Skip to content
2000
Volume 21, Issue 9
  • ISSN: 1573-4072
  • E-ISSN: 1875-6646

Abstract

Introduction

A preliminary biological evaluation of ten synthesized analogs, {[5-(E)-benzylidene amino]-1,3,4-thiadiazol-2-yl} cyclohexane-1,2,3,5-tetrol, revealed promising results, positioning these compounds as potential lead candidates for further optimization and preclinical exploration in cancer therapy. Incorporating the 1,3,4-thiadiazol moiety into the structure of the produced analogs considerably improved their anticancer activities, revealing the compound's high potential for cancer treatment. Spectroscopic approaches and structural analysis, such as elemental analysis, IR, 1H NMR, 13C NMR, and MS, were crucial for properly establishing the molecular structures of these analogs and evaluating their anticancer activity. These methodologies laid a solid platform for rationally developing new anticancer medications with increased efficacy and fewer adverse effects. Furthermore, computational tools like molecular docking, ADMET prediction, and drug-likeness evaluation have accelerated the drug development by finding the most promising lead candidates for preclinical and clinical trials. This technique not only saves time and costs, but also raises the chances of producing successful anticancer drugs.

Methods

The main aim of the current study is to develop, synthesize, , potentials of {5-[()-benzylidene amino]-1,3,4-thiadiazol-2-yl} cyclohexane-1,2,3,5-tetrol for a possible anticancer drug to improve their efficiency and selectivity against cancer cells, computational approaches aided in the rational design of these chemicals. Spectroscopic methods verified the chemical structures of the target compounds. The structures show the presence of 1,3,4-thiadiazol also responsible for anticancer activity. The 10 analogs were synthesized and showed encouraging anticancer efficacy in preliminary biological evaluation, suggesting they might be suitable lead candidates for more optimization and preclinical exploration.

Results

{5-[()-benzylidene amino]-1,3,4-thiadiazol-2-yl} cyclohexane-1,2,3,5-tetrol derivatives showed optimum IC values in activity by SRB assay using MCF-7 as a strain, the few selected analogs.

Conclusion

The study synthesized cyclohexane-1,2,3,5-tetrol analogs and evaluated their potential for cancer therapy. The compounds showed promising cytotoxic activity against various cancer cell lines, with and showing the most potent anti-proliferative effects. These compounds induce apoptosis mitochondrial dysfunction and cell cycle arrest. Further preclinical investigations are needed to establish their therapeutic potential.

Loading

Article metrics loading...

/content/journals/cbc/10.2174/0115734072337125241228011338
2025-01-09
2025-10-21
Loading full text...

Full text loading...

References

  1. BarhoiD. UpadhayaP. BarbhuiyaS.N. GiriA. GiriS. Aqueous extract of moringa oleifera exhibit potential anticancer activity and can be used as a possible cancer therapeutic agent: A study involving in vitro and in vivo approach.J. Am. Coll. Nutr.2021401708510.1080/07315724.2020.1735572 32191153
    [Google Scholar]
  2. LuL. ZhaoY. YiG. LiM. LiaoL. YangC. ChoC. ZhangB. ZhuJ. ZouK. ChengQ. Quinic acid: a potential antibiofilm agent against clinical resistant Pseudomonas aeruginosa.Chin. Med.20211617210.1186/s13020‑021‑00481‑8 34362401
    [Google Scholar]
  3. HeikkiläE. HermantA. ThevenetJ. BermontF. KulkarniS.S. RatajczakJ. Santo-DomingoJ. DioumE.H. CantoC. BarronD. WiederkehrA. De MarchiU. The plant product quinic acid activates Ca 2+ ‐dependent mitochondrial function and promotes insulin secretion from pancreatic beta cells.Br. J. Pharmacol.2019176173250326310.1111/bph.14757 31166006
    [Google Scholar]
  4. JinQ. ZhangC. ChenR. JiangL. LiH. WuP. LiL. Quinic acid regulated TMA/TMAO-related lipid metabolism and vascular endothelial function through gut microbiota to inhibit atherosclerotic.J. Transl. Med.202422135210.1186/s12967‑024‑05120‑y 38622667
    [Google Scholar]
  5. BenaliT. BakrimS. GhchimeR. BenkhairaN. El OmariN. BalahbibA. Pharmacological insights into the multifaceted biological properties of quinic acid.Biotechnol. Genet. Eng. Rev.20221130 36123811
    [Google Scholar]
  6. LiS. CaiY. GuanT. ZhangY. HuangK. ZhangZ. CaoW. GuanX. Quinic acid alleviates high-fat diet-induced neuroinflammation by inhibiting DR3/IKK/NF-κB signaling via gut microbial tryptophan metabolites.Gut Microbes2024161237460810.1080/19490976.2024.2374608
    [Google Scholar]
  7. HeenaK.S. KaushalS. KaurV. PanwarH. SharmaP. JangraR. Isolation of quinic acid from dropped Citrus reticulata blanco fruits: its derivatization, antibacterial potential, docking studies, and ADMET profiling.Front Chem.202412137256010.3389/fchem.2024.1372560 38698937
    [Google Scholar]
  8. TripathiV. SinghA. ChauhanS.S. Quinic acid attenuates oral cancer cell proliferation by downregulating cyclin D1 expression and Akt signaling.Pharmacogn. Mag.201814551410.4103/pm.pm_36_18
    [Google Scholar]
  9. DongJ. ZhengH. ZengQ. ZhangX. DuL. BaisS. Protective effect of D-(−)-quinic acid as food supplement in modulating AMP-activated protein kinase signalling pathway activation in HFD induced obesity.Hum. Exp. Toxicol.2022410960327122111980410.1177/09603271221119804
    [Google Scholar]
  10. ZhangM. LiuW.X. ZhengM.F. XuQ.L. WanF.H. WangJ. LeiT. ZhouZ.Y. TanJ.W. Bioactive quinic acid derivatives from ageratina adenophora.Molecules20131811140961410410.3390/molecules181114096 24241153
    [Google Scholar]
  11. ZanelloP.R. KoishiA.C. Rezende JúniorC.O. OliveiraL.A. PereiraA.A. de AlmeidaM.V. Duarte dos SantosC.N. BordignonJ. Quinic acid derivatives inhibit dengue virus replication in vitro .Virol. J.201512122310.1186/s12985‑015‑0443‑9 26695767
    [Google Scholar]
  12. ValancieneE. MalysN. Advances in production of hydroxycinnamoyl-quinic acids: From natural sources to biotechnology.Antioxidants20221112242710.3390/antiox11122427 36552635
    [Google Scholar]
  13. BluntJ.W. CoppB.R. KeyzersR.A. MunroaM.H. Prinsepd, MR Marine natural products.Nat. Prod. Rep.2016401708510.1039/b805113p 19177222
    [Google Scholar]
  14. AnoorP. YadavA. RajkumarK. KandeR. TripuraC. NaikK. BurgulaS. Methanol extraction revealed anticancer compounds Quinic Acid, 2(5H) Furanone and Phytol in Andrographis paniculata.Mol. Clin. Oncol.202217515110.3892/mco.2022.2584 36172002
    [Google Scholar]
  15. HuangZ. KuangJ. YuM. DingD. Quinic acid as a novel depressant for efficient flotation separation of scheelite from calcite.Physicochem. Probl. Miner. Proces.202359210.37190/ppmp/166008
    [Google Scholar]
  16. CliffordM.N. KerimiA. WilliamsonG. Bioavailability and metabolism of chlorogenic acids (acyl‐quinic acids) in humans.Compr. Rev. Food Sci. Food Saf.20201941299135210.1111/1541‑4337.12518 33337099
    [Google Scholar]
  17. Alcázar MagañaA. KamimuraN. SoumyanathA. StevensJ.F. MaierC.S. Caffeoylquinic acids: chemistry, biosynthesis, occurrence, analytical challenges, and bioactivity.Plant J.202110751299131910.1111/tpj.15390 34171156
    [Google Scholar]
  18. NguyenJ. BhosaleS. BennetA.J. A synthesis of l-(+)-quinic acid from d -(–)-quinic acid.Can. J. Chem.2024102311412110.1139/cjc‑2023‑0139
    [Google Scholar]
  19. BasnetP. MatsushigeK. HaseK. KadotaS. NambaT. Four di-O-caffeoyl quinic acid derivatives from propolis. Potent hepatoprotective activity in experimental liver injury models.Biol. Pharm. Bull.199619111479148410.1248/bpb.19.1479 8951168
    [Google Scholar]
  20. YangY.J. LiuX. WuH.R. HeX.F. BiY.R. ZhuY. LiuZ.L. Radical scavenging activity and cytotoxicity of active quinic acid derivatives from Scorzonera divaricata roots.Food Chem.20131382-32057206310.1016/j.foodchem.2012.10.122 23411343
    [Google Scholar]
  21. MuthamilS. BalasubramaniamB. BalamuruganK. PandianS.K. Synergistic effect of quinic acid derived from Syzygium cumini and undecanoic acid against Candida spp. biofilm and virulence.Front. Microbiol.20189283510.3389/fmicb.2018.02835 30534118
    [Google Scholar]
  22. KalaimaniK. BalachandranS. BoopathyL.K. RoyA. JayachandranB. SankaranarayananS. ArumugamM.K. Recent advancements in small interfering RNA based therapeutic approach on breast cancer.Eur. J. Pharmacol.202498117687710.1016/j.ejphar.2024.176877 39128807
    [Google Scholar]
  23. JayarajS. HemalathaK. Design, synthesis, and anticancer evaluation of novel N-[5-(1,3,4,5-tetrahydroxycyclohexyl)-1,3,4-thia] diazole-2-yl] benzamide analogues through integrated computational and experimental approaches.Futur. J. Pharm. Sci.2024Oct25101149
    [Google Scholar]
  24. LeeS.Y. MoonE. KimS.Y. LeeK.R. Quinic acid derivatives from Pimpinella brachycarpa exert anti-neuroinflammatory activity in lipopolysaccharide-induced microglia.Bioorg. Med. Chem. Lett.20132372140214410.1016/j.bmcl.2013.01.115 23462643
    [Google Scholar]
  25. HaiderS. AlamM.S. HamidH. 1,3,4-Thiadiazoles: A potent multi targeted pharmacological scaffold.Eur. J. Med. Chem.20159215617710.1016/j.ejmech.2014.12.035 25553540
    [Google Scholar]
  26. JainA.K. SharmaS. VaidyaA. RavichandranV. AgrawalR.K. 1,3,4-thiadiazole and its derivatives: A review on recent progress in biological activities.Chem. Biol. Drug Des.201381555757610.1111/cbdd.12125 23452185
    [Google Scholar]
  27. SharmaB. VermaA. PrajapatiS. SharmaU.K. Synthetic methods, chemistry, and the anticonvulsant activity of thiadiazoles.Int. J. Med. Chem.2013201311610.1155/2013/348948 25405032
    [Google Scholar]
  28. KumarD. AggarwalN. KumarV. ChopraH. MarwahaR.K. SharmaR. Emerging synthetic strategies and pharmacological insights of 1,3,4-thiadiazole derivatives: A comprehensive review.Future Med. Chem.202416656358110.4155/fmc‑2023‑0203 38353003
    [Google Scholar]
  29. ChoJ.Y. KimJ. LeeY. LeeH. ShimH. LeeJ. KimS.J. HamK.S. MoonJ.H. Four new dicaffeoylquinic acid derivatives from glasswort (salicornia herbacea l.) and their antioxidative activity.Molecules2016218109710.3390/molecules21081097 27556430
    [Google Scholar]
  30. StecozaC.E. NitulescuG.M. DraghiciC. CaproiuM.T. HanganuA. OlaruO.T. MihaiD.P. BostanM. MihailaM. Synthesis of 1,3,4-thiadiazole derivatives and their anticancer evaluation.Int. J. Mol. Sci.202324241747610.3390/ijms242417476 38139304
    [Google Scholar]
  31. BalaM. PiplaniP. AnkalgiA. JainA. ChandelL. 1,3,4-thiadiazole: A versatile pharmacophore of medicinal significance.Med. Chem.202319873075610.2174/1573406419666230102104648 36593699
    [Google Scholar]
  32. HuY. LiC.Y. WangX.M. YangY.H. ZhuH.L. 1,3,4-Thiadiazole: synthesis, reactions, and applications in medicinal, agricultural, and materials chemistry.Chem. Rev.2014114105572561010.1021/cr400131u 24716666
    [Google Scholar]
  33. LiY. GengJ. LiuY. YuS. ZhaoG. Thiadiazole-a promising structure in medicinal chemistry.ChemMedChem201381274110.1002/cmdc.201200355 23208773
    [Google Scholar]
  34. SahuS. SahuT. KalyaniG. GidwaniB. Synthesis and evaluation of antimicrobial activity of 1, 3, 4-thiadiazole analogues for potential scaffold.J. Pharmacopuncture2021241324010.3831/KPI.2021.24.1.32 33833898
    [Google Scholar]
  35. ElumalaiK. SrinivasanS. ShanmugamA. Review of the efficacy of nanoparticle-based drug delivery systems for cancer treatment.Biomedical Technology2024510912210.1016/j.bmt.2023.09.001
    [Google Scholar]
  36. JanowskaS. KhylyukD. BielawskaA. SzymanowskaA. GornowiczA. BielawskiK. NoworólJ. MandziukS. WujecM. New 1,3,4-thiadiazole derivatives with anticancer activity.Molecules2022276181410.3390/molecules27061814 35335177
    [Google Scholar]
  37. KaviarasanL. EldhoseE. KrishnamurthyP.T. RajagopalK. MohammedM. PrudvirajP. ByranG. 1,3,4-thiadiazolo (3,2-α) pyrimidine-6-carbonitrile scaffold as PARP1 inhibitors.Anticancer. Agents Med. Chem.202121152050206510.2174/1871520621666201216095018 33327923
    [Google Scholar]
  38. SubramanianG. BowenS.J. ZhuY. RoushN. ZacharyT. JavensC. WilliamsT. JanssenA. GonzalesA. Type 2 inhibitor leads of human tropomyosin receptor kinase (hTrkA).Bioorg. Med. Chem. Lett.2019291912662410.1016/j.bmcl.2019.126624 31444087
    [Google Scholar]
  39. ShamsiA. AhmedA. BanoB. Glyoxal induced structural transition of buffalo kidney cystatin to molten globule and aggregates: Anti‐fibrillation potency of quinic acid.IUBMB Life201668215616610.1002/iub.1471 26748578
    [Google Scholar]
  40. MulzerJ. DrescherM. EnevV. Quinic acid as versatile chiral scaffold in organic synthesis.Curr. Org. Chem.200812181613163010.2174/138527208786786291
    [Google Scholar]
  41. HemanthK. LakshmananK. RajagopalK. SolaP. A review on biological activities: 1,3,4-thiadiazole and its derivatives.Rasayan J. Chem.20221521573158710.31788/RJC.2022.1516443
    [Google Scholar]
/content/journals/cbc/10.2174/0115734072337125241228011338
Loading
/content/journals/cbc/10.2174/0115734072337125241228011338
Loading

Data & Media loading...

Supplements

Supplementray material is available on the publisher's website along with the published article.

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test