Skip to content
2000
image of MK-NMF: A Novel Multiple Kernel-based Non-negative Matrix Factorization Model to Mini Synergistic Drug Combinations in Cell Lines

Abstract

Introduction

Drug synergism may occur when two or more drugs are used in combination. Synergistic drug pairs can enhance efficacy and reduce drug dosage and side effects. Therefore, employing computational methodologies to identify specific synergistic drug combinations for clinical application is of significant importance.

Methods

We proposed a multiple kernel-based non-negative matrix factorization, MK-NMF, specifically for mining specific synergistic drug pairs in cell lines. In this method, we treated the features of drug pair space and cell line space in the form of two kernel matrices. We incorporated feature kernel matrices into the matrix factorization process.

Results

MK-NMF achieved an area under the curve (AUC) of 0.884 and an area under the precision recall curve (AUPR) of 0.537 on the NCI ALMANAC dataset. Both measures were more than a 5% improvement over the previous matrix factorization model. MK-NMF had good robustness with the missing input data. Its performance was stable when the amount of matrix data input was at least 40%. Literature and experimental verification confirmed some of our predictions.

Discussion

The increase in data volume and the introduction of more high-quality features will further enhance the performance of MK-NMF. Single-drug response data will help address the challenge of predicting synergistic combinations of new drugs.

Conclusion

MK-NMF could assist medical professionals in rapidly screening synergistic drug combinations against specific cancer cell lines. The source code of MK-NMF is freely available at https://github.com/XDRFDH/MK-NMF.

Loading

Article metrics loading...

/content/journals/cbio/10.2174/0115748936364740250614061809
2025-07-14
2025-10-31
Loading full text...

Full text loading...

References

  1. Wishart D.S. Emerging applications of metabolomics in drug discovery and precision medicine. Nat. Rev. Drug Discov. 2016 15 7 473 484 10.1038/nrd.2016.32 26965202
    [Google Scholar]
  2. van Mil J.W.F. Stockley’s drug interactions 2008, the pocket companion. Pharm. World Sci. 2008 30 375 10.1007/s11096‑008‑9219‑2
    [Google Scholar]
  3. Percha B. Altman R.B. Informatics confronts drug–drug interactions. Trends Pharmacol. Sci. 2013 34 3 178 184 10.1016/j.tips.2013.01.006 23414686
    [Google Scholar]
  4. Bjornsson T.D. Callaghan J.T. Einolf H.J. The conduct of in vitro and in vivo drug-drug interaction studies: A Pharmaceutical Research and Manufacturers of America (PhRMA) perspective. Drug Metab. Dispos. 2003 31 7 815 832 10.1124/dmd.31.7.815 12814957
    [Google Scholar]
  5. Magnus D. Rodgers S. Avery A.J. GPs’ views on computerized drug interaction alerts: Questionnaire survey. J. Clin. Pharm. Ther. 2002 27 5 377 382 10.1046/j.1365‑2710.2002.00434.x 12383140
    [Google Scholar]
  6. Li H. Zhou Y. Liao L. Pharmacokinetics effects of chuanxiong rhizoma on warfarin in pseudo germ-free rats. Front. Pharmacol. 2023 13 1022567 10.3389/fphar.2022.1022567 36686675
    [Google Scholar]
  7. Hu Y. Zhang Q. Bai X. Screening and modification of (+)-germacrene A synthase for the production of the anti-tumor drug (−)-β-elemene in engineered Saccharomyces cerevisiae. Int. J. Biol. Macromol. 2024 279 Pt 4 135455 10.1016/j.ijbiomac.2024.135455 39260653
    [Google Scholar]
  8. Li X. Luo J-Q. Liao X-Q. Allicin inhibits the growth of HONE-1 and HNE1 human nasopharyngeal carcinoma cells by inducing ferroptosis. Neoplasma 2024 71 3 243 254 10.4149/neo_2024_240108N8 38958714
    [Google Scholar]
  9. Paltun B.G. Kaski S. Mamitsuka H. DIVERSE: Bayesian data IntegratiVE learning for precise drug response prediction. IEEE/ACM Trans. Comput. Biol. Bioinformatics 2022 19 4 2197 2207 10.1109/TCBB.2021.3065535 33705322
    [Google Scholar]
  10. Liu H. Zhao Y. Zhang L. Chen X. Anti-cancer drug response prediction using neighbor-based collaborative filtering with global effect removal. Mol. Ther. Nucleic Acids 2018 13 303 311 10.1016/j.omtn.2018.09.011 30321817
    [Google Scholar]
  11. Güvenç Paltun B. Mamitsuka H. Kaski S. Improving drug response prediction by integrating multiple data sources: Matrix factorization, kernel and network-based approaches. Brief. Bioinform. 2021 22 1 346 359 10.1093/bib/bbz153 31838491
    [Google Scholar]
  12. Xu M. Zhou H. Hu Y. Duan L.L. Bayesian inference using the proximal mapping: Uncertainty quantification under varying dimensionality. J. Am. Stat. Assoc. 2024 119 547 1847 1858 10.1080/01621459.2023.2220170
    [Google Scholar]
  13. Hu J. Gao J. Fang X. DTSyn: a dual-transformer-based neural network to predict synergistic drug combinations. Brief. Bioinform. 2022 23 5 bbac302 10.1093/bib/bbac302 35915050
    [Google Scholar]
  14. Wang T. Szedmak S. Wang H. Modeling drug combination effects via latent tensor reconstruction. Bioinformatics 2021 37 Supplementary_1 i93 i101 10.1093/bioinformatics/btab308
    [Google Scholar]
  15. Zhang T. Zhang L. Payne P.R.O. Li F. Synergistic drug combination prediction by integrating multiomics data in deep learning models. Translational Bioinformatics for Therapeutic Development. Markowitz J. New York, NY Springer US 2021 223 238 10.1007/978‑1‑0716‑0849‑4_12
    [Google Scholar]
  16. Zhang P. Tu S. A knowledge graph embedding-based method for predicting the synergistic effects of drug combinations. 2022 IEEE International Conference on Bioinformatics and Biomedicine (BIBM) 2022 Las Vegas, NV, USA 06-08 Dec. 1974 1981 10.1109/BIBM55620.2022.9995466
    [Google Scholar]
  17. Wu L. Gao J. Zhang Y. A hybrid deep forest-based method for predicting synergistic drug combinations. Cell Reports Methods 2023 3 2 100411 10.1016/j.crmeth.2023.100411 36936075
    [Google Scholar]
  18. Wang L. Li X. Zhang L. Gao Q. Improved anticancer drug response prediction in cell lines using matrix factorization with similarity regularization. BMC Cancer 2017 17 1 513 10.1186/s12885‑017‑3500‑5 28768489
    [Google Scholar]
  19. Suphavilai C. Bertrand D. Nagarajan N. Predicting cancer drug response using a recommender system. Bioinformatics 2018 34 22 3907 3914 10.1093/bioinformatics/bty452 29868820
    [Google Scholar]
  20. Rohani N. Eslahchi C. Katanforoush A. ISCMF: Integrated similarity-constrained matrix factorization for drug–drug interaction prediction. Netw. Model. Anal. Health Inform. Bioinform. 2020 9 10.1007/s13721‑019‑0215‑3
    [Google Scholar]
  21. Shtar G. Rokach L. Shapira B. Detecting drug-drug interactions using artificial neural networks and classic graph similarity measures. PLoS One 2019 14 8 e0219796 10.1371/journal.pone.0219796 31369568
    [Google Scholar]
  22. Zhang W. Chen Y. Li D. Yue X. Manifold regularized matrix factorization for drug-drug interaction prediction. J. Biomed. Inform. 2018 88 90 97 10.1016/j.jbi.2018.11.005 30445219
    [Google Scholar]
  23. Zhang Z-Y. Nonnegative matrix factorization: Models, algorithms and applications. Data Mining: Foundations and Intelligent Paradigms. Holmes D.E. Jain L.C. Berlin, Heidelberg Springer 2012 99 134 10.1007/978‑3‑642‑23241‑1_6
    [Google Scholar]
  24. Cheng F. Lu W. Liu C. A genome-wide positioning systems network algorithm for in silico drug repurposing. Nat. Commun. 2019 10 1 3476 10.1038/s41467‑019‑10744‑6 31375661
    [Google Scholar]
  25. Cheng F. Kovács I.A. Barabási A.L. Network-based prediction of drug combinations. Nat. Commun. 2019 10 1 1197 10.1038/s41467‑019‑09186‑x 30867426
    [Google Scholar]
  26. Holbeck S.L. Camalier R. Crowell J.A. The National Cancer Institute ALMANAC: A comprehensive screening resource for the detection of anticancer drug pairs with enhanced therapeutic activity. Cancer Res. 2017 77 13 3564 3576 10.1158/0008‑5472.CAN‑17‑0489 28446463
    [Google Scholar]
  27. Holbeck S.L. Collins J.M. Doroshow J.H. Analysis of Food and Drug Administration-approved anticancer agents in the NCI60 panel of human tumor cell lines. Mol. Cancer Ther. 2010 9 5 1451 1460 10.1158/1535‑7163.MCT‑10‑0106 20442306
    [Google Scholar]
  28. Doroshow J.H. Parchment R.E. Oncologic phase 0 trials incorporating clinical pharmacodynamics: From concept to patient. Clin. Cancer Res. 2008 14 12 3658 3663 10.1158/1078‑0432.CCR‑07‑4562 18559579
    [Google Scholar]
  29. Rebucci M. Michiels C. Molecular aspects of cancer cell resistance to chemotherapy. Biochem. Pharmacol. 2013 85 9 1219 1226 10.1016/j.bcp.2013.02.017 23435357
    [Google Scholar]
  30. Chen J. Chen Z. Chen R. HCDT: An integrated highly confident drug–target resource. Database 2022 2022 baac101 10.1093/database/baac101 36420558
    [Google Scholar]
  31. Wang Y. Xiao J. Suzek T.O. Zhang J. Wang J. Bryant S.H. PubChem: A public information system for analyzing bioactivities of small molecules. Nucleic Acids Res. 2009 37 Suppl. 2 W623-33 10.1093/nar/gkp456
    [Google Scholar]
  32. Law V. Knox C. Djoumbou Y. DrugBank 4.0: Shedding new light on drug metabolism. Nucleic Acids Res. 2014 42 D1 D1091 D1097 10.1093/nar/gkt1068
    [Google Scholar]
  33. Knox C. Law V. Jewison T. DrugBank 3.0: A comprehensive resource for ‘omics’ research on drugs. Nucleic Acids Res. 2011 39 Suppl. 1 D1035 D1041 10.1093/nar/gkq1126
    [Google Scholar]
  34. Wishart D.S. Knox C. Guo A.C. DrugBank: A comprehensive resource for in silico drug discovery and exploration. Nucleic Acids Res. 2006 34 Suppl. 1 D668 D672 10.1093/nar/gkj067
    [Google Scholar]
  35. Wishart D.S. Knox C. Guo A.C. DrugBank: A knowledgebase for drugs, drug actions and drug targets. Nucleic Acids Res. 2008 36 Suppl. 1 D901 D906 10.1093/nar/gkm958
    [Google Scholar]
  36. Kuhn M. Campillos M. Letunic I. Jensen L.J. Bork P. A side effect resource to capture phenotypic effects of drugs. Mol. Syst. Biol. 2010 6 1 343 10.1038/msb.2009.98 20087340
    [Google Scholar]
  37. Reinhold W.C. Sunshine M. Liu H. CellMiner: A web-based suite of genomic and pharmacologic tools to explore transcript and drug patterns in the NCI-60 cell line set. Cancer Res. 2012 72 14 3499 3511 10.1158/0008‑5472.CAN‑12‑1370 22802077
    [Google Scholar]
  38. Shankavaram U.T. Varma S. Kane D. CellMiner: A relational database and query tool for the NCI-60 cancer cell lines. BMC Genomics 2009 10 10.1186/1471‑2164‑10‑277
    [Google Scholar]
  39. Liu M. Dai W. Peng W. Fu Y. Pan Y. A multi-view approach for predicting microbedisease associations by fusing the linear and nonlinear features. EEE International Conference on Bioinformatics and Biomedicine (BIBM). Seoul, Korea (South), 16-19 Dec. 2020 323 328 10.1109/BIBM49941.2020.9313357
    [Google Scholar]
  40. Li J. Huo Y. Wu X. Essentiality and transcriptome-enriched pathway scores predict drug-combination synergy. Biology 2020 9 9 278 10.3390/biology9090278 32906805
    [Google Scholar]
  41. Zhang W. Chen Y. Li D. Drug-target interaction prediction through label propagation with linear neighborhood information. Molecules 2017 22 12 2056 10.3390/molecules22122056 29186828
    [Google Scholar]
  42. Zhang W. Yue X. Lin W. Predicting drug-disease associations by using similarity constrained matrix factorization. BMC Bioinformatics 2018 19 1 233 10.1186/s12859‑018‑2220‑4 29914348
    [Google Scholar]
  43. Zheng X. Ding H. Mamitsuka H. Zhu S. Collaborative matrix factorization with multiple similarities for predicting drug-target interactions. Proceedings of the 19th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining Illinois, Chicago, USA Aug. 11-14, 2013 1025 1033 10.1145/2487575.2487670
    [Google Scholar]
  44. Ding Y. Tang J. Guo F. Zou Q. Identification of drug–target interactions via multiple kernel-based triple collaborative matrix factorization. Brief. Bioinform. 2022 23 2 bbab582 10.1093/bib/bbab582 35134117
    [Google Scholar]
  45. van Laarhoven T. Nabuurs S.B. Marchiori E. Gaussian interaction profile kernels for predicting drug–target interaction. Bioinformatics 2011 27 21 3036 3043 10.1093/bioinformatics/btr500 21893517
    [Google Scholar]
  46. Lee D.D. Seung H.S. Algorithms for non-negative matrix factorization. Leen T. Dietterich T. Tresp V. Advances in Neural Information Processing Systems MIT Press 2000
    [Google Scholar]
  47. Cheung V.C. Tresch M.C. Non-negative matrix factorization algorithms modeling noise distributions within the exponential family. Conf. Proc. IEEE Eng. Med. Biol. Soc. 2005 2005 4990 4993 10.1109/IEMBS.2005.1615595 17281365
    [Google Scholar]
  48. Liu X. Simple MKKM: Simple multiple kernel K-means. IEEE Trans. Pattern Anal. Mach. Intell. 2023 45 4 5174 5186 10.1109/TPAMI.2022.3198638 35969570
    [Google Scholar]
  49. Shi J.Y. Huang H. Li J-X. TMFUF: A triple matrix factorization-based unified framework for predicting comprehensive drug-drug interactions of new drugs. BMC Bioinformatics 2018 19 Suppl. 14 411 10.1186/s12859‑018‑2379‑8 30453924
    [Google Scholar]
  50. Benner P. Quintana-Ortí E.S. Quintana-Ortí G. Solving stable Sylvester equations via rational iterative schemes. J. Sci. Comput. 2006 28 51 83 10.1007/s10915‑005‑9007‑2
    [Google Scholar]
  51. Arrieta O. González-De la Rosa C.H. Aréchaga-Ocampo E. Randomized phase II trial of All-trans-retinoic acid with chemotherapy based on paclitaxel and cisplatin as first-line treatment in patients with advanced non-small-cell lung cancer. J. Clin. Oncol. 2010 28 21 3463 3471 10.1200/JCO.2009.26.6452 20547984
    [Google Scholar]
  52. Choi K.H. Jeon J.Y. Lee Y.E. Synergistic activity of paclitaxel, sorafenib, and radiation therapy in advanced renal cell carcinoma and breast cancer. Transl. Oncol. 2019 12 2 381 388 10.1016/j.tranon.2018.11.007 30522045
    [Google Scholar]
  53. He H.L. Ji L.J. Li Q.Z. Zhang R. Huang J.M. Li G. Effect of quercetin on doxorubicin-induced expression of MDR1 gene in HL-60 cells. Zhongguo Shi Yan Xue Ye Xue Za Zhi 2015 23 1 70 76 10.7534/j.issn.1009‑2137.2015.01.014 25687049
    [Google Scholar]
  54. Ling A. Huang R.S. Computationally predicting clinical drug combination efficacy with cancer cell line screens and independent drug action. Nat. Commun. 2020 11 1 5848 10.1038/s41467‑020‑19563‑6 33203866
    [Google Scholar]
  55. Guan N.N. Zhao Y. Wang C.C. Li J.Q. Chen X. Piao X. Anticancer drug response prediction in cell lines using weighted graph regularized matrix factorization. Mol. Ther. Nucleic Acids 2019 17 164 174 10.1016/j.omtn.2019.05.017 31265947
    [Google Scholar]
  56. Brouwer T. Lio P. Bayesian hybrid matrix factorisation for data integration. Proceedings of the 20th International Conference on Artificial Intelligence and Statistics. 20-22 Apr. 2017 557 566
    [Google Scholar]
  57. Haeffele B.D. Vidal R. Structured low-rank matrix factorization: Global optimality, algorithms, and applications. IEEE Trans. Pattern Anal. Mach. Intell. 2020 42 6 1468 1482 10.1109/TPAMI.2019.2900306 30794507
    [Google Scholar]
  58. Li H. Pan S.J. Wang S. Kot A.C. Heterogeneous domain adaptation via nonlinear matrix factorization. IEEE Trans. Neural Netw. Learn. Syst. 2020 31 3 984 996 10.1109/TNNLS.2019.2913723 31150348
    [Google Scholar]
  59. Yin M.M. Cui Z. Gao M.M. Liu J.X. Gao Y.L. LWPCMF: Logistic weighted profile-based collaborative matrix factorization for predicting mirna-disease associations. IEEE/ACM Trans. Comput. Biol. Bioinformatics 2021 18 3 1122 1129 10.1109/TCBB.2019.2937774 31478868
    [Google Scholar]
  60. Li H. Zou L. Kowah J.A.H. Predicting drug synergy and discovering new drug combinations based on a graph autoencoder and convolutional neural network. Interdiscip. Sci. 2023 15 316 330 10.1007/s12539‑023‑00558‑y 36943614
    [Google Scholar]
/content/journals/cbio/10.2174/0115748936364740250614061809
Loading
/content/journals/cbio/10.2174/0115748936364740250614061809
Loading

Data & Media loading...

Supplements

Supplementary material is available on the publisher’s website along with the published article.


  • Article Type:
    Research Article
Keywords: Cancer ; drug synergism ; cell line ; drug repositioning ; matrix factorization ; MK-NMF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test