may be through its interaction with introns. Hence, there is a need to further study this interaction.
ObjectiveThis study aimed to investigate the interactions between 5' UTR and introns and their correlation with species evolution.
MethodsThe optimally matched segments between 5' UTR and introns were identified using Smith-Waterman local similarity matching, and the biological statistical methods were applied to compare the optimally matched segments between different species.
ResultsThe interactions between 5' UTR and introns were found to be primarily mediated by weak bonds and demonstrated a directional change with species evolution. Additionally, a large proportion of the optimally matched segments were very similar to miRNA and siRNA in terms of length and matching rate characteristics.
ConclusionThe weak bonds in the interactions between the 5' UTR and the introns could enhance the flexibility of expression regulation, and an important correlation was found between the characteristic distributions of the optimally matched segments and species evolution. Additionally, the length and matching rate of a large proportion of optimally matched segments were very similar to those of miRNA and siRNA. In conclusion, it is highly probable that quite a few of the optimally matched segments are some kinds of functional non-coding RNAs.
-
-
-
PDTDAHN: Predicting Drug-Target-Disease Associations using a Heterogeneous Network
Authors: Lei Chen and Jingdong LiAvailable online: 10 February 2025More LessBackgroundDisease is a major threat to life, and extensive efforts have been made over the past centuries to develop effective treatments. Identifying drug-disease and disease-target associations is crucial for therapeutic advancements, whereas drug-target associations facilitate the design of more effective treatment strategies. However, traditional experimental approaches for identifying these associations are costly and time-consuming. Numerous computational models have been developed to predict drug-target, drug-disease, and disease-target associations. However, these models are designed individually and cannot directly predict drug-target-disease associations, which involve interconnections among drugs, targets, and diseases. Such triple associations provide deeper insights into disease mechanisms and therapeutic interventions by capturing high-order associations.
ObjectiveThis study proposes a computational model named PDTDAHN to predict drug-target-disease triple associations.
MethodSix association types retrieved from public databases are used to construct a heterogeneous network comprising drugs, targets, and diseases. The network embedding algorithm Mashup is applied to extract features for drugs, targets, and diseases, which are then combined to represent each drug-target-disease association. The classification model is trained using LightGBM.
ResultsCross-validation on eight datasets demonstrates the high performance of PDTDAHN, with AUROC and AUPR exceeding 0.9. This model outperforms previous models based on pairwise association predictions.
ConclusionThe proposed model effectively predicts drug-target-disease triple associations.
-
-
-
Integrative Multi-Omics Approaches for Personalized Medicine and Health
Authors: Prateek Tiwari, Raghvendra Pandey and Sonia ChadhaAvailable online: 10 February 2025More LessIntroductionMulti-omics data integration has transformed personalized medicine, providing a comprehensive understanding of disease mechanisms and informed precision therapeutic options. Multi-omics data generated for the same samples/patients can help in getting insights into the flow of biological information at several levels, thereby providing in-depth information regarding the molecular mechanisms underlying pathological conditions. Multi-omics integration plays a pivotal role in personalized medicine by providing comprehensive insights into the complex biological systems of individual patients. This review provides a comprehensive account of the current and future progress brought into multi-omics methodologies, promising to refine diagnostics and therapeutic strategy by integrating genomic, transcriptomic analyses, proteomics approaches and metabolome screens.
MethodsA literature search was performed in PubMed using keywords like genomics, proteomics, transcriptomics, metabolomics, multi-omics, and precision medicine to identify published research articles. A thorough review of all results was then conducted, and their results and conclusions were compiled and summarized.
ResultBy analyzing various omics layers, such as genomics, transcriptomics, proteomics, and metabolomics, multi-omics approaches enable the identification of patient-specific molecular traits and the discovery of new clinical therapeutics for diseases. Integration of various data types augments diagnostics, optimizes therapeutic regimens and supports personalized medicine according to an individual patient profile.
ConclusionIntegration of multi-omics data and its applications in various fields, such as cancer research, helps in optimizing patient-specific treatment and improvement of patient health. With time, as these technologies reach more people, they stand to democratize precision medicine and hopefully bridge health disparities. In conclusion, the present review highlights multiomics data integration as a transformative step towards personalized medicine and ultimately changing patient care from empirical-based to precision or individualized.
-
-
-
An Overview of Spatial Transcriptomics Methodologies in Traversing the Biological System
Available online: 30 January 2025More LessTranscriptomics covers the in-depth analysis of RNA molecules in cells or tissues and plays an essential role in understanding cellular functions and disease mechanisms. Advances in spatial transcriptomics (ST) in recent times have revolutionized the field by combining gene expression data with spatial information, enabling the analysis of RNA molecules within their tissue context. The evolution of spatial transcriptomics, particularly the integration of artificial intelligence (AI) in data analysis, and its diverse applications have been found to be superior methods in developmental research. Spatial transcriptomics technologies, along with single-cell RNA sequencing (scRNA-seq), offer unprecedented possibilities to unravel intricate cellular interactions within tissues. It emphasizes the importance of accurate cell localization for in-depth discoveries and developments via high-throughput spatial transcriptome profiling. The integration of artificial intelligence in spatial transcriptomics analysis is a key focus, showcasing its role in detecting spatially variable genes, clustering cell populations, communication analysis, and enhancing data interpretation. The evolution of AI methods tailored for spatial transcriptomics is highlighted, addressing the unique challenges posed by spatially resolved transcriptomic data. Applications of spatial transcriptomics integrated with other omics data, such as genomics, proteomics, and metabolomics, provide a detailed view of molecular processes within tissues and emerge in diverse applications. Integrating spatial transcriptomics with AI represents a transformative approach to understanding tissue architecture and cellular interactions. This innovative synergy not only enhances our understanding of gene expression patterns but also offers a holistic view of molecular processes within tissues, with profound implications for disease mechanisms and therapeutic development.
-
-
-
Exploring Coding Sequence Length Distributions Across Taxonomic Kingdoms Based on Maximum Information Principle
Available online: 30 January 2025More LessBackgroundGenetic information about organisms' traits is stored and encoded in deoxyribonucleic acid (DNA) sequences. The fundamental inquiry into the storage mechanisms of this genetic information within genomes has long been of interest to geneticists and biophysicists.
ObjectiveThe objective of this study was to investigate the distribution of coding sequence (CDS) lengths in species genomes across different kingdoms.
MethodsIn this study, we used the maximum entropy principle and the gamma distribution model based on a comprehensive dataset including viruses, archaea, bacteria, and eukaryote species.
ResultsOur study result revealed unique patterns in CDS length distributions among kingdoms and CDS lengths exhibit a right-skewed distribution, with varying preferences among kingdoms. Eukaryotes displayed bimodal distributions, with CDS sequences longer than those of prokaryotes. Fitting the gamma distribution model revealed differences in shape and scale parameters among kingdoms, with eukaryotes exhibiting larger scale parameters, indicating longer CDS sequences. Additionally, analysis of moments highlighted the complexity of eukaryotic genomes relative to prokaryotes.
ConclusionThis study result deepens our understanding of genome evolution and provides valuable insights for biological research.
-
-
-
A Deep Learning Method for Identifying G-Protein Coupled Receptors based on a Feature Pyramid Network and Attention Mechanism
Authors: Zhe Lv, Siqin Hu, Xin Wei and Wangren QiuAvailable online: 08 January 2025More LessBackgroundG-protein coupled receptors (GPCRs) represent a large family of membrane proteins, distinguished by their seven-transmembrane helical structures. These receptors play a pivotal role in numerous physiological processes. Nowadays, many researchers have proposed computational methods to identify GPCRs. In the past, we introduced a powerful method, EMCBOW-GPCR, which was designed for this purpose. However, the feature extraction technique employed is susceptible to out-of-vocabulary errors, indicating the potential for enhanced accuracy in GPCR identification.
MethodsTo solve the challenges, we propose a novel approach termed GPCR-AFPN. This method leverages the FastText algorithm to effectively extract features from protein sequences. Additionally, it employs a powerful deep neural network as the predictive model to improve prediction accuracy.
ResultsTo validate the efficacy of the proposed GPCR-AFPN method, we conducted five-fold cross-validation and independent tests, respectively. The experimental results indicate that GPCR-AFPN outperforms existing methods.
ConclusionOverall, our proposed method, GPCR-AFPN, can improve the accuracy of GPCR identification. For the convenience of researchers interested in applying our latest advancements, a user-friendly webserver for GPCR-AFPN is available at www.lzzzlab.top/gpcrafpn/, and the corresponding code can be downloaded at https://github.com/454170054/GPCR-AFPN.
-
-
-
Screening of Candidate Chemical Regulators for the m6A Writer MTA in Arabidopsis
Authors: Beilei Lei, Chengchao Jia, Cuixia Tan, Pengjun Ding, Zenglin Li, Jing Yang, Jiyuan Liu, XiaoMin Wei, Shiheng Tao and Chuang MaAvailable online: 07 January 2025More LessBackgroundThe MTA gene encodes a core component of m6A methyltransferase complex, which plays a crucial role in the post-transcriptional modification of RNA that influences many vital processes in plants. However, due to the constraint of embryonic lethality in MTA knockout mutation, the molecular function of MTA gene has yet to be comprehensively investigated.
ObjectiveThe aim of this study is to investigate the expression and regulation of MTA in Arabidopsis.
MethodsA large-scale transcriptome and genome analysis were carried out for the expression and nsSNP (non-synonymous Single Nucleotide Polymorphism) studies. Structured-based virtual screening, molecular dynamics simulation, binding free energy calculation and m6A modification level assay were employed to mine and validate MTA regulators from COCONUT natural product database.
ResultsTissue-specific expression and stress-responsive expression patterns of MTA were observed in Arabidopsis. nsSNPs from the 1,001 Arabidopsis project were not detected in the binding site of the methyl-donor substrate S-adenosylmethionine (SAM) in MTA. 10 small molecules were identified as potential regulators, among which CNP0251613 (adenosine diphosphate glucose, ADPG) was selected and validated to decrease m6A levels at 10µM vs. the control in Arabidopsis.
ConclusionOur results provide a new insight and chemical entity into the in-depth study of RNA m6A writer MTA in plants.
-
-
-
DSPE: An End-to-End Drug Synergy Combination Prediction Algorithm for Echinococcosis
Authors: Haitao Li, Liyuan Jiang, Yuanyuan Chu, Yuansheng Liu, Chunhou Zheng and Yansen SuAvailable online: 07 January 2025More LessBackgroundEchinococcosis, a parasitic disease caused by the larvae of the Echinococcus parasite, poses a serious threat to human health. Medication is an indispensable means of treatment for Echinococcosis; however, due to the less satisfactory efficacy of single drugs, identifying effective drug combinations for the treatment of Echinococcosis is essential. Yet, current predictive models for drug synergy in Echinococcosis face accuracy challenges due to data scarcity, method limitations, and insufficient feature representation.
ObjectiveThis work aims to design an end-to-end method to predict drug synergistic combinations, which enables efficient and accurate identification of drug combinations against Echinococcosis.
MethodsIn this work, an end-to-end method, named DSPE, is proposed for predicting anti-Echinococcosis drug synergistic combinations. In DSPE, a dataset of Echinococcosis drug synergistic combinations is constructed by retrieving and extracting information from related scientific articles. Further, DSPE employs a residual graph attention network to deeply analyze drug characteristics and their interactions, thereby enhancing the performance of deep learning models. It also explores the protein-protein interaction network related to Echinococcosis, using node2vec combined with an attention mechanism to efficiently encode disease features. Finally, it predicts the synergy of drug combinations based on the Bliss score by integrating drug combinations and disease features.
ResultsExperimental evidence shows that DSPE outperforms five state-of-the-art algorithms in predicting drug combination effects by leveraging disease-target information and single-agents for the treatment.
ConclusionDSPE improves prediction accuracy and addresses the issue of data scarcity for new diseases, offering new insights and methods for the development of treatment plans for parasitic diseases in the future.
-
-
-
Identification and Analysis of Plant miRNAs: Evolution of In-silicoResources and Future Challenges
Authors: Abhishek Kushwaha, Hausila Prasad Singh and Noopur SinghAvailable online: 04 November 2024More LessEndogenous small RNAs (miRNA) are the key regulators of numerous eukaryotic lineages playing an important role in a broad range of plant development. Computational analysis of miRNAs facilitates the understanding of miRNA-based regulations in plants. The discovery of small non-coding RNAs has led to a greater understanding of gene regulation, and the development of bioinformatic tools has enabled the identification of microRNAs (miRNAs) and their targets. The need for comprehensive miRNA analysis is being accomplished by the development of advanced computational tools/algorithms and databases. Each resource has its own specificity and limitations for the analysis. This review provides a comprehensive overview of various algorithms used by computational tools, software, and databases for plant miRNA analysis. However, over a period of about two decades, a lot of knowledge has been added to our understanding of the biogenesis and functioning of miRNAs in other plants. Several parameters were already integrated and others need to be incorporated in order to give more accurate and efficient results. The reassessment of computational recourses (based on old algorithms) is required on the basis of new miRNA research and development. Generally, computational methods, including ab-initio and homology search-based methods, are used for miRNA identification and target prediction. This review presents the new challenges faced by the existing computational methods and the need to develop new tools and advanced algorithms and highlight the limitations of existing computational tools and methods, and emphasizing the need for a comprehensive platform for miRNA gene exploration.
-