Skip to content
2000
image of Genome-wide Analysis of Ovarian Cancer-specific circRNAs in Alternative Splicing Regulation

Abstract

Introduction

Ovarian cancer (OC) is a fatal female reproductive system cancer with a high mortality rate and is hard to detect at an early stage. Recent studies have indicated that alternative splicing plays an important role in OC progression by activating genes and pathways involved in tumorigenesis. Circular RNAs (circRNAs) have also been found to play a regulating role in tumor progression and present their potential ability in alternative splicing regulation. However, the underlying mechanism by which circRNAs regulate alternative splicing events (ASEs) in OC remains unclear.

Methods

In this study, we performed a comprehensive transcriptomic study on the RNA-seq data of our collected tumor and normal samples from OC patients, aiming to investigate the regulatory roles of OC-specific circRNAs in aberrant splicing events and their underlying pathways in tumorigenesis.

Results

We conducted a genome-wide regulatory network with strong correlations from 300 differentially expressed (DE) circRNAs and 1,150 aberrant ASEs, mediated by 31 DE SFs. Analyses of this network revealed that dysregulation of circRNAs may lead to aberrant ASEs that are closely involved in ovarian tumorigenesis. In addition, two crucial circRNAs, circ_AKT3 (hsa_circ_0000199) and circ_GSK3B (hsa_circ_0008797), were identified due to their significant roles in the network and associations with multiple tumor-related functional pathways.

Discussion

These findings suggest that OC-specific circRNAs may participate in tumor progression by indirectly regulating groups of ASEs through multiple SFs, rather than through direct interaction. Subnetwork analyses centered on the two hub circRNAs revealed that their associated ASEs are functionally clustered and involved in coordinated biological processes relevant to tumor biology.

Conclusion

This study provides novel insights into the regulatory pathways by which circRNAs are involved in OC progression, offering clues for discovering diagnostic biomarkers and therapeutic targets.

Loading

Article metrics loading...

/content/journals/cbio/10.2174/0115748936358930250518030128
2025-05-26
2025-08-16
Loading full text...

Full text loading...

References

  1. Kuroki L. Guntupalli S.R. Treatment of epithelial ovarian cancer. BMJ 2020 371 m3773 10.1136/bmj.m3773 33168565
    [Google Scholar]
  2. Arora T. Mullangi S. Vadakekut E.S. Lekkala M.R. Epithelial ovarian cancer. Treasure Island, FL StatPearls Publishing 2024
    [Google Scholar]
  3. Wojtyś W. Oroń M. How driver oncogenes shape and are shaped by alternative splicing mechanisms in tumors. Cancers 2023 15 11 2918 10.3390/cancers15112918 37296881
    [Google Scholar]
  4. He Y. OuYang Z. Liu W. Chen Y. Zhang Q. TARDBP promotes ovarian cancer progression by altering vascular endothelial growth factor splicing. Oncogene 2023 42 1 49 61 10.1038/s41388‑022‑02539‑9 36369320
    [Google Scholar]
  5. Wang Z. Wang S. Qin J. Splicing factor BUD31 promotes ovarian cancer progression through sustaining the expression of anti-apoptotic BCL2L12. Nat. Commun. 2022 13 1 6246 10.1038/s41467‑022‑34042‑w 36271053
    [Google Scholar]
  6. Wei Y. Chen Z. Li Y. Song K. The splicing factor WBP11 mediates MCM7 intron retention to promote the malignant progression of ovarian cancer. Oncogene 2024 43 20 1565 1578 10.1038/s41388‑024‑03015‑2 38561505
    [Google Scholar]
  7. Hansen T.B. Jensen T.I. Clausen B.H. Natural RNA circles function as efficient microRNA sponges. Nature 2013 495 7441 384 388 10.1038/nature11993 23446346
    [Google Scholar]
  8. Huang A. Zheng H. Wu Z. Chen M. Huang Y. Circular RNA-protein interactions: Functions, mechanisms, and identification. Theranostics 2020 10 8 3503 3517 10.7150/thno.42174 32206104
    [Google Scholar]
  9. Shabaninejad Z. Vafadar A. Movahedpour A. Circular RNAs in cancer: New insights into functions and implications in ovarian cancer. J. Ovarian Res. 2019 12 1 84 10.1186/s13048‑019‑0558‑5 31481095
    [Google Scholar]
  10. Sheng R. Li X. Wang Z. Wang X. Circular RNAs and their emerging roles as diagnostic and prognostic biomarkers in ovarian cancer. Cancer Lett. 2020 473 139 147 10.1016/j.canlet.2019.12.043 31904484
    [Google Scholar]
  11. Kelly S. Greenman C. Cook P.R. Papantonis A. Exon skipping is correlated with exon circularization. J. Mol. Biol. 2015 427 15 2414 2417 10.1016/j.jmb.2015.02.018 25728652
    [Google Scholar]
  12. Chen L.L. Yang L. Regulation of circRNA biogenesis. RNA Biol. 2015 12 4 381 388 10.1080/15476286.2015.1020271 25746834
    [Google Scholar]
  13. Conn S.J. Pillman K.A. Toubia J. The RNA binding protein quaking regulates formation of circRNAs. Cell 2015 160 6 1125 1134 10.1016/j.cell.2015.02.014 25768908
    [Google Scholar]
  14. Aufiero S. van den Hoogenhof M.M.G. Reckman Y.J. Cardiac circRNAs arise mainly from constitutive exons rather than alternatively spliced exons. RNA 2018 24 6 815 827 10.1261/rna.064394.117 29567830
    [Google Scholar]
  15. Ma Z. Chen H. Xia Z. Energy stress-induced circZFR enhances oxidative phosphorylation in lung adenocarcinoma via regulating alternative splicing. J. Exp. Clin. Cancer Res. 2023 42 1 169 10.1186/s13046‑023‑02723‑z 37461053
    [Google Scholar]
  16. Zheng Z. Zeng X. Zhu Y. CircPPAP2B controls metastasis of clear cell renal cell carcinoma via HNRNPC-dependent alternative splicing and targeting the miR-182-5p/CYP1B1 axis. Mol. Cancer 2024 23 1 4 10.1186/s12943‑023‑01912‑w 38184608
    [Google Scholar]
  17. Martin F.J. Amode M.R. Aneja A. Ensembl 2023. Nucleic Acids Res. 2023 51 D1 D933 D941 10.1093/nar/gkac958 36318249
    [Google Scholar]
  18. Gao Y. Wang J. Zhao F. CIRI: An efficient and unbiased algorithm for de novo circular RNA identification. Genome Biol. 2015 16 1 4 10.1186/s13059‑014‑0571‑3 25583365
    [Google Scholar]
  19. Robinson M.D. McCarthy D.J. Smyth G.K. edgeR: A bioconductor package for differential expression analysis of digital gene expression data. Bioinformatics 2010 26 1 139 140 10.1093/bioinformatics/btp616 19910308
    [Google Scholar]
  20. Shen S. Park J.W. Lu Z. rMATS: Robust and flexible detection of differential alternative splicing from replicate RNA-Seq data. Proc. Natl. Acad. Sci. USA 2014 111 51 E5593 E5601 10.1073/pnas.1419161111 25480548
    [Google Scholar]
  21. Dobin A. Davis C.A. Schlesinger F. STAR: Ultrafast universal RNA-seq aligner. Bioinformatics 2013 29 1 15 21 10.1093/bioinformatics/bts635 23104886
    [Google Scholar]
  22. Liao Y. Smyth G.K. Shi W. featureCounts: An efficient general purpose program for assigning sequence reads to genomic features. Bioinformatics 2014 30 7 923 930 10.1093/bioinformatics/btt656 24227677
    [Google Scholar]
  23. Seiler M. Peng S. Agrawal A.A. Somatic mutational landscape of splicing factor genes and their functional consequences across 33 cancer types. Cell Rep. 2018 23 1 282 296.e4 10.1016/j.celrep.2018.01.088 29617667
    [Google Scholar]
  24. Ryan M. Wong W.C. Brown R. TCGASpliceSeq a compendium of alternative mRNA splicing in cancer. Nucleic Acids Res. 2016 44 D1 D1018 D1022 10.1093/nar/gkv1288 26602693
    [Google Scholar]
  25. Glažar P. Papavasileiou P. Rajewsky N. circBase: A database for circular RNAs. RNA 2014 20 11 1666 1670 10.1261/rna.043687.113 25234927
    [Google Scholar]
  26. Wu W. Ji P. Zhao F. CircAtlas: An integrated resource of one million highly accurate circular RNAs from 1070 vertebrate transcriptomes. Genome Biol. 2020 21 1 101 10.1186/s13059‑020‑02018‑y 32345360
    [Google Scholar]
  27. Paz I. Kosti I. Ares M. Cline M. Mandel-Gutfreund Y. RBPmap: A web server for mapping binding sites of RNA-binding proteins. Nucleic Acids Res. 2014 42 W1 W361-7 10.1093/nar/gku406 24829458
    [Google Scholar]
  28. Chen Y. Yao L. Tang Y. CircNet 2.0: An updated database for exploring circular RNA regulatory networks in cancers. Nucleic Acids Res. 2022 50 D1 D93 D101 10.1093/nar/gkab1036 34850139
    [Google Scholar]
  29. Sun Z.Y. Yang C.L. Huang L.J. circRNADisease v2.0: An updated resource for high-quality experimentally supported circRNA-disease associations. Nucleic Acids Res. 2024 52 D1 D1193 D1200 10.1093/nar/gkad949 37897359
    [Google Scholar]
  30. Shannon P. Markiel A. Ozier O. Cytoscape: A software environment for integrated models of biomolecular interaction networks. Genome Res. 2003 13 11 2498 2504 10.1101/gr.1239303 14597658
    [Google Scholar]
  31. Chen E.Y. Tan C.M. Kou Y. Enrichr: Interactive and collaborative HTML5 gene list enrichment analysis tool. BMC Bioinformatics 2013 14 1 128 10.1186/1471‑2105‑14‑128 23586463
    [Google Scholar]
  32. Zhou Y. Zhou B. Pache L. Metascape provides a biologist-oriented resource for the analysis of systems-level datasets. Nat. Commun. 2019 10 1 1523 10.1038/s41467‑019‑09234‑6 30944313
    [Google Scholar]
  33. Zhuang M Zhao J Wu J Fu S Han P Song X The circular RNA expression profile in ovarian serous cystadenocarcinoma reveals a complex circRNA–miRNA regulatory network BMC Medical Genomics 2021 14 Suppl. 2 276 10.1186/s12920‑021‑01132‑5 34857007
    [Google Scholar]
  34. Wieduwilt M.J. Moasser M.M. The epidermal growth factor receptor family: Biology driving targeted therapeutics. Cell. Mol. Life Sci. 2008 65 10 1566 1584 10.1007/s00018‑008‑7440‑8 18259690
    [Google Scholar]
  35. Burotto M. Chiou V.L. Lee J.M. Kohn E.C. The MAPK pathway across different malignancies: A new perspective. Cancer 2014 120 22 3446 3456 10.1002/cncr.28864 24948110
    [Google Scholar]
  36. Iozzo R.V. Sanderson R.D. Proteoglycans in cancer biology, tumour microenvironment and angiogenesis. J. Cell. Mol. Med. 2011 15 5 1013 1031 10.1111/j.1582‑4934.2010.01236.x 21155971
    [Google Scholar]
  37. Glunde K. Bhujwalla Z.M. Ronen S.M. Choline metabolism in malignant transformation. Nat. Rev. Cancer 2011 11 12 835 848 10.1038/nrc3162 22089420
    [Google Scholar]
  38. Ashwal-Fluss R. Meyer M. Pamudurti N.R. circRNA biogenesis competes with pre-mRNA splicing. Mol. Cell 2014 56 1 55 66 10.1016/j.molcel.2014.08.019 25242144
    [Google Scholar]
  39. Shah S. Brock E.J. Ji K. Mattingly R.R. Ras and Rap1: A tale of two GTPases. Semin. Cancer Biol. 2019 54 29 39 10.1016/j.semcancer.2018.03.005 29621614
    [Google Scholar]
  40. Lu L. Wang J. Wu Y. Wan P. Yang G. Rap1A promotes ovarian cancer metastasis via activation of ERK/p38 and notch signaling. Cancer Med. 2016 5 12 3544 3554 10.1002/cam4.946 27925454
    [Google Scholar]
  41. Wang Z. Zhao T. Zhang S. The Wnt signaling pathway in tumorigenesis, pharmacological targets, and drug development for cancer therapy. Biomark. Res. 2021 9 1 68 10.1186/s40364‑021‑00323‑7 34488905
    [Google Scholar]
  42. Koni M. Pinnarò V. Brizzi M.F. The Wnt signalling pathway: A tailored target in cancer. Int. J. Mol. Sci. 2020 21 20 7697 10.3390/ijms21207697 33080952
    [Google Scholar]
  43. Cristiano B.E. Chan J.C. Hannan K.M. A specific role for AKT3 in the genesis of ovarian cancer through modulation of G(2)-M phase transition. Cancer Res. 2006 66 24 11718 11725 10.1158/0008‑5472.CAN‑06‑1968 17178867
    [Google Scholar]
  44. Cao Q. Lu X. Feng Y.J. Glycogen synthase kinase-3β positively regulates the proliferation of human ovarian cancer cells. Cell Res. 2006 16 7 671 677 10.1038/sj.cr.7310078 16788573
    [Google Scholar]
  45. Li R. Peng C. Zhang X. Wu Y. Pan S. Xiao Y. Roles of Arf6 in cancer cell invasion, metastasis and proliferation. Life Sci. 2017 182 80 84 10.1016/j.lfs.2017.06.008 28625359
    [Google Scholar]
  46. Tejeda-Muñoz N. Mei K.C. Sheladiya P. Monka J. Targeting membrane trafficking as a strategy for cancer treatment. Vaccines 2022 10 5 790 10.3390/vaccines10050790 35632546
    [Google Scholar]
  47. Wright P. Targeting vesicle trafficking: An important approach to cancer chemotherapy. Recent Pat Anti-Cancer Drug Discov 2008 3 2 137 147 10.2174/157489208784638730 18537756
    [Google Scholar]
  48. Peglion F. Etienne-Manneville S. Cell polarity changes in cancer initiation and progression. J. Cell Biol. 2024 223 1 e202308069 10.1083/jcb.202308069 38091012
    [Google Scholar]
  49. Haga R.B. Ridley A.J. Rho GTPases: Regulation and roles in cancer cell biology. Small GTPases 2016 7 4 207 221 10.1080/21541248.2016.1232583 27628050
    [Google Scholar]
  50. Zhang J. Chen S. Wei S. CircRAPGEF5 interacts with RBFOX2 to confer ferroptosis resistance by modulating alternative splicing of TFRC in endometrial cancer. Redox Biol. 2022 57 102493 10.1016/j.redox.2022.102493 36182807
    [Google Scholar]
  51. Yu Y. Fang L. CircRPAP2 regulates the alternative splicing of PTK2 by binding to SRSF1 in breast cancer. Cell Death Discov. 2022 8 1 152 10.1038/s41420‑022‑00965‑y 35368030
    [Google Scholar]
  52. Zhu J. Ye J. Zhang L. Differential expression of circular RNAs in glioblastoma multiforme and its correlation with prognosis. Transl. Oncol. 2017 10 2 271 279 10.1016/j.tranon.2016.12.006 28236760
    [Google Scholar]
  53. Abuduwaili K. Zhu X. Shen Y. Lu S. Liu C. circ_0008797 attenuates non-small cell lung cancer proliferation, metastasis, and aerobic glycolysis by sponging miR-301a-3p/SOCS2. Environ. Toxicol. 2022 37 7 1697 1710 10.1002/tox.23518 35305058
    [Google Scholar]
/content/journals/cbio/10.2174/0115748936358930250518030128
Loading
/content/journals/cbio/10.2174/0115748936358930250518030128
Loading

Data & Media loading...

Supplements

Supplementary material is available on the publisher’s website along with the published article.

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test