Skip to content
2000
Volume 21, Issue 9
  • ISSN: 1573-4072
  • E-ISSN: 1875-6646

Abstract

Pyridine is a nitrogen-containing six-membered heterocycle that is used both independently and fused with other heterocyclic rings such as thiazole, thiophene, and most likely with imidazole having a wide range of biological applications. In this review, we report all possible applications of pyridine analogs for all possible diseases. Due to various medicinal applications, the pyridine scaffold has become a fascinating target for medicinal chemistry researchers globally. These particular properties like basicity, water solubility, hydrogen bond forming ability, stability, and small molecular size led researchers to pay more attention to the pyridine molecule with different geometries such as anticancer, antitubercular, anticonvulsant, fungal, bacterial, anti-inflammatory, antidepressant, antioxidant, anti-HIV, antidiabetic and against the COVID-19. This review encompasses all possible applications of pyridine analogs for various diseases.

Loading

Article metrics loading...

/content/journals/cbc/10.2174/0115734072347787241008180129
2024-12-04
2025-12-06
Loading full text...

Full text loading...

References

  1. LingY. HaoZ.Y. LiangD. ZhangC.L. LiuY.F. WangY. The expanding role of pyridine and dihydropyridine scaffolds in drug design.Drug Des. Devel. Ther.2021154289433810.2147/DDDT.S329547 34675489
    [Google Scholar]
  2. GarrisonA.T. ChildressE.S. DavisD.C. LindsleyC.W. Preparation of 1,5-dihydropyrazolo[3′,4′:5,6]pyrano[3,4- b]pyridines via a microwave-assisted, palladium-catalyzed regioselective C–H heteroarylation of electron-rich pyrazoles.J. Org. Chem.20198495855586210.1021/acs.joc.9b00144 30807155
    [Google Scholar]
  3. AlbrattyM. AlhazmiH.A. Novel pyridine and pyrimidine derivatives as promising anticancer agents: A review.Arab. J. Chem.202215610384610.1016/j.arabjc.2022.103846
    [Google Scholar]
  4. DeS. KumarS.K. A.; Shah, S.K.; Kazi, S.; Sarkar, N.; Banerjee, S.; Dey, S. Pyridine: The scaffolds with significant clinical diversity.RSC Advances20221224153851540610.1039/D2RA01571D 35693235
    [Google Scholar]
  5. HamadaY Role of pyridines in medicinal chemistry and design of BACE1 inhibitors possessing a pyridine scaffold.PyrimidineInTech Open201810.5772/intechopen.74719
    [Google Scholar]
  6. KaurN. Six-memberedn-heterocycles: Microwave-assisted synthesis.Synth. Commun.201545113410.1080/00397911.2013.813548
    [Google Scholar]
  7. AlthagafiI. Abdel-LatifE. Synthesis and antibacterial activity of new imidazo[1,2- a]pyridines festooned with pyridine, thiazole or pyrazole moiety.Polycycl. Aromat. Compd.20224274487450010.1080/10406638.2021.1894185
    [Google Scholar]
  8. Esteghamat-PanahR. HadadzadehH. FarrokhpourH. SimpsonJ. AbdolmalekiA. AbyarF. Synthesis, structure, DNA/protein binding, and cytotoxic activity of a rhodium(III) complex with 2,6-bis(2-benzimidazolyl)pyridine.Eur. J. Med. Chem.201712795897110.1016/j.ejmech.2016.11.005 27836194
    [Google Scholar]
  9. SadeghiS. DavoodvandiA. PourhanifehM.H. SharifiN. ArefNezhad, R.; Sahebnasagh, R.; Moghadam, S.A.; Sahebkar, A.; Mirzaei, H. Anti-cancer effects of cinnamon: Insights into its apoptosis effects.Eur. J. Med. Chem.201917813114010.1016/j.ejmech.2019.05.067 31195168
    [Google Scholar]
  10. KahrimanN. PekerK. SerdaroğluV. AydınA. UstaA. FandaklıS. YaylıN. Novel 2-amino-4-aryl-6-pyridopyrimidines and N-alkyl derivatives: Synthesis, characterization and investigation of anticancer, antibacterial activities and DNA/BSA binding affinities.Bioorg. Chem.20209910380510.1016/j.bioorg.2020.103805 32272366
    [Google Scholar]
  11. DamJ. IsmailZ. KurebwaT. GangatN. HarmseL. MarquesH.M. LemmererA. BodeM.L. de KoningC.B. Synthesis of copper and zinc 2-(pyridin-2-yl)imidazo[1,2-a]pyridine complexes and their potential anticancer activity.Eur. J. Med. Chem.201712635336810.1016/j.ejmech.2016.10.041 27907874
    [Google Scholar]
  12. AbdelazemA.Z. Al-SaneaM.M. ParkH.M. LeeS.H. Synthesis of new diarylamides with pyrimidinyl pyridine scaffold and evaluation of their anti-proliferative effect on cancer cell lines.Bioorg. Med. Chem. Lett.20162641301130410.1016/j.bmcl.2016.01.014 26786696
    [Google Scholar]
  13. AkhtarJ. KhanA.A. AliZ. HaiderR. Shahar YarM. Structure-activity relationship (SAR) study and design strategies of nitrogen-containing heterocyclic moieties for their anticancer activities.Eur. J. Med. Chem.201712514318910.1016/j.ejmech.2016.09.023 27662031
    [Google Scholar]
  14. MekkyA.E.M. SanadS.M.H. SaidA.Y. ElneairyM.A.A. Synthesis, cytotoxicity, in-vitro antibacterial screening and in-silico study of novel thieno[2,3- b]pyridines as potential pim-1 inhibitors.Synth. Commun.202050152376238910.1080/00397911.2020.1778033
    [Google Scholar]
  15. HamdA.H. Al-LamiN. Anti-breast cancer activity of some synthesized pyrazole derivatives bearing imidazo[1,2a]pyridine moiety.Iraqi J. Sci.20234105411710.24996/ijs.2023.64.7.1
    [Google Scholar]
  16. MishraM. MohapatraS. MishraN.P. JenaB.K. PandaP. NayakS. Recent advances in iron(III) chloride catalyzed synthesis of heterocycles.Tetrahedron Lett.2019603315092510.1016/j.tetlet.2019.07.016
    [Google Scholar]
  17. AbdelrahmanM.A. SalamaI. GomaaM.S. ElaasserM.M. Abdel-AzizM.M. SolimanD.H. Design, synthesis and 2D QSAR study of novel pyridine and quinolone hydrazone derivatives as potential antimicrobial and antitubercular agents.Eur. J. Med. Chem.201713869871410.1016/j.ejmech.2017.07.004 28715707
    [Google Scholar]
  18. MachadoI. MarinoL.B. DemoroB. EcheverríaG.A. PiroO.E. LeiteC.Q.F. PavanF.R. GambinoD. Bioactivity of pyridine-2-thiolato-1-oxide metal complexes: Bi(III), Fe(III) and Ga(III) complexes as potent anti-Mycobacterium tuberculosis prospective agents.Eur. J. Med. Chem.20148726727310.1016/j.ejmech.2014.09.067 25261824
    [Google Scholar]
  19. HuY.Q. ZhangS. ZhaoF. GaoC. FengL.S. LvZ.S. XuZ. WuX. Isoniazid derivatives and their anti-tubercular activity.Eur. J. Med. Chem.201713325526710.1016/j.ejmech.2017.04.002 28390957
    [Google Scholar]
  20. MoraskiG.C. OliverA.G. MarkleyL.D. ChoS. FranzblauS.G. MillerM.J. Scaffold-switching: An exploration of 5,6-fused bicyclic heteroaromatics systems to afford antituberculosis activity akin to the imidazo[1,2-a]pyridine-3-carboxylates.Bioorg. Med. Chem. Lett.201424153493349810.1016/j.bmcl.2014.05.062 24909079
    [Google Scholar]
  21. TrotskoN. GolusJ. KazimierczakP. PanethA. PrzekoraA. GinalskaG. WujecM. Synthesis and antimycobacterial activity of thiazolidine-2,4-dione based derivatives with halogenbenzohydrazones and pyridinecarbohydrazones substituents.Eur. J. Med. Chem.202018911204510.1016/j.ejmech.2020.112045 31951961
    [Google Scholar]
  22. SamantaS. KumarS. AratikatlaE.K. GhorpadeS.R. SinghV. Recent developments of imidazo[1,2- a]pyridine analogues as antituberculosis agents.RSC Med. Chem.202314464465710.1039/D3MD00019B 37122538
    [Google Scholar]
  23. AhmadG. RasoolN. RizwanK. ImranI. ZahoorA.F. ZubairM. SadiqA. RashidU. Synthesis, in-vitro cholinesterase inhibition, in-vivo anticonvulsant activity and in-silico exploration of N-(4-methylpyridin-2-yl)thiophene-2-carboxamide analogs.Bioorg. Chem.20199210321610.1016/j.bioorg.2019.103216 31491567
    [Google Scholar]
  24. PradhanJ. GoyalA. Synthesis, anticonvulsant activity and QSAR studies of some new pyrazolyl pyridines.Med. Chem. Res.20162581639165610.1007/s00044‑016‑1597‑8
    [Google Scholar]
  25. SirakanyanS.N. GeronikakiA. SpinelliD. ParonikyanR.G. DzhagatspanyanI.A. NazaryanI.M. AkopyanA.H. HovakimyanA.A. Pyridofuropyrrolo[1,2-a]pyrimidines and pyridofuropyrimido[1,2-a]azepines: New chemical entities (NCE) with anticonvulsive and psychotropic properties.RSC Advances2016638322343224410.1039/C6RA02581A
    [Google Scholar]
  26. BentzingerG. PairE. GuillonJ. MarchivieM. MulliéC. AgnameyP. Dassonville-KlimptA. SonnetP. Enantiopure substituted pyridines as promising antimalarial drug candidates.Tetrahedron2020761513108810.1016/j.tet.2020.131088
    [Google Scholar]
  27. Le ManachC. PaquetT. WichtK. NchindaA.T. BrunschwigC. NjorogeM. GibhardL. TaylorD. LawrenceN. WittlinS. EyermannC.J. BasarabG.S. DuffyJ. FishP.V. StreetL.J. ChibaleK. Antimalarial lead-optimization studies on a 2, 6-imidazopyridine series within a constrained chemical space to circumvent atypical dose–response curves against multidrug resistant parasite strains.J. Med. Chem.201861209371938510.1021/acs.jmedchem.8b01333 30256636
    [Google Scholar]
  28. AdamcsikB. NagyE. UrbánB. SzabóP. PekkerP. Skoda-FöldesR. Palladium nanoparticles on a pyridinium supported ionic liquid phase: A recyclable and low-leaching palladium catalyst for aminocarbonylation reactions.RSC Advances20201040239882399810.1039/D0RA03406A 35517315
    [Google Scholar]
  29. ShiY. WangQ. RongJ. RenJ. SongX. FanX. ShenM. XiaY. WangN. LiuZ. HuQ. YeT. YuL. Synthesis and biological evaluation of (1,2,4)triazole[4,3-a]pyridine derivatives as potential therapeutic agents for concanavalin A-induced hepatitis.Eur. J. Med. Chem.201917918219510.1016/j.ejmech.2019.06.025 31254920
    [Google Scholar]
  30. ZhuY.J. GuoX-F. FanZ-J. ChenL. MaL-Y. WangH-X. WeiY. XuX-M. LinJ-P. BakulevV.A. Approach to thiazole-containing tetrahydropyridines via Aza–Rauhut–Currier reaction and their potent fungicidal and insecticidal activity.RSC Advances2016611311270411271110.1039/C6RA24342H
    [Google Scholar]
  31. AbbadyM.S. YoussefM.S.K. Synthesis and biological activity of some new pyridines, pyrans, and indazoles containing pyrazolone moiety.Med. Chem. Res.20142373558356810.1007/s00044‑014‑0935‑y
    [Google Scholar]
  32. DarandaleS.N. MullaN.A. PansareD.N. SangshettiJ.N. ShindeD.B. A novel amalgamation of 1,2,3-triazoles, piperidines and thieno pyridine rings and evaluation of their antifungal activity.Eur. J. Med. Chem.20136552753210.1016/j.ejmech.2013.04.045 23807083
    [Google Scholar]
  33. El-boraiM.A. RizkH.F. Abd-AalM.F. El-DeebI.Y. Synthesis of pyrazolo[3,4-b]pyridines under microwave irradiation in multi-component reactions and their antitumor and antimicrobial activities - Part 1.Eur. J. Med. Chem.201248929610.1016/j.ejmech.2011.11.038 22178093
    [Google Scholar]
  34. FayedE.A. NosseirE.S. AtefA. El-KalyoubiS.A. In vitro antimicrobial evaluation and in silico studies of coumarin derivatives tagged with pyrano-pyridine and pyrano-pyrimidine moieties as DNA gyrase inhibitors.Mol. Divers.202226134136310.1007/s11030‑021‑10224‑4 33895960
    [Google Scholar]
  35. FoleyT.L. RaiG. YasgarA. DanielT. BakerH.L. Attene-RamosM. KosaN.M. LeisterW. BurkartM.D. JadhavA. SimeonovA. MaloneyD.J. 4-(3-Chloro-5-(trifluoromethyl)pyri] din-2-yl)-N-(4-methoxypyridin-2-yl)piperazine-1-carbothioamide (ML267), a potent inhibitor of bacterial phosphopantetheinyl transferase that attenuates secondary metabolism and thwarts bacterial growth.J. Med. Chem.20145731063107810.1021/jm401752p 24450337
    [Google Scholar]
  36. GhattasA.E.B.A.G. KhodairyA. MoustafaH.M. HusseinB.R.M. FarghalyM.M. AboelezM.O. Synthesis, in vitro antibacterial and in vivo anti-inflammatory activity of some new pyridines.Pharm. Chem. J.201751865266010.1007/s11094‑017‑1670‑8
    [Google Scholar]
  37. GrenierM.C. DavisR.W. Wilson-HenjumK.L. LaDowJ.E. BlackJ.W. CaranK.L. SeifertK. MinbioleK.P.C. The antibacterial activity of 4,4′-bipyridinium amphiphiles with conventional, bicephalic and gemini architectures.Bioorg. Med. Chem. Lett.201222124055405810.1016/j.bmcl.2012.04.079 22578455
    [Google Scholar]
  38. KamatV. SantoshR. PoojaryB. NayakS.P. KumarB.K. SankaranarayananM.; Faheem, ; Khanapure, S.; Barretto, D.A.; Vootla, S.K. Pyridine-and thiazole-based hydrazides with promising anti-inflammatory and antimicrobial activities along with their in silico studies.ACS Omega2020539252282523910.1021/acsomega.0c03386 33043201
    [Google Scholar]
  39. WangS. LiuH. WangX. LeiK. LiG. QuanZ. Synthesis and evaluation of antidepressant activities of 5-aryl-4,5-dihydrotetrazolo [1,5-a]thieno[2,3-e]pyridine derivatives.Molecules20192410185710.3390/molecules24101857 31091808
    [Google Scholar]
  40. RibeiroJ.L.S. SoaresJ.C.A.V. PortapillaG.B. ProvidelloM.V. LimaC.H.S. MuriE.M.F. de AlbuquerqueS. DiasL.R.S. Trypanocidal activity of new 1,6-diphenyl-1H-pyrazolo[3,4-b]pyridine derivatives: Synthesis, in vitro and in vivo studies.Bioorg. Med. Chem.20212911585510.1016/j.bmc.2020.115855 33199200
    [Google Scholar]
  41. PeglowT.J. SchumacherR.F. CargneluttiR. ReisA.S. LucheseC. WilhelmE.A. PerinG. Preparation of bis(2-pyridyl) diselenide derivatives: Synthesis of selenazolo[5,4-b]pyridines and unsymmetrical diorganyl selenides, and evaluation of antioxidant and anticholinesterasic activities.Tetrahedron Lett.201758383734373810.1016/j.tetlet.2017.08.030
    [Google Scholar]
  42. YangJ. ChenW. KangD. LuX. LiX. LiuZ. HuangB. DaelemansD. PannecouqueC. De ClercqE. ZhanP. LiuX. Design, synthesis and anti-HIV evaluation of novel diarylpyridine derivatives targeting the entrance channel of NNRTI binding pocket.Eur. J. Med. Chem.201610929430410.1016/j.ejmech.2015.11.039 26802545
    [Google Scholar]
  43. SavantM.M. LadvaK.D. PanditA.B. Facile synthesis of highly functionalized novel pyrazolopyridones using oxoketene dithioacetal and their anti-HIV activity.Synth. Commun.201848131640164810.1080/00397911.2018.1458239
    [Google Scholar]
  44. YuM. Ken ZhangJ.; Wang, Y.; Zhu, J.; Kayser, F.; Medina, J.C.; Siegler, K.; Conn, M.; Shan, B.; Grillo, M.P.; Coward, P.; Jim Liu, J. Discovery and optimization of N-(3-(1,3-dioxo-2,3-dihydro-1H-pyrrolo[3,4-c]pyridin-4-yloxy)phenyl)benzenesulfonamides as novel GPR119 agonists.Bioorg. Med. Chem. Lett.201424115616010.1016/j.bmcl.2013.11.053 24332491
    [Google Scholar]
  45. VeselovM.S. IvanenkovY.A. YamidanovR.S. OstermanI.A. SergievP.V. AladinskiyV.A. AladinskayaA.V. TerentievV.A. AygininA.A. SkvortsovD.A. KomarovaK.S. ChemerisA.V. BaimievA.K. SofronovaA.A. MachulkinA.E. PetrovR.A. MaklakovaS.Y. BezrukovD.S. FilkovG.I. ZainullinaL.F. MaximovaM.A. ZileevaZ.R. KartsevV.G. VakhitovaY.V. DontsovaO.A. Identification of pyrrolo-pyridine derivatives as novel class of antibacterials.Mol. Divers.202024123323910.1007/s11030‑019‑09946‑3 30949901
    [Google Scholar]
  46. LachowiczJ.I. NurchiV.M. CrisponiG. Jaraquemada-PelaezM.G. ArcaM. PintusA. SantosM.A. QuintanovaC. GanoL. SzewczukZ. ZorodduM.A. PeanaM. Domínguez-MartínA. Choquesillo-LazarteD. Hydroxypyridinones with enhanced iron chelating properties. Synthesis, characterization and in vivo tests of 5-hydroxy-2-(hydroxymethyl)pyridine-4(1H)-one.Dalton Trans.201645156517652810.1039/C6DT00129G 26956442
    [Google Scholar]
  47. DawoodD.H. SrourA.M. SalehD.O. HuffK.J. GrecoF. OsbornH.M.I. New pyridine and chromene scaffolds as potent vasorelaxant and anticancer agents.RSC Advances20211147294412945210.1039/D1RA04758B 35479558
    [Google Scholar]
  48. LvK. LiL. WangB. LiuM. WangB. ShenW. GuoH. LuY. Design, synthesis and antimycobacterial activity of novel imidazo[1,2- a]pyridine-3-carboxamide derivatives.Eur. J. Med. Chem.201713711712510.1016/j.ejmech.2017.05.044 28577507
    [Google Scholar]
  49. JamaleD.K. VibhuteS.S. UndareS.S. ValekarN.J. PatilK.T. WarekarP.P. PatilP.T. KolekarG.B. AnbhuleP.V. Unexpected formation of 4,5-dihydro-1H-pyrazolo[3,4-b]pyridine derivatives as a potent antitubercular agent and its evaluation by green chemistry metrics.Synth. Commun.201848212750276010.1080/00397911.2018.1524491
    [Google Scholar]
  50. BodigeS. RavulaP. GulipalliK.C. EndooriS. CherukumalliP.K.R. JnN.S.C. SeelamN. Design, synthesis, antitubercular and antibacterial activities of pyrrolo[3,2-b]pyridine-3-carboxamide linked 2-methoxypyridine derivatives and in silico docking studies.Synth. Commun.201949172219223410.1080/00397911.2019.1618874
    [Google Scholar]
  51. LuX. TangJ. CuiS. WanB. FranzblaucS.G. ZhangT. ZhangX. DingK. Pyrazolo[1,5-a]pyridine-3-carboxamide hybrids: Design, synthesis and evaluation of anti-tubercular activity.Eur. J. Med. Chem.2017125414810.1016/j.ejmech.2016.09.030 27654393
    [Google Scholar]
  52. PerdigãoG. DeraeveC. MoriG. PascaM.R. PratvielG. Bernardes-GénissonV. Pyridine-3,4-dicarboximide as starting material for the total synthesis of the natural product eupolauramine and its isomer iso-eupolauramine endowed with anti-tubercular activities.Tetrahedron201571101555155910.1016/j.tet.2015.01.034
    [Google Scholar]
  53. WangA. LvK. LiL. LiuH. TaoZ. WangB. LiuM. MaC. MaX. HanB. WangA. LuY. Design, synthesis and biological activity of N-(2-phenoxy)ethyl imidazo[1,2-a]pyridine-3-carboxamides as new antitubercular agents.Eur. J. Med. Chem.201917871572510.1016/j.ejmech.2019.06.038 31229874
    [Google Scholar]
  54. WangH. WangA. GuJ. FuL. LvK. MaC. TaoZ. WangB. LiuM. GuoH. LuY. Synthesis and antitubercular evaluation of reduced lipophilic imidazo[1,2-a]pyridine-3-carboxamide derivatives.Eur. J. Med. Chem.2019165111710.1016/j.ejmech.2018.12.071 30654236
    [Google Scholar]
  55. PatelH. ChaudhariK. JainP. SuranaS. Synthesis and in vitro antitubercular activity of pyridine analouges against the resistant Mycobacterium tuberculosis.Bioorg. Chem.202010210409910.1016/j.bioorg.2020.104099 32711084
    [Google Scholar]
  56. TangJ. WangB. WuT. WanJ. TuZ. NjireM. WanB. FranzblaucS.G. ZhangT. LuX. DingK. Design, synthesis, and biological evaluation of pyrazolo[1,5- a]pyridine-3-carboxamides as novel antitubercular agents.ACS Med. Chem. Lett.20156781481810.1021/acsmedchemlett.5b00176 26191372
    [Google Scholar]
  57. GiriR.R. LadH.B. BhilaV.G. PatelC.V. BrahmbhattD.I. Modified pyridine-substituted coumarins: A new class of antimicrobial and antitubercular agents.Synth. Commun.201545336337510.1080/00397911.2014.963875
    [Google Scholar]
  58. DesaiN.C. TrivediA. SomaniH. JadejaK.A. VajaD. NawaleL. KhedkarV.M. SarkarD. Synthesis, biological evaluation, and molecular docking study of pyridine clubbed 1,3,4-oxadiazoles as potential antituberculars.Synth. Commun.201848552454010.1080/00397911.2017.1410892
    [Google Scholar]
  59. VelezhevaV. BrennanP. IvanovP. KornienkoA. LyubimovS. KazarianK. NikonenkoB. MajorovK. AptA. Synthesis and antituberculosis activity of indole–pyridine derived hydrazides, hydrazide–hydrazones, and thiosemicarbazones.Bioorg. Med. Chem. Lett.201626397898510.1016/j.bmcl.2015.12.049 26725953
    [Google Scholar]
  60. AttaA. FahmyS. RizkO. SriramD. MahranM.A. LaboutaI.M. Structure-based design of some isonicotinic acid hydrazide analogues as potential antitubercular agents.Bioorg. Chem.20188072173210.1016/j.bioorg.2018.07.028 30077175
    [Google Scholar]
  61. SajjaY. VanguruS. VulupalaH.R. NagarapuL. PerumalY. SriramD. NanuboluJ.B. Design, synthesis, and in vitro antituberculosis activity of benzo[6,7]cyclohepta[1,2‐ b]pyridine‐1,3,4‐oxadiazole derivatives.Chem. Biol. Drug Des.201790449650010.1111/cbdd.12969 28267891
    [Google Scholar]
  62. WuZ. LuY. LiL. ZhaoR. WangB. LvK. LiuM. YouX. Identification of N -(2-Phenoxyethyl)imidazo[1,2- a]pyridine-3-carboxamides as new antituberculosis agents.ACS Med. Chem. Lett.20167121130113310.1021/acsmedchemlett.6b00330 27994751
    [Google Scholar]
  63. DesaiN.C. SomaniH. TrivediA. BhattK. NawaleL. KhedkarV.M. JhaP.C. SarkarD. Synthesis, biological evaluation and molecular docking study of some novel indole and pyridine based 1,3,4-oxadiazole derivatives as potential antitubercular agents.Bioorg. Med. Chem. Lett.20162671776178310.1016/j.bmcl.2016.02.043 26920799
    [Google Scholar]
  64. JoseG. Suresha KumaraT.H. NagendrappaG. SowmyaH.B.V. SriramD. YogeeswariP. SrideviJ.P. Guru RowT.N. HosamaniA.A. Sujan GanapathyP.S. ChandrikaN. NarendraL.V. Synthesis, molecular docking and anti-mycobacterial evaluation of new imidazo[1,2-a]pyridine-2-carboxamide derivatives.Eur. J. Med. Chem.20158961662710.1016/j.ejmech.2014.10.079 25462270
    [Google Scholar]
  65. SajjaY. VanguruS. VulupalaH.R. BantuR. YogeswariP. SriramD. NagarapuL. Design, synthesis and in vitro anti-tuberculosis activity of benzo[6,7]cyclohepta[1,2- b]pyridine-1,2,3-triazole derivatives.Bioorg. Med. Chem. Lett.201727235119512110.1016/j.bmcl.2017.10.071 29113761
    [Google Scholar]
  66. PulipatiL. SrideviJ.P. YogeeswariP. SriramD. KantevariS. Synthesis and antitubercular evaluation of novel dibenzo[ b, d]thiophene tethered imidazo[1,2- a]pyridine-3-carboxamides.Bioorg. Med. Chem. Lett.201626133135314010.1016/j.bmcl.2016.04.088 27184765
    [Google Scholar]
  67. DanacR. MangalagiuI.I. Antimycobacterial activity of nitrogen heterocycles derivatives: Bipyridine derivatives. Part III [13,14].Eur. J. Med. Chem.20147466467010.1016/j.ejmech.2013.09.061 24268596
    [Google Scholar]
  68. KumarD.; Beena, ; Khare, G.; Kidwai, S.; Tyagi, A.K.; Singh, R.; Rawat, D.S. Synthesis of novel 1,2,3-triazole derivatives of isoniazid and their in vitro and in vivo antimycobacterial activity evaluation.Eur. J. Med. Chem.20148130131310.1016/j.ejmech.2014.05.005 24852277
    [Google Scholar]
  69. KangS. KimY.M. KimR.Y. SeoM.J. NoZ. NamK. KimS. KimJ. Synthesis and structure-activity studies of side chain analogues of the anti-tubercular agent, Q203.Eur. J. Med. Chem.201712580781510.1016/j.ejmech.2016.09.082 27750198
    [Google Scholar]
  70. NaiduK.M. NageshH.N. SinghM. SriramD. YogeeswariP. Gowri Chandra SekharK.V. Novel amide and sulphonamide derivatives of 6-(piperazin-1-yl)phenanthridine as potent Mycobacterium tuberculosis H37Rv inhibitors.Eur. J. Med. Chem.20159241542610.1016/j.ejmech.2015.01.013 25590862
    [Google Scholar]
  71. KangS. KimR.Y. SeoM.J. LeeS. KimY.M. SeoM. SeoJ.J. KoY. ChoiI. JangJ. NamJ. ParkS. KangH. KimH.J. KimJ. AhnS. PetheK. NamK. NoZ. KimJ. Lead optimization of a novel series of imidazo[1,2-a]pyridine amides leading to a clinical candidate (Q203) as a multi- and extensively-drug-resistant anti-tuberculosis agent.J. Med. Chem.201457125293530510.1021/jm5003606 24870926
    [Google Scholar]
  72. El-SayedN.S. ShiraziA.N. El-MeligyM.G. El-ZiatyA.K. RowleyD. SunJ. NagibZ.A. ParangK. Synthesis of 4-aryl-6-indolylpyridine-3-carbonitriles and evaluation of their antiproliferative activity.Tetrahedron Lett.20145561154115810.1016/j.tetlet.2013.12.081 24678129
    [Google Scholar]
  73. PeerzadaM.N. KhanP. AhmadK. HassanM.I. AzamA. Synthesis, characterization and biological evaluation of tertiary sulfonamide derivatives of pyridyl-indole based heteroaryl chalcone as potential carbonic anhydrase IX inhibitors and anticancer agents.Eur. J. Med. Chem.2018155132310.1016/j.ejmech.2018.05.034 29852328
    [Google Scholar]
  74. BaltusC.B. JordaR. MarotC. BerkaK. BazgierV. KryštofV. PriéG. Viaud-MassuardM.C. Synthesis, biological evaluation and molecular modeling of a novel series of 7-azaindole based tri-heterocyclic compounds as potent CDK2/Cyclin E inhibitors.Eur. J. Med. Chem.201610870171910.1016/j.ejmech.2015.12.023 26741853
    [Google Scholar]
  75. Naresh KumarR. PoornachandraY. NagenderP. MallareddyG. Ravi KumarN. RanjithreddyP. Ganesh KumarC. NarsaiahB. Synthesis of novel trifluoromethyl substituted furo[2,3- b]pyridine and pyrido[3′,2′:4,5]furo[3,2- d]pyrimidine derivatives as potential anticancer agents.Eur. J. Med. Chem.2016108687810.1016/j.ejmech.2015.11.007 26629861
    [Google Scholar]
  76. ShuaiW. LiX. LiW. XuF. LuL. YaoH. YangL. ZhuH. XuS. ZhuZ. XuJ. Design, synthesis and anticancer properties of isocombretapyridines as potent colchicine binding site inhibitors.Eur. J. Med. Chem.202019711230810.1016/j.ejmech.2020.112308 32339853
    [Google Scholar]
  77. KarkiR. ParkC. JunK.Y. KadayatT.M. LeeE.S. KwonY. Synthesis and biological activity of 2,4-di-p-phenolyl-6-2-furanyl-pyridine as a potent topoisomerase II poison.Eur. J. Med. Chem.20159036037810.1016/j.ejmech.2014.11.045 25437622
    [Google Scholar]
  78. ShringareS.N. ChavanH.V. BhaleP.S. DongareS.B. MuleY.B. PatilS.B. BandgarB.P. Synthesis and pharmacological evaluation of combretastatin-A4 analogs of pyrazoline and pyridine derivatives as anticancer, anti-inflammatory and antioxidant agents.Med. Chem. Res.20182741226123710.1007/s00044‑018‑2142‑8
    [Google Scholar]
  79. Abd El-AllA.S. OsmanS.A. RoaiahH.M.F. AbdallaM.M. Abd El AtyA.A. AbdEl-Hady, W.H. Potent anticancer and antimicrobial activities of pyrazole, oxazole and pyridine derivatives containing 1,2,4-triazine moiety.Med. Chem. Res.201524124093410410.1007/s00044‑015‑1460‑3
    [Google Scholar]
  80. WuC.J. WuJ.Q. HuY. PuS. LinY. ZengZ. HuJ. ChenW.H. Design, synthesis and biological evaluation of indole-based [1,2,4]triazolo[4,3-a] pyridine derivatives as novel microtubule polymerization inhibitors.Eur. J. Med. Chem.202122311362910.1016/j.ejmech.2021.113629 34175541
    [Google Scholar]
  81. FuC.W. HsiehY.J. ChangT.T. ChenC.L. YangC.Y. LiaoA. HsiaoP.W. LiW.S. Anticancer efficacy of unique pyridine-based tetraindoles.Eur. J. Med. Chem.201510416517610.1016/j.ejmech.2015.09.032 26457743
    [Google Scholar]
  82. GhanemN.M. FaroukF. GeorgeR.F. AbbasS.E.S. El-BadryO.M. Design and synthesis of novel imidazo[4,5-b]pyridine based compounds as potent anticancer agents with CDK9 inhibitory activity.Bioorg. Chem.20188056557610.1016/j.bioorg.2018.07.006 30025343
    [Google Scholar]
  83. EissaI.H. El-NaggarA.M. El-HashashM.A. Design, synthesis, molecular modeling and biological evaluation of novel 1H-pyrazolo[3,4-b]pyridine derivatives as potential anticancer agents.Bioorg. Chem.201667435610.1016/j.bioorg.2016.05.006 27253830
    [Google Scholar]
  84. AbdelazizM.E. El-MiligyM.M.M. FahmyS.M. MahranM.A. HazzaaA.A. Design, synthesis and docking study of pyridine and thieno[2,3-b] pyridine derivatives as anticancer PIM-1 kinase inhibitors.Bioorg. Chem.20188067469210.1016/j.bioorg.2018.07.024 30064079
    [Google Scholar]
  85. AbouzidK.A.M. Al-AnsaryG.H. El-NaggarA.M. Eco-friendly synthesis of novel cyanopyridine derivatives and their anticancer and PIM-1 kinase inhibitory activities.Eur. J. Med. Chem.201713435736510.1016/j.ejmech.2017.04.024 28431341
    [Google Scholar]
  86. ZhaoB. LiY. XuP. DaiY. LuoC. SunY. AiJ. GengM. DuanW. Discovery of Substituted 1 H -Pyrazolo[3,4- b]pyridine Derivatives as Potent and Selective FGFR Kinase Inhibitors.ACS Med. Chem. Lett.20167662963410.1021/acsmedchemlett.6b00066 27326339
    [Google Scholar]
  87. MilišiūnaitėV. ArbačiauskienėE. ŘezníčkováE. JordaR. MalínkováV. ŽukauskaitėA. HolzerW. ŠačkusA. KryštofV. Synthesis and anti-mitotic activity of 2,4- or 2,6-disubstituted- and 2,4,6-trisubstituted-2H-pyrazolo[4,3-c]pyridines.Eur. J. Med. Chem.201815090891910.1016/j.ejmech.2018.03.037 29602037
    [Google Scholar]
  88. El-GoharyN.S. GabrM.T. ShaabanM.I. Synthesis, molecular modeling and biological evaluation of new pyrazolo[3,4-b]pyridine analogs as potential antimicrobial, antiquorum-sensing and anticancer agents.Bioorg. Chem.20198910297610.1016/j.bioorg.2019.102976 31103494
    [Google Scholar]
  89. KadayatT.M. SongC. KwonY. LeeE.S. Modified 2,4-diaryl-5H-indeno[1,2-b]pyridines with hydroxyl and chlorine moiety: Synthesis, anticancer activity, and structure–activity relationship study.Bioorg. Chem.201562304010.1016/j.bioorg.2015.07.002 26218799
    [Google Scholar]
  90. ShiY.K. WangB. ShiX.L. ZhaoY.D. YuB. LiuH.M. Synthesis and biological evaluation of new steroidal pyridines as potential anti-prostate cancer agents.Eur. J. Med. Chem.2018145112210.1016/j.ejmech.2017.12.094 29310026
    [Google Scholar]
  91. EldehnaW.M. AltoukhyA. MahrousH. Abdel-Aziz, H.A. Design, synthesis and QSAR study of certain isatin-pyridine hybrids as potential anti-proliferative agents.Eur. J. Med. Chem.20159068469410.1016/j.ejmech.2014.12.010 25499988
    [Google Scholar]
  92. ShresthaA. ParkS. ShinS. Man KadayatT. BistG. KatilaP. KwonY. LeeE.S. Design, synthesis, biological evaluation, structure-activity relationship study, and mode of action of 2-phenol-4,6-dichlorophenyl-pyridines.Bioorg. Chem.20187911810.1016/j.bioorg.2018.03.033 29715635
    [Google Scholar]
  93. BassyouniF.A. TawfikH.A. SolimanA.M. RehimM.A. Synthesis and anticancer activity of some new pyridine derivatives.Res. Chem. Intermed.20123871291131010.1007/s11164‑011‑0413‑9
    [Google Scholar]
  94. XieW. XieS. ZhouY. TangX. LiuJ. YangW. QiuM. Design and synthesis of novel 5,6-disubstituted pyridine-2,3-dione-3-thiosemicarbazone derivatives as potential anticancer agents.Eur. J. Med. Chem.201481222710.1016/j.ejmech.2014.05.001 24819956
    [Google Scholar]
  95. Abdel-azizH.M. GomhaS.M. El-SayedA.A. MabkhotY.N. AlsayariA. MuhsinahA.B. Facile synthesis and antiproliferative activity of new 3-cyanopyridines.BMC Chem.201913113710.1186/s13065‑019‑0652‑1 31891163
    [Google Scholar]
  96. GuL. JinC. Synthesis and antitumor activity of α-aminophosphonates containing thiazole[5,4-b]pyridine moiety.Org. Biomol. Chem.201210357098710210.1039/c2ob25875g 22850968
    [Google Scholar]
  97. WangR. ChenY. YangB. YuS. ZhaoX. ZhangC. HaoC. ZhaoD. ChengM. Design, synthesis, biological evaluation and molecular modeling of novel 1H-pyrrolo[2,3-b]pyridine derivatives as potential anti-tumor agents.Bioorg. Chem.20209410347410.1016/j.bioorg.2019.103474 31859010
    [Google Scholar]
  98. TianN. WuH. ZhangH. YangD. LvL. YangZ. ZhangT. QuanD. ZhouL. XieY. XuY. WeiN. ZhangJ. ChenM. SchmitzJ.C. TianY. WuS. Discovery of [1,2,4]triazolo[4,3-a]pyridines as potent Smoothened inhibitors targeting the Hedgehog pathway with improved antitumor activity in vivo .Bioorg. Med. Chem.2020281611558410.1016/j.bmc.2020.115584 32690258
    [Google Scholar]
  99. LiuW. ZhouJ. ZhangT. ZhuH. QianH. ZhangH. HuangW. GustR. Design and synthesis of thiourea derivatives containing a benzo[5,6]cyclohepta[1,2-b]pyridine moiety as potential antitumor and anti-inflammatory agents.Bioorg. Med. Chem. Lett.20122282701270410.1016/j.bmcl.2012.03.002 22450132
    [Google Scholar]
  100. ThongaramP. BorwornpinyoS. KanjanasiriratP. JearawuttanakulK. KongsemaM. ChuanopparatN. NgernmeesriP. Synthesis and anticancer activity evaluation of benzo[6,7]oxepino[3,2-b] pyridine derivatives.Tetrahedron2020763913147310.1016/j.tet.2020.131473
    [Google Scholar]
  101. LuoZ. ValeruA. PenjarlaS. LiuB. KhanI. Synthesis, anticancer activity and molecular docking studies of novel pyrido[1,2- a]pyrimidin-4-one derivatives.Synth. Commun.201949172235224310.1080/00397911.2019.1619773
    [Google Scholar]
  102. DolezalR. SoukupO. MalinakD. SavedraR.M.L. MarekJ. DolezalovaM. PasdiorovaM. SalajkovaS. KorabecnyJ. HonegrJ. RamalhoT.C. KucaK. Towards understanding the mechanism of action of antibacterial N-alkyl-3-hydroxypyridinium salts: Biological activities, molecular modeling and QSAR studies.Eur. J. Med. Chem.201612169971110.1016/j.ejmech.2016.05.058 27341309
    [Google Scholar]
  103. JoseG. Suresha KumaraT.H. SowmyaH.B.V. SriramD. Guru RowT.N. HosamaniA.A. MoreS.S. JanardhanB. HarishB.G. TelkarS. RavikumarY.S. Synthesis, molecular docking, antimycobacterial and antimicrobial evaluation of new pyrrolo[3,2- c]pyridine Mannich bases.Eur. J. Med. Chem.201713127528810.1016/j.ejmech.2017.03.015 28340368
    [Google Scholar]
  104. SanganiC.B. MakawanaJ.A. ZhangX. TeraiyaS.B. LinL. ZhuH.L. Design, synthesis and molecular modeling of pyrazole–quinoline–pyridine hybrids as a new class of antimicrobial and anticancer agents.Eur. J. Med. Chem.20147654955710.1016/j.ejmech.2014.01.018 24607998
    [Google Scholar]
  105. JoseG. Suresha KumaraT.H. NagendrappaG. SowmyaH.B.V. JasinskiJ.P. MillikanS.P. ChandrikaN. MoreS.S. HarishB.G. New polyfunctional imidazo[4,5-C]pyridine motifs: Synthesis, crystal studies, docking studies and antimicrobial evaluation.Eur. J. Med. Chem.20147728829710.1016/j.ejmech.2014.03.019 24657565
    [Google Scholar]
  106. GezegenH. CeylanM. Karamanİ. ŞahinE. Synthesis, characterization, and antibacterial activity of novel pyridones.Synth. Commun.20144481084109310.1080/00397911.2013.845902
    [Google Scholar]
  107. KumarG.S. PoornachandraY. ReddyK.R. KumarC.G. NarsaiahB. Synthesis of novel triazolothione, thiadiazole, triazole-functionalized furo/thieno[2,3- b]pyridine derivatives and their antimicrobial activity.Synth. Commun.201747201864187310.1080/00397911.2017.1354379
    [Google Scholar]
  108. DesaiN.C. BhattN.B. JoshiS.B. VajaD.V. Synthesis and characterization of oxazine bearing pyridine scaffold as potential antimicrobial agents.Synth. Commun.201747242360236810.1080/00397911.2017.1377734
    [Google Scholar]
  109. YagnamS. AkondiA.M. TrivediR. RathodB. PrakashamR.S. SridharB. Spirooxindole-fused pyrazolo pyridine derivatives: NiO–SiO 2 catalyzed one-pot synthesis and antimicrobial activities.Synth. Commun.201848325526610.1080/00397911.2017.1393687
    [Google Scholar]
  110. Grigor’evA.A. ShtyrlinN.V. GabbasovaR.R. ZeldiM.I. GrishaevD. GnezdilovO.I. ShtyrlinY.G. Synthesis, antibacterial and antitumor activity of methylpyridinium salts of pyridoxine functionalized 2-amino-6-sulfanylpyridine-3,5-dicarbonitriles.Synth. Commun.2018482288230410.1080/00397911.2018.1501487
    [Google Scholar]
  111. El-SayedH.A. Abdel HamidA.M. MohammedS.M. MoustafaA.H. Design, synthesis, and antimicrobial activity of fluorophore 1,2,3-triazoles linked nicotinonitrile derivatives.Synth. Commun.201949162096210510.1080/00397911.2019.1616760
    [Google Scholar]
  112. SalhiL. Achouche-BouzrouraS. NechakR. Nedjar-KolliB. RabiaC. MerazigH. Poulain-MartiniS. DunachE. Synthesis of functionalized dihydroimidazo[1,2- A]pyridines and 4-thiazolidinone derivatives from maleimide, as new class of antimicrobial agents.Synth. Commun.202050341242210.1080/00397911.2019.1699933
    [Google Scholar]
  113. SanadS.M.H. MekkyA.E.M. Synthesis, in-vitro antibacterial and anticancer screening of novel nicotinonitrile-coumarin hybrids utilizing piperazine citrate.Synth. Commun.202050101468148510.1080/00397911.2020.1743318
    [Google Scholar]
  114. YuleI.A. CzaplewskiL.G. PommierS. DaviesD.T. NarramoreS.K. FishwickC.W.G. Pyridine-3-carboxamide-6-yl-ureas as novel inhibitors of bacterial DNA gyrase: Structure based design, synthesis, SAR and antimicrobial activity.Eur. J. Med. Chem.201486313810.1016/j.ejmech.2014.08.025 25137573
    [Google Scholar]
  115. FontaineF. HéquetA. Voisin-ChiretA.S. BouillonA. LesnardA. CresteilT. JolivaltC. RaultS. Boronic species as promising inhibitors of the Staphylococcus aureus NorA efflux pump: Study of 6-substituted pyridine-3-boronic acid derivatives.Eur. J. Med. Chem.20159518519810.1016/j.ejmech.2015.02.056 25817769
    [Google Scholar]
  116. WangP.Y. FangH.S. ShaoW.B. ZhouJ. ChenZ. SongB.A. YangS. Synthesis and biological evaluation of pyridinium-functionalized carbazole derivatives as promising antibacterial agents.Bioorg. Med. Chem. Lett.201727184294429710.1016/j.bmcl.2017.08.040 28843708
    [Google Scholar]
  117. MarepuN. YeturuS. PalM. 1,2,3-Triazole fused with pyridine/pyrimidine as new template for antimicrobial agents: Regioselective synthesis and identification of potent N-heteroarenes.Bioorg. Med. Chem. Lett.201828203302330610.1016/j.bmcl.2018.09.021 30243590
    [Google Scholar]
  118. ParonikyanE.G. DashyanS.S. NoravyanA.S. TamazyanR.A. AyvazyanA.G. PanosyanH.A. A novel and efficient synthesis of diamino derivatives of pyrano[3,4-c]pyridines.Tetrahedron201571182686269110.1016/j.tet.2015.03.040
    [Google Scholar]
  119. HuangJ. ZhouJ. SongS. SongH. ChenZ. YiW. A new and efficient ZnCl2-catalyzed synthesis and biological evaluation of novel 2-amino-3,5-dicyano-4-aryl-6-aryl-aminopyridines as potent antibacterial agents against Helicobacter pylori (HP).Tetrahedron201571458628863610.1016/j.tet.2015.09.018
    [Google Scholar]
  120. SangshettiJ.N. DharmadhikariP.P. ChoutheR.S. FatemaB. LadV. KarandeV. DarandaleS.N. ShindeD.B. Microwave assisted nano (ZnO–TiO2) catalyzed synthesis of some new 4,5,6,7-tetrahydro-6-((5-substituted-1,3,4-oxadiazol-2-yl)methyl)thieno[2,3-c]pyridine as antimicrobial agents.Bioorg. Med. Chem. Lett.20132372250225310.1016/j.bmcl.2013.01.041 23434418
    [Google Scholar]
  121. QianA. ZhengY. WangR. WeiJ. CuiY. CaoX. YangY. Design, synthesis, and structure-activity relationship studies of novel tetrazole antifungal agents with potent activity, broad antifungal spectrum and high selectivity.Bioorg. Med. Chem. Lett.201828334435010.1016/j.bmcl.2017.12.040 29289430
    [Google Scholar]
  122. LiaoS. ShangS. ShenM. RaoX. SiH. SongJ. SongZ. One-pot synthesis and antimicrobial evaluation of novel 3-cyanopyridine derivatives of (−)-β-pinene.Bioorg. Med. Chem. Lett.20162661512151510.1016/j.bmcl.2016.02.024 26898336
    [Google Scholar]
  123. KalininA.A. VoloshinaA.D. KulikN.V. ZobovV.V. MamedovV.A. Antimicrobial activity of imidazo[1,5-a]quinoxaline derivatives with pyridinium moiety.Eur. J. Med. Chem.20136634535410.1016/j.ejmech.2013.05.038 23811259
    [Google Scholar]
  124. El-BoraiM.A. RizkH.F. BeltagyD.M. El-DeebI.Y. Microwave-assisted synthesis of some new pyrazolopyridines and their antioxidant, antitumor and antimicrobial activities.Eur. J. Med. Chem.20136641542210.1016/j.ejmech.2013.04.043 23831694
    [Google Scholar]
  125. VeeraswamyB. MadhuD. Jitender DevG. PoornachandraY. Shravan KumarG. Ganesh KumarC. NarsaiahB. Studies on synthesis of novel pyrido[2,3-d]pyrimidine derivatives, evaluation of their antimicrobial activity and molecular docking.Bioorg. Med. Chem. Lett.20182891670167510.1016/j.bmcl.2018.03.022 29602683
    [Google Scholar]
  126. DesaiN.C. JadejaK.A. JadejaD.J. KhedkarV.M. JhaP.C. Design, synthesis, antimicrobial evaluation, and molecular docking study of some 4-thiazolidinone derivatives containing pyridine and quinazoline moiety.Synth. Commun.202011210.1080/00397911.2020.1861302
    [Google Scholar]
  127. LomovD.A. AbramyantsM.G. AstashkinaN.V. KorotkikhN.I. LubenetsV.I. NovikovV.P. Komarovskaya-PorokhnyavetsE.Z. SmolyarN.N. Synthesis and fungi/bactericidal activities of 4-(4-dimethylaminophenyl)pyridine derivatives.Pharm. Chem. J.201650852652910.1007/s11094‑016‑1482‑2
    [Google Scholar]
  128. ChandakN. KumarS. KumarP. SharmaC. AnejaK.R. SharmaP.K. Exploration of antimicrobial potential of pyrazolo[3,4-b]pyridine scaffold bearing benzenesulfonamide and trifluoromethyl moieties.Med. Chem. Res.201322115490550310.1007/s00044‑013‑0544‑1
    [Google Scholar]
  129. DesaiN.C. PandyaD.D. JoshiV.V. RajparaK.M. VaghaniH.V. SatodiyaH.M. Synthesis, characterization and antimicrobial screening of hybrid molecules containing benzimidazole-pyrazole and pyridine nucleus.Med. Chem. Res.201221124463447210.1007/s00044‑012‑9990‑4
    [Google Scholar]
  130. ChaiX. YuS. WangX. WangN. ZhuZ. ZhangD. WuQ. CaoY. SunQ. Synthesis and antifungal activity of novel 7-O-substituted pyridyl-4-methyl coumarin derivatives.Med. Chem. Res.201322104654466210.1007/s00044‑013‑0470‑2
    [Google Scholar]
  131. DesaiN.C. PatelB.Y. DaveB.P. Synthesis and antimicrobial activity of novel quinoline derivatives bearing pyrazoline and pyridine analogues.Med. Chem. Res.201726110911910.1007/s00044‑016‑1732‑6
    [Google Scholar]
  132. Valencia-GaliciaN.A. Corona-SánchezR. Ballinas-IndiliR. ToscanoR.A. Macías-RubalcavaM.L. Álvarez-ToledanoC. Synthesis of novel N,N′-bis(triflyl)-1,7-dihydroimidazo[4,5-b]pyridines and their δ-bromolactone derivatives as antifungal agents.Tetrahedron Lett.201758323168317110.1016/j.tetlet.2017.07.004
    [Google Scholar]
  133. BhatM.A. KhanA.A. KhanS. Al-OmarM.A. ParvezM.K. Al-DosariM.S. Al-DhfyanA. Synthesis and anti-Candidal activity of N-(4-aryl/cyclohexyl)-2-(pyridine-4-yl carbonyl) hydrazinecarbothioamide.Bioorg. Med. Chem. Lett.20142451299130210.1016/j.bmcl.2014.01.060 24513049
    [Google Scholar]
  134. KadayatT.M. BanskotaS. BistG. GurungP. MagarT.B.T. ShresthaA. KimJ.A. LeeE.S. Synthesis and biological evaluation of pyridine-linked indanone derivatives: Potential agents for inflammatory bowel disease.Bioorg. Med. Chem. Lett.201828142436244110.1016/j.bmcl.2018.06.012 29910080
    [Google Scholar]
  135. LiuH. LiY. WangX.Y. WangB. HeH.Y. LiuJ.Y. XiangM.L. HeJ. WuX.H. YangL. Synthesis, preliminary structure–activity relationships, and in vitro biological evaluation of 6-aryl-3-amino-thieno[2,3-b]pyridine derivatives as potential anti-inflammatory agents.Bioorg. Med. Chem. Lett.20132382349235210.1016/j.bmcl.2013.02.059 23499235
    [Google Scholar]
  136. SajjaY. VulupalaH.R. BantuR. NagarapuL. VasamsettiS.B. KotamrajuS. NanuboluJ.B. Three-component, one-pot synthesis of benzo[6,7]cyclohepta[1,2- b]pyridine derivatives under catalyst free conditions and evaluation of their anti-inflammatory activity.Bioorg. Med. Chem. Lett.201626385886310.1016/j.bmcl.2015.12.078 26748696
    [Google Scholar]
  137. AbdelgawadM.A. BakrR.B. AzouzA.A. Novel pyrimidine-pyridine hybrids: Synthesis, cyclooxygenase inhibition, anti-inflammatory activity and ulcerogenic liability.Bioorg. Chem.20187733934810.1016/j.bioorg.2018.01.028 29421710
    [Google Scholar]
  138. Dennis BilavendranJ. ManikandanA. ThangarasuP. SivakumarK. Synthesis and discovery of pyrazolo-pyridine analogs as inflammation medications through pro- and anti-inflammatory cytokine and COX-2 inhibition assessments.Bioorg. Chem.20209410348410.1016/j.bioorg.2019.103484 31796215
    [Google Scholar]
  139. ParonikyanE.G. PetrouA. FesatidouM. GeronikakiA. DashyanS.S. MamyanS.S. ParonikyanR.G. NazaryanI.M. HakopyanH.H. Derivatives of a new heterocyclic system – pyrano[3,4- c][1,2,4]triazolo[4,3- a]pyridines: Synthesis, docking analysis and neurotropic activity.MedChemComm20191081399141110.1039/C9MD00187E 31534657
    [Google Scholar]
  140. ZakiR.M. Kamal El-DeanA.M. MickeyJ.A. MarzoukN.A. AhmedR.H. Synthesis, reactions, and antioxidant activity of 3-(pyrrol-1-yl)-4,6-dimethyl selenolo[2,3- b]pyridine derivatives.Synth. Commun.201747242406241610.1080/00397911.2017.1381259
    [Google Scholar]
  141. TahaM. IsmailN.H. ImranS. RashwanH. JamilW. AliS. KashifS.M. RahimF. SalarU. KhanK.M. Synthesis of 6-chloro-2-Aryl-1H-imidazo[4,5-b]pyridine derivatives: Antidiabetic, antioxidant, β-glucuronidase inhibiton and their molecular docking studies.Bioorg. Chem.201665485610.1016/j.bioorg.2016.01.007 26855413
    [Google Scholar]
  142. Rao KotaT.V. GandhamH.B. SanasiP.D. Green synthesis, characterization and antidiabetic activity of 2-substituted aryl/alkyl-n-aryl/alkyl imidazo[1,2-a]pyridin-3-amine derivatives.Asian J. Chem.20183071531153610.14233/ajchem.2018.21220
    [Google Scholar]
  143. DabaevaV.V. BagdasaryanM.R. DashyanS.S. DzhagatspanyanI.A. NazaryanI.M. AkopyanA.G. ParonikyanR.G. Synthesis and neurotropic activity of new condensed pyrano[4,3-b]-pyridines derivatives.Pharm. Chem. J.2019521084484910.1007/s11094‑019‑1912‑z
    [Google Scholar]
  144. SirakanyanS.N. AkopyanÉ.K. ParonikyanR.G. NazaryanI.M. AkopyanA.G. OvakimyanA.A. Synthesis and neurotropic activity of piperazino-derivatives of pyrano[3,4-c]pyridines.Pharm. Chem. J.201953649549910.1007/s11094‑019‑02026‑8
    [Google Scholar]
  145. LiT. ZhangJ. PanJ. WuZ. HuD. SongB. Design, synthesis, and antiviral activities of 1,5-benzothiazepine derivatives containing pyridine moiety.Eur. J. Med. Chem.201712565766210.1016/j.ejmech.2016.09.069 27721151
    [Google Scholar]
  146. IndumathiS. KarthikeyanR. NasserA.J.A. IdhayadhullaA. KumarR.S. Anticonvulsant, analgesic and anti-inflammatory activities of some novel pyrrole and 1, 4-dihydropyridine derivatives.J. Chem. Pharm. Res.20157434440
    [Google Scholar]
  147. AlghamdiA. AbouziedA.S. AlamriA. AnwarS. AnsariM. KhadraI. ZakiY.H. GomhaS.M. Synthesis, molecular docking, and dynamic simulation targeting main protease (Mpro) of new, thiazole clubbed pyridine scaffolds as potential COVID-19 inhibitors.Curr. Issues Mol. Biol.20234521422144210.3390/cimb45020093 36826038
    [Google Scholar]
  148. AbdelshaheedM.M. El SubbaghH.I. TantawyM.A. AttiaR.T. YoussefK.M. FawzyI.M. Discovery of new pyridine heterocyclic hybrids; design, synthesis, dynamic simulations, and in vitro and in vivo breast cancer biological assays.RSC Advances20231323156891570310.1039/D3RA02875E 37235111
    [Google Scholar]
  149. AshmawyF.O. GomhaS.M. AbdallahM.A. ZakiM.E.A. Al-HussainS.A. El-desoukyM.A. Synthesis, in vitro evaluation and molecular docking studies of novel thiophenyl thiazolyl-pyridine hybrids as potential anticancer agents.Molecules20232811427010.3390/molecules28114270 37298747
    [Google Scholar]
  150. ZiembickaD. GobisK. SzczesioM. OlczakA. Augustynowicz-KopećE. GłogowskaA. Korona-GłowniakI. BojanowskiK. Synthesis and structure–activity relationship of 2,6-disubstituted thiosemicarbazone derivatives of pyridine as potential antituberculosis agents.Materials (Basel)202316144810.3390/ma16010448 36614785
    [Google Scholar]
  151. HussainR. RehmanW. RahimF. KhanS. AlanaziA.S. AlanaziM.M. RasheedL. KhanY. Ali ShahS.A. TahaM. Synthesis, in vitro thymidine phosphorylase inhibitory activity and molecular docking study of novel pyridine-derived bis-oxadiazole bearing bis-schiff base derivatives.Arab. J. Chem.202316610477310.1016/j.arabjc.2023.104773
    [Google Scholar]
  152. ElsayedM.A. ElsayedA.M. SroorF.M. Novel biologically active pyridine derivatives: Synthesis, structure characterization, in vitro antimicrobial evaluation and structure-activity relationship.Med. Chem. Res.202433347649110.1007/s00044‑024‑03188‑1
    [Google Scholar]
  153. AnwerK.E. HamzaZ.K. RamadanR.M. Synthesis, spectroscopic, DFT calculations, biological activity, SAR, and molecular docking studies of novel bioactive pyridine derivatives.Sci. Rep.20231311559810.1038/s41598‑023‑42714‑w 37730837
    [Google Scholar]
  154. AlenaziN.A. AlharbiH. Fawzi QarahA. AlsoliemyA. AbualnajaM.M. KarkashanA. AbbasB. El-MetwalyN.M. New thieno[2,3-b]pyridine-based compounds: Synthesis, molecular modelling, antibacterial and antifungal activities.Arab. J. Chem.2023161110522610.1016/j.arabjc.2023.105226
    [Google Scholar]
/content/journals/cbc/10.2174/0115734072347787241008180129
Loading
/content/journals/cbc/10.2174/0115734072347787241008180129
Loading

Data & Media loading...


  • Article Type:
    Review Article
Keyword(s): anti-inflammatory; anticancer; antimicrobial; antioxidant; antitubercular; Pyridine
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test