Skip to content
2000
image of A Survey of Trends in Biomolecule Recognition for Sensing and Machine Learning Combined with Heterogeneous Information

Abstract

Biomolecule sensing for recognition is exhibited as the fundamental upstream step concerning target identification during the metabolism of individual life. Nevertheless, it is always a complicated work that leverages both and experiments to discriminate the corresponding interaction, affinity, structure, activity, and toxicity concerning target biomolecules. Simultaneously, biological investigation with intelligent computing has extended to bio-sequence analysis and biomedical image processing, especially biomolecule identification in multi-view and multi-modal. This review presents a panorama of contemporary development among biomolecular omics and computing biological sensing, machine learning scenarios, and heterogeneous information with multi-view, multi-modal, structured, and unstructured text and biomedical images. After being given the background, the concept and database of biomolecule interaction, affinity, and structure are introduced. Then, the machine learning paradigms in bioinformatics and biomedical engineering are demonstrated according to epigenetics-centered or pharmacogenomics. Next, the multi-view or multi-modal learning algorithms and optimization strategies with structured and unstructured data formats, including texts and biomedical images are listed in detail. By comparing and analyzing the state-of-the-art works, this study has summarized the advantages of existing methods in target biomolecule identification and the challenges. Finally, future developments are prospected, including the trend of research in robustness, data augmentation, generalized model delineated, and acceleration.

Loading

Article metrics loading...

/content/journals/cbio/10.2174/0115748936359132250421053523
2025-05-14
2025-08-17
Loading full text...

Full text loading...

References

  1. Li J. Telychko M. Yin J. Zhu Y. Li G. Song S. Yang H. Li J. Wu J. Lu J. Wang X. Machine vision automated chiral molecule detection and classification in molecular imaging. J. Am. Chem. Soc. 2021 143 27 10177 10188 10.1021/jacs.1c03091 34227379
    [Google Scholar]
  2. Luo Y.Q. Viswanathan R. Hande M.P. Loh A.H.P. Massively parallel single-molecule telomere length measurement with digital real-time PCR. Science 2020 6 34 eabb7944
    [Google Scholar]
  3. Yan R. Lai L. Xu Z.Q. Jiang F.L. Liu Y. Thermodynamics of the interactions between quantum dots and proteins. Acta Phys. -Chim. Sin. 2017 33 12 2377 2387
    [Google Scholar]
  4. Sadeghi H. Discriminating seebeck sensing of molecules. Phys. Chem. Chem. Phys. 2019 21 5 2378 2381 10.1039/C8CP05991H 30649113
    [Google Scholar]
  5. Jumper J. Evans R. Pritzel A. Green T. Figurnov M. Ronneberger O. Tunyasuvunakool K. Bates R. Žídek A. Potapenko A. Bridgland A. Meyer C. Kohl S.A.A. Ballard A.J. Cowie A. Romera-Paredes B. Nikolov S. Jain R. Adler J. Back T. Petersen S. Reiman D. Clancy E. Zielinski M. Steinegger M. Pacholska M. Berghammer T. Bodenstein S. Silver D. Vinyals O. Senior A.W. Kavukcuoglu K. Kohli P. Hassabis D. Highly accurate protein structure prediction with AlphaFold. Nature 2021 596 7873 583 589 10.1038/s41586‑021‑03819‑2 34265844
    [Google Scholar]
  6. Bryant P. Pozzati G. Elofsson A. Improved prediction of protein-protein interactions using AlphaFold2. Nat. Commun. 2022 13 1 1265 10.1038/s41467‑022‑28865‑w 35273146
    [Google Scholar]
  7. Abramson J. Adler J. Dunger J. Evans R. Green T. Pritzel A. Ronneberger O. Willmore L. Addendum: Accurate structure prediction of biomolecular interactions with alphafold 3. Nature 2024 636 8042 E4 10.1038/s41586‑024‑08416‑7
    [Google Scholar]
  8. Teow J.Y. Zhang Q. Abidin S.A.Z. Tan C.C. Rahman A.S.N.S. Karsani S.A. Othman I. Chen Y. Lakshmipriya T. Gopinath S.C.B. Pioneering biosensor approaches for oral squamous cell carcinoma diagnosis: A comprehensive review. Process Biochem. 2024 141 71 81 10.1016/j.procbio.2024.02.015
    [Google Scholar]
  9. Wadhwa S. Electrochemical biosensors: Mechanism and applications. Educ. Adm. Theory Pract. 2024 30 1 1389 1396
    [Google Scholar]
  10. Liustrovaite V. Drobysh M. Ratautaite V. Ramanaviciene A. Rimkute A. Simanavicius M. Dalgediene I. Kucinskaite-Kodze I. Plikusiene I. Chen C.F. Viter R. Ramanavicius A. Electrochemical biosensor for the evaluation of monoclonal antibodies targeting the N protein of SARS-CoV-2 virus. Sci. Total Environ. 2024 924 171042 10.1016/j.scitotenv.2024.171042 38369150
    [Google Scholar]
  11. Eom K.S. Lee Y.J. Seo H.W. Kang J.Y. Shim J.S. Lee S.H. Sensitive and non-invasive cholesterol determination in saliva via optimization of enzyme loading and platinum nano-cluster composition. Analyst 2020 145 3 908 916 10.1039/C9AN01679A 31820750
    [Google Scholar]
  12. Liu P. Qian X. Li X. Fan L. Li X. Cui D. Yan Y. Enzyme-free electrochemical biosensor based on localized DNA cascade displacement reaction and versatile DNA nanosheets for ultrasensitive detection of exosomal MicroRNA. ACS Appl. Mater. Interf. 2020 12 40 45648 45656 10.1021/acsami.0c14621 32915531
    [Google Scholar]
  13. Erdem A. Senturk H. Yildiz E. Maral M. Amperometric immunosensor developed for sensitive detection of SARS-CoV-2 spike S1 protein in combined with portable device. Talanta 2022 244 123422 10.1016/j.talanta.2022.123422 35395458
    [Google Scholar]
  14. Zeng R. Qiu M. Wan Q. Huang Z. Liu X. Tang D. Knopp D. Smartphone-based electrochemical immunoassay for point-of-care detection of SARS-CoV-2 nucleocapsid protein. Anal. Chem. 2022 94 43 15155 15161 10.1021/acs.analchem.2c03606 36251341
    [Google Scholar]
  15. Xu Y. Wang C. Liu G. Zhao X. Qian Q. Li S. Mi X. Tetrahedral DNA framework based CRISPR electrochemical biosensor for amplification-free miRNA detection. Biosens. Bioelectron. 2022 217 114671 10.1016/j.bios.2022.114671 36122469
    [Google Scholar]
  16. Li D. Zhang X.L. Chai Y.Q. Yuan R. Controllable three-dimensional DNA nanomachine-mediated electrochemical biosensing platform for rapid and ultrasensitive detection of MicroRNA. Anal. Chem. 2023 95 2 acs.analchem.2c04519 10.1021/acs.analchem.2c04519 36596235
    [Google Scholar]
  17. Li C. Jia K. Liang Q. Li Y. He S. Electrochemical biosensors and power supplies for wearable health‐managing textile systems. Interdiscip. Mater. 2024 3 2 270 296 10.1002/idm2.12154
    [Google Scholar]
  18. Khan R. Andreescu S. Catalytic MXCeO2 for enzyme based electrochemical biosensors: Fabrication, characterization and application towards a wearable sweat biosensor. Biosens. Bioelectron. 2024 248 115975 10.1016/j.bios.2023.115975 38159417
    [Google Scholar]
  19. Swami S. Kayenat F. Wajid S. SPR biosensing: Cancer diagnosis and biomarkers quantification. Microchem. J. 2024 197 109792 10.1016/j.microc.2023.109792
    [Google Scholar]
  20. Oliveira D. Carneiro M.C.C.G. Moreira F.T.C. SERS biosensor with plastic antibodies for detection of a cancer biomarker protein. Mikrochim. Acta 2024 191 5 238 10.1007/s00604‑024‑06327‑y 38570401
    [Google Scholar]
  21. Çimen D. Bereli N. Günaydın S. Denizli A. Detection of cardiac troponin-I by optic biosensors with immobilized anti-cardiac troponin-I monoclonal antibody. Talanta 2020 219 121259 10.1016/j.talanta.2020.121259 32887150
    [Google Scholar]
  22. Ma W. Liu L. Zhang X. Liu X. Xu Y. Li S. Zeng M. A microfluidic-based SERS biosensor with multifunctional nanosurface immobilized nanoparticles for sensitive detection of MicroRNA. Anal. Chim. Acta 2022 1221 340139 10.1016/j.aca.2022.340139 35934371
    [Google Scholar]
  23. Zhou Z. Yang Z. Xia L. Zhang H. Construction of an enzyme-based all-fiber SPR biosensor for detection of enantiomers. Biosens. Bioelectron. 2022 198 113836 10.1016/j.bios.2021.113836 34847363
    [Google Scholar]
  24. Chang S. Liu L. Mu C. Wen F. Xiang J. Zhai K. Wang B. Wu L. Nie A. Shu Y. Xue T. Liu Z. An Ultrasensitive SPR biosensor for RNA detection based on robust GeP5 nanosheets. J. Colloid Interface Sci. 2023 651 938 947 10.1016/j.jcis.2023.08.064 37579668
    [Google Scholar]
  25. Qian J. Zhao L. Huang Y. Zhao C. Liu H. Liu X. Cheng Z. Yu F. A microdroplet SERS-RCA biosensor with enhanced specificity and reproducibility for profiling dual miRNAs in idiopathic pulmonary fibrosis diagnosis and monitoring. Chem. Eng. J. 2024 482 149012 10.1016/j.cej.2024.149012
    [Google Scholar]
  26. Efe O. Yildirim T. Assessment of optical detection methods for compact biosensors. Med. Tech. Nat. Cong. 2017 1 4 10.1109/TIPTEKNO.2017.8238089
    [Google Scholar]
  27. Gui C. Dai X. Cui D. Advances of nanotechnology applied to biosensors. Nano Biomed. Eng. 2011 3 4 260 273 10.5101/nbe.v3i4.p260‑273
    [Google Scholar]
  28. Huang X. Zhu Y. Kianfar E. Nano biosensors: Properties, applications and electrochemical techniques. J. Mater. Res. Technol-JMRT 2021 12 1649 1672
    [Google Scholar]
  29. Morales M.A. Halpern J.M. Guide to selecting a biorecognition element for biosensors. Bioconjug. Chem. 2018 29 10 3231 3239 10.1021/acs.bioconjchem.8b00592 30216055
    [Google Scholar]
  30. Polatoğlu İ. Aydın L. Nevruz B.Ç. Özer S. A novel approach for the optimal design of a biosensor. Anal. Lett. 2020 53 9 1428 1445 10.1080/00032719.2019.1709075
    [Google Scholar]
  31. Saylan Y. Erdem Ö. Inci F. Denizli A. Advances in biomimetic systems for molecular recognition and biosensing. Biomimetics 2020 5 2 20 10.3390/biomimetics5020020 32408710
    [Google Scholar]
  32. Kong X.H. Shen C. Tang J.J. CUK-Band: A CUDA-Based Multiple Genomic Sequence Alignment on GPU. Advanced Intelligent Computing in Bioinformatics Cham Springer 2024
    [Google Scholar]
  33. Xu A.W. A fast and exact algorithm for the median of three problem—a graph decomposition approach. Comparative Genomics. RECOMB-CG 2008. Lecture Notes in Computer Science Berlin, Heidelberg Springer 2008 10.1007/978‑3‑540‑87989‑3_14
    [Google Scholar]
  34. Li M. Liao Z. He Y. Wang J. Luo J. Pan Y. ISEA: Iterative seed-extension algorithm for de novo assembly using paired-end information and insert size distribution. IEEE/ACM Trans. Comput. Biol. Bioinformatics 2017 14 4 916 925 10.1109/TCBB.2016.2550433 27076460
    [Google Scholar]
  35. Wu Y. Shen C. Jiang H. Wu X. Strict pattern matching under non-overlapping condition. Sci. China Inf. Sci. 2017 60 1 012101 10.1007/s11432‑015‑0935‑3
    [Google Scholar]
  36. Zhang C.T. Zhang R. Ou H.Y. The Z curve database: A graphic representation of genome sequences. Bioinformatics 2003 19 5 593 599 10.1093/bioinformatics/btg041 12651717
    [Google Scholar]
  37. Yuan Y. Liu B. Xie P. Zhang M.Q. Li Y. Xie Z. Wang X. Model-guided quantitative analysis of microRNA-mediated regulation on competing endogenous RNAs using a synthetic gene circuit. Proc. Natl. Acad. Sci. USA 2015 112 10 3158 3163 10.1073/pnas.1413896112 25713348
    [Google Scholar]
  38. Zeng K. Yang M. Mozafari B. Zaniolo C. Complex pattern matching in complex structures: The XSeq approach. 2013 IEEE 29th International Conference on Data Engineering (ICDE) IEEE, 2013, pp. 1328-1331.
    [Google Scholar]
  39. Bohnsack K.S. Kaden M. Abel J. Villmann T. Alignment-free sequence comparison: A systematic survey from a machine learning perspective. IEEE/ACM Trans. Comput. Biol. Bioinformatics 2023 20 1 119 135 10.1109/TCBB.2022.3140873 34990369
    [Google Scholar]
  40. Gainza P. Sverrisson F. Monti F. Rodolà E. Boscaini D. Bronstein M.M. Correia B.E. Deciphering interaction fingerprints from protein molecular surfaces using geometric deep learning. Nat. Methods 2020 17 2 184 192 10.1038/s41592‑019‑0666‑6 31819266
    [Google Scholar]
  41. Sledzieski S. Singh R. Cowen L. Berger B. D-SCRIPT translates genome to phenome with sequence-based, structure-aware, genome-scale predictions of protein-protein interactions. Cell Syst. 2021 12 10 969 982.e6 10.1016/j.cels.2021.08.010 34536380
    [Google Scholar]
  42. Ieremie I. Ewing R.M. Niranjan M. TransformerGO: Predicting protein–protein interactions by modelling the attention between sets of gene ontology terms. Bioinformatics 2022 38 8 2269 2277 10.1093/bioinformatics/btac104 35176146
    [Google Scholar]
  43. Zhang J. Zhu M. Qian Y. protein2vec: Predicting protein-protein interactions based on LSTM. IEEE/ACM Trans. Comput. Biol. Bioinformatics 2022 19 3 1257 1266 10.1109/TCBB.2020.3003941 32750870
    [Google Scholar]
  44. Yi H.C. You Z.H. Wang M.N. Guo Z.H. Wang Y.B. Zhou J.R. RPI-SE: A stacking ensemble learning framework for ncRNA-protein interactions prediction using sequence information. BMC Bioinformatics 2020 21 1 60 10.1186/s12859‑020‑3406‑0 32070279
    [Google Scholar]
  45. Zhang J. Chen Q. Liu B. iDRBP_MMC: Identifying DNA-binding proteins and RNA-binding proteins based on multi-label learning model and motif-based convolutional neural network. J. Mol. Biol. 2020 432 22 5860 5875 10.1016/j.jmb.2020.09.008 32920048
    [Google Scholar]
  46. Yu B. Wang X. Zhang Y. Gao H. Wang Y. Liu Y. Gao X. RPI-MDLStack: Predicting RNA–protein interactions through deep learning with stacking strategy and LASSO. Appl. Soft Comput. 2022 120 108676 10.1016/j.asoc.2022.108676
    [Google Scholar]
  47. Arican O.C. Gumus O. PredDRBP-MLP: Prediction of DNA-binding proteins and RNA-binding proteins by multilayer perceptron. Comput. Biol. Med. 2023 164 107317 10.1016/j.compbiomed.2023.107317 37562328
    [Google Scholar]
  48. Wang Y. Ding P. Wang C. He S. Gao X. Yu B. RPI-GGCN: Prediction of RNA-protein interaction based on interpretability gated graph convolution neural network and co-regularized variational autoencoders. IEEE Trans. Neural Netw. Learn. Syst. 2024 PP 1 15 10.1109/TNNLS.2024.3390935 38709606
    [Google Scholar]
  49. Sagendorf J.M. Mitra R. Huang J. Chen X.S. Rohs R. PNAbind: Structure-based prediction of protein-nucleic acid binding using graph neural networks. bioRxiv 2024 1 9
    [Google Scholar]
  50. Ali F. Kumar H. Patil S. Ahmed A. Banjar A. Daud A. DBP-DeepCNN: Prediction of DNA-binding proteins using wavelet-based denoising and deep learning. Chemom. Intell. Lab. Syst. 2022 229 104639 10.1016/j.chemolab.2022.104639
    [Google Scholar]
  51. Pradhan U.K. Meher P.K. Naha S. Pal S. Gupta A. Parsad R. P l DBPred: A novel computational model for discovery of DNA binding proteins in plants. Brief. Bioinform. 2023 24 1 bbac483 10.1093/bib/bbac483 36416116
    [Google Scholar]
  52. Grønning A.G.B. Doktor T.K. Larsen S.J. Petersen U.S.S. Holm L.L. Bruun G.H. Hansen M.B. Hartung A.M. Baumbach J. Andresen B.S. DeepCLIP: Predicting the effect of mutations on protein–RNA binding with deep learning. Nucleic Acids Res. 2020 48 13 gkaa530 10.1093/nar/gkaa530 32558887
    [Google Scholar]
  53. Pan X. Fang Y. Li X. Yang Y. Shen H.B. RBPsuite: RNA-protein binding sites prediction suite based on deep learning. BMC Genomics 2020 21 1 884 10.1186/s12864‑020‑07291‑6 33297946
    [Google Scholar]
  54. Wang X. Zhang Y. Yu B. Salhi A. Chen R. Wang L. Liu Z. Prediction of protein-protein interaction sites through eXtreme gradient boosting with kernel principal component analysis. Comput. Biol. Med. 2021 134 104516 10.1016/j.compbiomed.2021.104516 34119922
    [Google Scholar]
  55. Sanchez-Garcia R. Macias J.R. Sorzano C.O.S. Carazo J.M. Segura J. BIPSPI+: Mining type-specific datasets of protein complexes to improve protein binding site prediction. J. Mol. Biol. 2022 434 11 167556 10.1016/j.jmb.2022.167556 35662471
    [Google Scholar]
  56. Roche R. Moussad B. Shuvo M.H. Tarafder S. Bhattacharya D. EquiPNAS: Improved protein–nucleic acid binding site prediction using protein-language-model-informed equivariant deep graph neural networks. Nucleic Acids Res. 2024 52 5 e27 e27 10.1093/nar/gkae039 38281252
    [Google Scholar]
  57. Xie H. Ding Y. Qian Y. Tiwari P. Guo F. Structured sparse regularization based random vector functional link networks for DNA N4-methylcytosine sites prediction. Expert Syst. Appl. 2024 235 121157 10.1016/j.eswa.2023.121157
    [Google Scholar]
  58. Zhu Y.H. Liu Z. Liu Y. Ji Z. Yu D.J. ULDNA: Integrating unsupervised multi-source language models with LSTM-attention network for high-accuracy protein–DNA binding site prediction. Brief. Bioinform. 2024 25 2 bbae040 10.1093/bib/bbae040 38349057
    [Google Scholar]
  59. Wang W. Sun Z. Liu D. Zhang H. Li J. Wang X. Zhou Y. MAHyNet: Parallel hybrid network for RNA-protein binding sites prediction based on multi-head attention and expectation pooling. IEEE/ACM Trans. Comput. Biol. Bioinformatics 2024 21 3 416 427 10.1109/TCBB.2024.3366545 38363672
    [Google Scholar]
  60. Senior A.W. Evans R. Jumper J. Kirkpatrick J. Sifre L. Green T. Qin C. Žídek A. Nelson A.W.R. Bridgland A. Penedones H. Petersen S. Simonyan K. Crossan S. Kohli P. Jones D.T. Silver D. Kavukcuoglu K. Hassabis D. Improved protein structure prediction using potentials from deep learning. Nature 2020 577 7792 706 710 10.1038/s41586‑019‑1923‑7 31942072
    [Google Scholar]
  61. Fu L. Cao Y. Wu J. Peng Q. Nie Q. Xie X. UFold: Fast and accurate RNA secondary structure prediction with deep learning. Nucleic Acids Res. 2022 50 3 e14 e14 10.1093/nar/gkab1074 34792173
    [Google Scholar]
  62. Shen C. Chen Y. Xiao F. Yang T. Wang X. Chen S. Tang J. Liao Z. BAT-Net: An enhanced RNA Secondary Structure prediction via bidirectional GRU-based network with attention mechanism. Comput. Biol. Chem. 2022 101 107765 10.1016/j.compbiolchem.2022.107765 36113329
    [Google Scholar]
  63. Fang X. Wang F. Liu L. He J. Lin D. Xiang Y. Zhu K. Zhang X. Wu H. Li H. Song L. A method for multiple-sequence-alignment-free protein structure prediction using a protein language model. Nat. Mach. Intell. 2023 5 10 1087 1096 10.1038/s42256‑023‑00721‑6
    [Google Scholar]
  64. Lee J.W. Won J.H. Jeon S. Choo Y. Yeon Y. Oh J.S. Kim M. Kim S. Joung I. Jang C. Lee S.J. Kim T.H. Jin K.H. Song G. Kim E.S. Yoo J. Paek E. Noh Y.K. Joo K. DeepFold: Enhancing protein structure prediction through optimized loss functions, improved template features, and re-optimized energy function. Bioinformatics 2023 39 12 btad712 10.1093/bioinformatics/btad712 37995286
    [Google Scholar]
  65. Huang Z. Wang J. Yan Z. Wan L. Guo M. Differential gene expression prediction by ensemble deep networks on histone modification data. IEEE/ACM Trans. Comput. Biol. Bioinformatics 2023 20 1 340 351 10.1109/TCBB.2021.3139634 34971538
    [Google Scholar]
  66. Cretin G. Galochkina T. Brevern D.A.G. Gelly J.C. PYTHIA: Deep learning approach for local protein conformation prediction. Int. J. Mol. Sci. 2021 22 16 8831 10.3390/ijms22168831 34445537
    [Google Scholar]
  67. Zheng K. Zhang X.L. Wang L. You Z.H. Ji B.Y. Liang X. Li Z.W. SPRDA: A link prediction approach based on the structural perturbation to infer disease-associated Piwi-interacting RNAs. Brief. Bioinform. 2023 24 1 bbac498 10.1093/bib/bbac498 36445194
    [Google Scholar]
  68. Lv X. Guan Y. Yang J. Wu J. Clinical relation extraction with deep learning. Inter. J. Hybr. Infor. Tech. 2016 9 7 237 248 10.14257/ijhit.2016.9.7.22
    [Google Scholar]
  69. Huang K. Xiao C. Glass L.M. Sun J. MolTrans: Molecular interaction transformer for drug–target interaction prediction. Bioinformatics 2021 37 6 830 836 10.1093/bioinformatics/btaa880 33070179
    [Google Scholar]
  70. Chen C. Shi H. Jiang Z. Salhi A. Chen R. Cui X. Yu B. DNN-DTIs: Improved drug-target interactions prediction using XGBoost feature selection and deep neural network. Comput. Biol. Med. 2021 136 104676 10.1016/j.compbiomed.2021.104676 34375902
    [Google Scholar]
  71. Nguyen T. Le H. Quinn T.P. Nguyen T. Le T.D. Venkatesh S. GraphDTA: Predicting drug–target binding affinity with graph neural networks. Bioinformatics 2021 37 8 1140 1147 10.1093/bioinformatics/btaa921 33119053
    [Google Scholar]
  72. Abbasi K. Razzaghi P. Poso A. Amanlou M. Ghasemi J.B. Masoudi-Nejad A. DeepCDA: Deep cross-domain compound–protein affinity prediction through LSTM and convolutional neural networks. Bioinformatics 2020 36 17 4633 4642 10.1093/bioinformatics/btaa544 32462178
    [Google Scholar]
  73. Yuan W. Chen G. Chen C.Y.C. FusionDTA: Attention-based feature polymerizer and knowledge distillation for drug-target binding affinity prediction. Brief. Bioinform. 2022 23 1 bbab506 10.1093/bib/bbab506 34929738
    [Google Scholar]
  74. Li T. Zhao X.M. Li L. Co-VAE: Drug-target binding affinity prediction by co-regularized variational autoencoders. IEEE Trans. Pattern Anal. Mach. Intell. 2022 44 12 8861 8873 10.1109/TPAMI.2021.3120428 34652996
    [Google Scholar]
  75. Mukherjee S. Ghosh M. Basuchowdhuri P. DeepGLSTM: Deep graph convolutional network and LSTM based approach for predicting drug-target binding affinity. Proceedings of the 2022 SIAM International Conference On Data Mining (SDM) 2022, pp. 729-737. 10.1137/1.9781611977172.82
    [Google Scholar]
  76. Zhou C. Li Z. Song J. Xiang W. Trans V.A.E-D.T.A. TransVAE-DTA: Transformer and variational autoencoder network for drug-target binding affinity prediction. Comput. Meth. Prog. Biomed. 2024 244 108003 10.1016/j.cmpb.2023.108003 38181572
    [Google Scholar]
  77. Nyamabo A.K. Yu H. Shi J.Y. SSI–DDI: Substructure–substructure interactions for drug–drug interaction prediction. Brief. Bioinform. 2021 22 6 bbab133 10.1093/bib/bbab133 33951725
    [Google Scholar]
  78. Nyamabo A.K. Yu H. Liu Z. Shi J.Y. Drug–drug interaction prediction with learnable size-adaptive molecular substructures. Brief. Bioinform. 2022 23 1 bbab441 10.1093/bib/bbab441 34695842
    [Google Scholar]
  79. Ma M. Lei X. A dual graph neural network for drug–drug interactions prediction based on molecular structure and interactions. PLOS Comput. Biol. 2023 19 1 e1010812 10.1371/journal.pcbi.1010812 36701288
    [Google Scholar]
  80. Nguyen T. Nguyen G.T.T. Nguyen T. Le D.H. Graph convolutional networks for drug response prediction. IEEE/ACM Trans. Comput. Biol. Bioinformatics 2022 19 1 146 154 10.1109/TCBB.2021.3060430 33606633
    [Google Scholar]
  81. Liu X. Song C. Huang F. Fu H. Xiao W. Zhang W. GraphCDR: A graph neural network method with contrastive learning for cancer drug response prediction. Brief. Bioinform. 2022 23 1 bbab457 10.1093/bib/bbab457 34727569
    [Google Scholar]
  82. Chu T. Nguyen T.T. Hai B.D. Nguyen Q.H. Nguyen T. Graph transformer for drug response prediction. IEEE/ACM Trans. Comput. Biol. Bioinformatics 2023 20 2 1065 1072 10.1109/TCBB.2022.3206888 36107906
    [Google Scholar]
  83. Oloulade B.M. Gao J. Chen J. Al-Sabri R. Wu Z. Cancer drug response prediction with surrogate modeling-based graph neural architecture search. Bioinformatics 2023 39 8 btad478 10.1093/bioinformatics/btad478 37555809
    [Google Scholar]
  84. Lee C.Y. Chen Y.P.P. Descriptive prediction of drug side‐effects using a hybrid deep learning model. Int. J. Intell. Syst. 2021 36 6 2491 2510 10.1002/int.22389
    [Google Scholar]
  85. Bang S. Jhee J.H. Shin H. Polypharmacy side-effect prediction with enhanced interpretability based on graph feature attention network. Bioinformatics 2021 37 18 2955 2962 10.1093/bioinformatics/btab174 33714994
    [Google Scholar]
  86. Liang X. Li J. Fu Y. Qu L. Tan Y. Zhang P. A novel machine learning model based on sparse structure learning with adaptive graph regularization for predicting drug side effects. J. Biomed. Inform. 2022 132 104131 10.1016/j.jbi.2022.104131 35840061
    [Google Scholar]
  87. Jin Z. Wang M. Zheng X. Chen J. Tang C. Drug side effects prediction via cross attention learning and feature aggregation. Expert Syst. Appl. 2024 248 123346 10.1016/j.eswa.2024.123346
    [Google Scholar]
  88. Zhao T. Hu Y. Valsdottir L.R. Zang T. Peng J. Identifying drug–target interactions based on graph convolutional network and deep neural network. Brief. Bioinform. 2021 22 2 2141 2150 10.1093/bib/bbaa044 32367110
    [Google Scholar]
  89. Cheng Z. Zhao Q. Li Y. Wang J. IIFDTI: Predicting drug–target interactions through interactive and independent features based on attention mechanism. Bioinformatics 2022 38 17 4153 4161 10.1093/bioinformatics/btac485 35801934
    [Google Scholar]
  90. Zhang P. Wei Z. Che C. Jin B. DeepMGT-DTI: Transformer network incorporating multilayer graph information for Drug–Target interaction prediction. Comput. Biol. Med. 2022 142 105214 10.1016/j.compbiomed.2022.105214 35030496
    [Google Scholar]
  91. Pang S. Zhang Y. Song T. Zhang X. Wang X. Rodriguez-Patón A. AMDE: A novel attention-mechanism-based multidimensional feature encoder for drug–drug interaction prediction. Brief. Bioinform. 2022 23 1 bbab545 10.1093/bib/bbab545 34965586
    [Google Scholar]
  92. Yu L. Cheng M. Qiu W. Xiao X. Lin W. idse-HE: Hybrid embedding graph neural network for drug side effects prediction. J. Biomed. Inform. 2022 131 104098 10.1016/j.jbi.2022.104098 35636720
    [Google Scholar]
  93. Bai P. Miljković F. John B. Lu H. Interpretable bilinear attention network with domain adaptation improves drug–target prediction. Nat. Mach. Intell. 2023 5 2 126 136 10.1038/s42256‑022‑00605‑1
    [Google Scholar]
  94. Bongini P. Messori E. Pancino N. Bianchini M. A Deep learning approach to the prediction of drug side-e ffects on molecular graphs. IEEE/ACM Trans. Comput. Biol. Bioinformat. 2023 20 6 3681 3690 10.1109/TCBB.2023.3311015
    [Google Scholar]
  95. Long W. Yang Y. Shen H.B. ImPLoc: A multi-instance deep learning model for the prediction of protein subcellular localization based on immunohistochemistry images. Bioinformatics 2020 36 7 2244 2250 10.1093/bioinformatics/btz909 31804670
    [Google Scholar]
  96. Su R. He L. Liu T. Liu X. Wei L. Protein subcellular localization based on deep image features and criterion learning strategy. Brief. Bioinform. 2021 22 4 bbaa313 10.1093/bib/bbaa313 33320936
    [Google Scholar]
  97. Tu Y. Lei H. Shen H.B. Yang Y. SIFLoc: A self-supervised pre-training method for enhancing the recognition of protein subcellular localization in immunofluorescence microscopic images. Brief. Bioinform. 2022 23 2 bbab605 10.1093/bib/bbab605 35152293
    [Google Scholar]
  98. Ding Y. Jiang L. Tang J. Guo F. Identification of human microRNA-disease association via hypergraph embedded bipartite local model. Comput. Biol. Chem. 2020 89 107369 10.1016/j.compbiolchem.2020.107369 33099120
    [Google Scholar]
  99. Huang L. Lin J. Liu R. Zheng Z. Meng L. Chen X. Li X. Wong K.C. CoaDTI: Multi-modal co-attention based framework for drug–target interaction annotation. Brief. Bioinform. 2022 23 6 bbac446 10.1093/bib/bbac446 36274236
    [Google Scholar]
  100. Wang G. Xue M.Q. Shen H.B. Xu Y.Y. Learning protein subcellular localization multi-view patterns from heterogeneous data of imaging, sequence and networks. Brief. Bioinform. 2022 23 2 bbab539 10.1093/bib/bbab539 35018423
    [Google Scholar]
  101. Li Y. Guo Z. Gao X. Wang G. MMCL-CDR: Enhancing cancer drug response prediction with multi-omics and morphology images contrastive representation learning. Bioinformatics 2023 39 12 btad734 10.1093/bioinformatics/btad734 38070154
    [Google Scholar]
  102. Shen C. Mao D. Tang J. Liao Z. Chen S. Prediction of lncRNA-protein interactions based on kernel combinations and graph convolutional networks. IEEE J. Biomed. Health Inform. 2024 28 4 1937 1948 10.1109/JBHI.2023.3286917 37327093
    [Google Scholar]
  103. Gan Y. Liu W. Xu G. Yan C. Zou G. DMFDDI: Deep multimodal fusion for drug–drug interaction prediction. Brief. Bioinform. 2023 24 6 bbad397 10.1093/bib/bbad397 37930025
    [Google Scholar]
  104. Yang X. Wuchty S. Liang Z. Ji L. Wang B. Zhu J. Zhang Z. Dong Y. Multi-modal features-based human-herpesvirus protein–protein interaction prediction by using LightGBM. Brief. Bioinform. 2024 25 2 bbae005 10.1093/bib/bbae005 38279649
    [Google Scholar]
  105. Ren Z. Zhang Z. Wei J. Dong B. Lee C. Wavelength-multiplexed hook nanoantennas for machine learning enabled mid-infrared spectroscopy. Nat. Commun. 2022 13 1 3859 10.1038/s41467‑022‑31520‑z 35790752
    [Google Scholar]
  106. Lin C. Li Y. Peng Y. Zhao S. Xu M. Zhang L. Huang Z. Shi J. Yang Y. Recent development of surface-enhanced Raman scattering for biosensing. J. Nanobiotechnology 2023 21 1 149 10.1186/s12951‑023‑01890‑7 37149605
    [Google Scholar]
  107. Wu H. Hou Y. Yoon J. Down-selection of biomolecules to assemble “reverse micelle” with perovskites. Nat. Communicat. 2024 15 1 772 10.1038/s41467‑024‑44881‑4
    [Google Scholar]
  108. Patel S.K. Surve J. Baz A. Parmar Y. Optimization of novel 2D material based SPR biosensor using machine learning. IEEE Trans. Nanobiosci. 2024 23 2 328 335 10.1109/TNB.2024.3354810 38271173
    [Google Scholar]
  109. Dutt S. Shao H. Karawdeniya B. Bandara Y.M.N.D.Y. Daskalaki E. Suominen H. Kluth P. High accuracy protein identification: Fusion of solid-state nanopore sensing and machine learning. Small Methods 2023 7 11 2300676 10.1002/smtd.202300676 37718979
    [Google Scholar]
  110. Al-Shourbaji I. Kachare P.H. Alshathri S. Duraibi S. Elnaim B. Elaziz A.M. An efficient parallel reptile search algorithm and snake optimizer approach for feature selection. Mathematics 2022 10 13 2351 10.3390/math10132351
    [Google Scholar]
  111. Al-Shourbaji I. Kachare P.H. Abualigah L. Abdelhag M.E. Elnaim B. Anter A.M. Gandomi A.H. A Deep batch normalized convolution approach for improving COVID-19 detection from chest X-ray images. Pathogens 2022 12 1 17 10.3390/pathogens12010017 36678365
    [Google Scholar]
  112. Al-Shourbaji I. Kachare P. Fadlelseed S. Jabbari A. Hussien A.G. Al-Saqqar F. Abualigah L. Alameen A. Artificial ecosystem-based optimization with dwarf mongoose optimization for feature selection and global optimization problems. Inter. J. Comput. Intell. Syst. 2023 16 1 102 10.1007/s44196‑023‑00279‑6
    [Google Scholar]
  113. Zhuo L. Chi Z.W. Xu M.H. Huang H.Y. Zhao J. Zheng H. He C. Mao X. Zhang W.T. ProtLLM: An interleaved protein-language LLM with protein-as-word pre-training. arXiv:2403.07920 2024 8950 8963
    [Google Scholar]
/content/journals/cbio/10.2174/0115748936359132250421053523
Loading
/content/journals/cbio/10.2174/0115748936359132250421053523
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test