Skip to content
2000
Volume 22, Issue 1
  • ISSN: 1573-4072
  • E-ISSN: 1875-6646

Abstract

Alzheimer's disease, characterized by cognitive decline, memory impairment, and the presence of abnormal proteins or aberrant proteins like tau tangles and beta-amyloid plaques in the brain, despite intensive scientific efforts, has no known treatment, posing a significant global healthcare challenge. Antibody-based therapies have received more attention recently as possible Alzheimer's disease treatments. An extensive review of the state of research on antibody-based compounds as potential Alzheimer's disease treatments is given in this study. In addition to examining the difficulties and constraints encountered during development, it briefly overviews their mechanisms of action, therapeutic efficacy, and safety profiles. The study also emphasizes important factors to consider when developing antibody-based treatments, including safety concerns, dosage schedules, and patient selection standards. To sum up, antibody-based treatments have a bright future for treating Alzheimer's. Despite current obstacles, mounting data indicates that these treatments have a great deal of promise to either slow or stop the progression of this debilitating condition, which could improve the quality of life for the millions of people and families who suffer from Alzheimer's disease globally.

Loading

Article metrics loading...

/content/journals/cbc/10.2174/0115734072347198241226113039
2025-01-29
2026-02-22
Loading full text...

Full text loading...

References

  1. RahmanA. HossenM.A. ChowdhuryM.F.I. BariS. TamannaN. SultanaS.S. HaqueS.N. Al MasudA. Saif-Ur-RahmanK.M. Aducanumab for the treatment of Alzheimer’s disease: A systematic review.Psychogeriatrics202323351252210.1111/psyg.12944 36775284
    [Google Scholar]
  2. GoldsteinM.R. CheslockM. On the prevention and treatment of Alzheimer’s disease: Control the promoters and look beyond the brain.Med. Hypotheses202115411064510.1016/j.mehy.2021.110645 34315048
    [Google Scholar]
  3. BehlT. KaurI. SehgalA. SinghS. SharmaN. MakeenH.A. AlbrattyM. AlhazmiH.A. FelembanS.G. AlsubayielA.M. BhatiaS. BungauS. “Aducanumab” making a comeback in Alzheimer’s disease: An old wine in a new bottle.Biomed. Pharmacother.202214811274610.1016/j.biopha.2022.112746 35231697
    [Google Scholar]
  4. GoedertM. SpillantiniM.G. A century of Alzheimer’s disease.Science2006314580077778110.1126/science.1132814 17082447
    [Google Scholar]
  5. Budd HaeberleinS. AisenP.S. BarkhofF. ChalkiasS. ChenT. CohenS. DentG. HanssonO. HarrisonK. von HehnC. IwatsuboT. MallinckrodtC. MummeryC.J. MuralidharanK.K. NestorovI. NisenbaumL. RajagovindanR. SkordosL. TianY. van DyckC.H. VellasB. WuS. ZhuY. SandrockA. Two randomized phase 3 studies of aducanumab in early Alzheimer’s disease.J. Prev. Alzheimers Dis.202292197210 35542991
    [Google Scholar]
  6. ChuJ. ZhangW. LiuY. GongB. JiW. YinT. GaoC. LiangwenD. HaoM. ChenC. ZhuangJ. GaoJ. YinY. Biomaterials-based anti-inflammatory treatment strategies for Alzheimer’s disease.Neural Regen. Res.202419110011510.4103/1673‑5374.374137 37488851
    [Google Scholar]
  7. Sola-SevillaN. PuertaE. SIRT2 as a potential new therapeutic target for Alzheimer’s disease.Neural Regen. Res.202419112413110.4103/1673‑5374.375315 37488853
    [Google Scholar]
  8. PanzaF. FrisardiV. ImbimboB.P. D’OnofrioG. PietrarossaG. SeripaD. PilottoA. SolfrizziV. Bapineuzumab: Anti-β-amyloid monoclonal antibodies for the treatment of Alzheimer’s disease.Immunotherapy20102676778210.2217/imt.10.80 21091109
    [Google Scholar]
  9. QuinterosD.A. BermúdezJ.M. RavettiS. CidA. Therapeutic use of monoclonal antibodies: General aspects and challenges for drug delivery. Nanostructures for Drug Delivery: Micro and Nano Technologies.Elsevier201780783310.1016/B978‑0‑323‑46143‑6.00025‑7
    [Google Scholar]
  10. Van HoeckeL. RooseK. How mRNA therapeutics are entering the monoclonal antibody field.J. Transl. Med.20191715410.1186/s12967‑019‑1804‑8 30795778
    [Google Scholar]
  11. GuX. QiL. QiQ. ZhouJ. ChenS. WangL. Monoclonal antibody therapy for Alzheimer’s disease focusing on intracerebral targets.Biosci. Trends2024181496510.5582/bst.2023.01288 38382942
    [Google Scholar]
  12. Van DyckC.H. Anti-amyloid-β monoclonal antibodies for alzheimer’s disease: Pitfalls and promise.Biol. Psychiatry201883431110.1016/j.biopsych.2017.08.010
    [Google Scholar]
  13. ArndtJ.W. QianF. SmithB.A. QuanC. KilambiK.P. BushM.W. WalzT. PepinskyR.B. BussièreT. HamannS. CameronT.O. WeinrebP.H. Structural and kinetic basis for the selectivity of aducanumab for aggregated forms of amyloid-β.Sci. Rep.201881641210.1038/s41598‑018‑24501‑0 29686315
    [Google Scholar]
  14. VazM. SilvaV. MonteiroC. SilvestreS. Role of aducanumab in the treatment of Alzheimer’s disease: Challenges and opportunities.Clin. Interv. Aging2022171779781010.2147/CIA.S325026 35611326
    [Google Scholar]
  15. SevignyJ. ChiaoP. BussièreT. WeinrebP.H. WilliamsL. MaierM. DunstanR. SallowayS. ChenT. LingY. O’GormanJ. QianF. ArastuM. LiM. ChollateS. BrennanM.S. Quintero-MonzonO. ScannevinR.H. The antibody aducanumab reduces Aβ plaques in Alzheimer’s disease.Nature20165375056
    [Google Scholar]
  16. WalshS. MerrickR. MilneR. BrayneC. Aducanumab for Alzheimer’s disease?BMJ2021374374n168210.1136/bmj.n1682 34226181
    [Google Scholar]
  17. SallowayS. ChalkiasS. BarkhofF. BurkettP. BarakosJ. PurcellD. SuhyJ. ForrestalF. TianY. UmansK. WangG. SinghalP. Budd HaeberleinS. SmirnakisK. Amyloid-related imaging abnormalities in 2 phase 3 studies evaluating aducanumab in patients with early Alzheimer disease.JAMA Neurol.2022791132110.1001/jamaneurol.2021.4161 34807243
    [Google Scholar]
  18. Alzheimer’s Disease International. EMA refuses marketing authorisation application for Aduhelm. News release, Dec 17,2021Available at: https://www.alzint.org/news-events/news/ema-refuses-marketing-authorisation-application-for-aduhelm
  19. Eisai Co., Ltd. Japan’s first committee on new drugs of the pharmaceutical affairs and food sanitation council seeks additional data; aducanumab remains under review. News Release, December 22,2021Available online: https://www.eisai.com/news/2021/news2021101.html
  20. SturchioA. DwivediA.K. YoungC.B. MalmT. MarsiliL. SharmaJ.S. MahajanA. HillE.J. AndaloussiS.E.L. PostonK.L. ManfredssonF.P. SchneiderL.S. EzzatK. EspayA.J. High cerebrospinal amyloid-β 42 is associated with normal cognition in individuals with brain amyloidosis.E Clin Med2021383810098810.1016/j.eclinm.2021.100988 34505023
    [Google Scholar]
  21. PenkeB. SzűcsM. BogárF. Oligomerization and conformational change turn monomeric β-amyloid and tau proteins toxic: Their role in Alzheimer’s pathogenesis.Molecules2020257165910.3390/molecules25071659 32260279
    [Google Scholar]
  22. ChenX.Q. MobleyW.C. Alzheimer disease pathogenesis:] Insights from molecular and cellular biology studies of oligomeric Aβ and tau species.Front. Neurosci.20191365910.3389/fnins.2019.00659 31293377
    [Google Scholar]
  23. Johnson-WoodK. LeeM. MotterR. HuK. GordonG. BarbourR. KhanK. GordonM. TanH. GamesD. LieberburgI. SchenkD. SeubertP. McConlogueL. Amyloid precursor protein processing and A beta42 deposition in a transgenic mouse model of Alzheimer disease.Proc. Natl. Acad. Sci.19979441550155710.1073/pnas.94.4.1550
    [Google Scholar]
  24. SallowayS. SperlingR. GilmanS. FoxN.C. BlennowK. RaskindM. SabbaghM. HonigL.S. DoodyR. Van DyckC.H. MulnardR. BarakosJ. A phase 2 multiple ascending dose trial of bapineuzumab in mild to moderate Alzheimer disease.Neurology200973242061207010.1212/WNL.0b013e3181c67808
    [Google Scholar]
  25. KerchnerG.A. BoxerA.L. Bapineuzumab.Expert Opin. Biol. Ther.20101071121113010.1517/14712598.2010.493872 20497044
    [Google Scholar]
  26. HuC. AdedokunO. ItoK. RajeS. LuM. Confirmatory population pharmacokinetic analysis for bapineuzumab phase 3 studies in patients with mild to moderate Alzheimer’s disease.J. Clin. Pharmacol.201555222122910.1002/jcph.393 25187399
    [Google Scholar]
  27. GuthrieH. HonigL.S. LinH. SinkK.M. BlondeauK. QuartinoA. DoltonM. Carrasco-TrigueroM. LianQ. BittnerT. ClaytonD. SmithJ. OstrowitzkiS. Safety, tolerability, and pharmacokinetics of crenezumab in patients with mild-to-moderate Alzheimer’s disease treated with escalating doses for up to 133 weeks.J. Alzheimers Dis.202076396797910.3233/JAD‑200134 32568196
    [Google Scholar]
  28. AdolfssonO. PihlgrenM. ToniN. VariscoY. BuccarelloA.L. AntonielloK. LohmannS. PiorkowskaK. GafnerV. AtwalJ.K. MaloneyJ. ChenM. GogineniA. WeimerR.M. MortensenD.L. FriesenhahnM. HoC. PaulR. PfeiferA. MuhsA. WattsR.J. An effector-reduced anti-amyloid (A) antibody with unique abinding properties promotes neuroprotection and glial engulfment of A.J. Neurosci.201232289677968910.1523/JNEUROSCI.4742‑11.2012 22787053
    [Google Scholar]
  29. MeilandtW.J. MaloneyJ.A. ImperioJ. LalehzadehG. EarrT. CrowellS. BainbridgeT.W. LuY. ErnstJ.A. FujiR.N. AtwalJ.K. Characterization of the selective in vitro and in vivo binding properties of crenezumab to oligomeric Aβ.Alzheimers Res. Ther.20191119710.1186/s13195‑019‑0553‑5 31787113
    [Google Scholar]
  30. SallowayS. HonigbergL.A. ChoW. WardM. FriesenhahnM. BrunsteinF. QuartinoA. ClaytonD. MortensenD. BittnerT. HoC. RabeC. SchauerS.P. WildsmithK.R. FujiR.N. SulimanS. ReimanE.M. ChenK. PaulR. Amyloid positron emission tomography and cerebrospinal fluid results from a crenezumab anti-amyloid-beta antibody double-blind, placebo-controlled, randomized phase II study in mild-to-moderate Alzheimer’s disease (BLAZE).Alzheimers Res. Ther.20181019610.1186/s13195‑018‑0424‑5 30231896
    [Google Scholar]
  31. RashadA. RasoolA. ShaheryarM. SarfrazA. SarfrazZ. Robles-VelascoK. Cherrez-OjedaI. Donanemab for Alzheimer’s disease: A systematic review of clinical trials.Healthcare20221113210.3390/healthcare11010032 36611492
    [Google Scholar]
  32. LoweS.L. WillisB.A. HawdonA. NatanegaraF. ChuaL. FosterJ. ShcherbininS. ArdayfioP. SimsJ.R. Donanemab (LY3002813) dose escalation study in Alzheimer’s disease.Alzheimers Dement. (N. Y.)202171e1211210.1002/trc2.12112 33614890
    [Google Scholar]
  33. BayerT.A. Pyroglutamate Aβ cascade as drug target in] Alzheimer’s disease.Mol. Psychiatry20222741880188510.1038/s41380‑021‑01409‑2 34880449
    [Google Scholar]
  34. SchillingS. ZeitschelU. HoffmannT. HeiserU. FranckeM. KehlenA. HolzerM. Hutter-PaierB. ProkeschM. WindischM. JaglaW. SchlenzigD. LindnerC. RudolphT. ReuterG. CynisH. MontagD. DemuthH.U. RossnerS. Glutaminyl cyclase inhibition attenuates pyroglutamate Aβ and Alzheimer’s disease–like pathology.Nat. Med.200814101106111110.1038/nm.1872 18836460
    [Google Scholar]
  35. PanzaF. SeripaD. LozuponeM. SolfrizziV. ImbimboB.P. BarulliM.R. TortelliR. CapozzoR. BiscegliaP. DimitriA. StalloneR. DibelloV. QuarantaN. DanieleA. BellomoA. GrecoA. LogroscinoG. The potential of solanezumab and gantenerumab to prevent Alzheimer’s disease in people with inherited mutations that cause its early onset.Expert Opin. Biol. Ther.2018181253510.1080/14712598.2018.1389885 29037101
    [Google Scholar]
  36. PanzaF. SolfrizziV. ImbimboB.P. GianniniM. SantamatoA. SeripaD. LogroscinoG. Efficacy and safety studies of gantenerumab in patients with Alzheimer’s disease.Expert Rev. Neurother.201414997398610.1586/14737175.2014.945522 25081412
    [Google Scholar]
  37. BohrmannB. BaumannK. BenzJ. GerberF. HuberW. KnoflachF. MesserJ. OroszlanK. RauchenbergerR. RichterW.F. RotheC. UrbanM. BardroffM. WinterM. NordstedtC. LoetscherH. Gantenerumab: A novel human anti-Aβ antibody demonstrates sustained cerebral amyloid-β binding and elicits cell-mediated removal of human amyloid-β.J. Alzheimers Dis.2012281496910.3233/JAD‑2011‑110977 21955818
    [Google Scholar]
  38. OstrowitzkiS. DeptulaD. ThurfjellL. BarkhofF. BohrmannB. BrooksD.J. KlunkW.E. AshfordE. YooK. XuZ.X. LoetscherH. SantarelliL. Mechanism of amyloid removal in patients with Alzheimer disease treated with gantenerumab.Arch. Neurol.201269219820710.1001/archneurol.2011.1538 21987394
    [Google Scholar]
  39. QinQ. TangY. Lecanemab: The game changer in the ongoing fight to treat Alzheimer’s disease?Human Brain20232112
    [Google Scholar]
  40. BarthelH. Amyloid imaging-based food and drug administration approval of Lecanemab to treat Alzheimer’s disease-what lasts long finally becomes good?J. Nucl. Med.202364450350410.2967/jnumed.123.265667 36958857
    [Google Scholar]
  41. TolarM. AbushakraS. HeyJ.A. PorsteinssonA. SabbaghM. Aducanumab, gantenerumab, BAN2401, and ALZ-801-the first wave of amyloid-targeting drugs for Alzheimer’s disease with potential for near term approval.Alzheimers Res. Ther.20201219510.1186/s13195‑020‑00663‑w 32787971
    [Google Scholar]
  42. SöderbergL. JohannessonM. NygrenP. LaudonH. ErikssonF. OsswaldG. MöllerC. LannfeltL. Lecanemab, Aducanumab, and Gantenerumab: Binding profiles to different forms of amyloid-beta might explain efficacy and side effects in clinical trials for Alzheimer’s disease.Neurotherapeutics202320119520610.1007/s13311‑022‑01308‑6 36253511
    [Google Scholar]
  43. TuckerS. MöllerC. TegerstedtK. LordA. LaudonH. SjödahlJ. SöderbergL. SpensE. SahlinC. WaaraE.R. SatlinA. GellerforsP. OsswaldG. LannfeltL. The murine version of BAN2401 (mAb158) selectively reduces amyloid-β protofibrils in brain and cerebrospinal fluid of tg-ArcSwe mice.J. Alzheimers Dis.201443257558810.3233/JAD‑140741 25096615
    [Google Scholar]
  44. SwansonC.J. ZhangY. DhaddaS. WangJ. KaplowJ. LaiR.Y.K. LannfeltL. BradleyH. RabeM. KoyamaA. ReydermanL. BerryD.A. BerryS. GordonR. KramerL.D. CummingsJ.L. A randomized, double-blind, phase 2b proof-of-concept clinical trial in early Alzheimer’s disease with lecanemab, an anti-Aβ protofibril antibody.Alzheimers Res. Ther.20211318010.1186/s13195‑021‑00813‑8 33865446
    [Google Scholar]
  45. SiemersE.R. SundellK.L. CarlsonC. CaseM. SethuramanG. Liu-SeifertH. DowsettS.A. PontecorvoM.J. DeanR.A. DemattosR. Phase 3 solanezumab trials: Secondary outcomes in mild Alzheimer’s disease patients.Alzheimers Dement.201612211012010.1016/j.jalz.2015.06.1893 26238576
    [Google Scholar]
  46. DeMattosR.B. BalesK.R. CumminsJ. Holtzman, peripheral anti-Aβ antibody alters CNS and plasma Aβ clearance and decreases brain Aβ burden in a mouse model of Alzheimer’s disease.Proc. Natl. Acad. Sci. USA2001988850885510.1073/pnas.151261398 11438712
    [Google Scholar]
  47. FarlowM. ArnoldS.E. van DyckC.H. AisenP.S. SniderB.J. PorsteinssonA.P. FriedrichS. DeanR.A. GonzalesC. SethuramanG. DeMattosR.B. MohsR. PaulS.M. SiemersE.R. Safety and biomarker effects of solanezumab in patients with Alzheimer’s disease.Alzheimers Dement.20128426127110.1016/j.jalz.2011.09.224 22672770
    [Google Scholar]
  48. SiemersE.R. FriedrichS. DeanR.A. GonzalesC. Safety and changes in plasma and cerebrospinal fluid Amyloid β following a single administration of an Ab monoclonal antibody in subjects with Alzheimer’s disease.Clin. Neuropharmacol.201033677310.1097/WNF.0b013e3181cb577a 20375655
    [Google Scholar]
  49. KarranE. HardyJ. Antiamyloid therapy for Alzheimer’s disease: Are we on the right road?N. Engl. J. Med.2014370437737810.1056/NEJMe1313943 24450897
    [Google Scholar]
  50. PrinsN.D. ScheltensP. Treating Alzheimer’s disease with monoclonal antibodies: Current status and outlook for the future.Alzheimers Res. Ther.2013565610.1186/alzrt220 24216217
    [Google Scholar]
  51. MorethJ. MavoungouC. SchindowskiK. Passive anti-amyloid immunotherapy in Alzheimer’s disease: What are the most promising targets?Immun. Ageing20131011810.1186/1742‑4933‑10‑18 23663286
    [Google Scholar]
  52. LeyheT. AndreasenN. SimeoniM. ReichA. von ArnimC.A.F. TongX. YeoA. KhanS. LoercherA. ChalkerM. HottensteinC. ZetterbergH. HilpertJ. MistryP. Modulation of β-amyloid by a single dose of GSK933776 in patients with mild Alzheimer’s disease: A phase I study.Alzheimers Res. Ther.2014621910.1186/alzrt249 24716469
    [Google Scholar]
  53. DoodyR.S. RamanR. FarlowM. IwatsuboT. VellasB. JoffeS. KieburtzK. HeF. SunX. ThomasR.G. AisenP.S. SiemersE. SethuramanG. MohsR. A phase 3 trial of semagacestat for treatment of Alzheimer’s disease.N. Engl. J. Med.2013369434135010.1056/NEJMoa1210951 23883379
    [Google Scholar]
  54. TagamiS. YanagidaK. KodamaT.S. TakamiM. MizutaN. OyamaH. NishitomiK. ChiuY. OkamotoT. IkeuchiT. SakaguchiG. KudoT. MatsuuraY. FukumoriA. TakedaM. IharaY. OkochiM. Semagacestat is a pseudo-inhibitor of γ-secretase.Cell Rep.201721125927310.1016/j.celrep.2017.09.032 28978478
    [Google Scholar]
  55. PanzaF. SolfrizziV. DanieleA. LozuponeM. Passive tau-based immunotherapy for tauopathies.Handb. Clin. Neurol.202319661161910.1016/B978‑0‑323‑98817‑9.00029‑6 37620094
    [Google Scholar]
  56. BoutajangoutA. IngadóttirJ. DaviesP. Dementia. Passive tau immunotherapy diminishes functional decline and clears tau aggregates in a mouse model of tauopathy.Alzheimers Dement.20104S578S578
    [Google Scholar]
  57. TengE. ManserP.T. PickthornK. BrunsteinF. BlendstrupM. Sanabria BohorquezS. WildsmithK.R. TothB. DoltonM. RamakrishnanV. BobbalaA. SikkesS.A.M. WardM. FujiR.N. KerchnerG.A. FarnbachP. KyndtC. O’BrienT. YassiN. SchwartzR. LietenS. VandenbergheR. VanheeF. BergeronR. BlackS. CohenS. FrankA. NiskerW. TartagliaM.C. JustesenA. AlexandersenP. NielsenS. AreovimataA. AnthonyP. BelliardS. BlancF. CeccaldiM. DuboisB. Krolak-SalmonP. MollionH. PasquierF. GrimmerT. Kottke-ArbeiterM.E. LaskeC. PetersO. PolivkaD. von ArnimC. BrunoG. De LenaC. CassettaE. CentonzeD. LogroscinoG. DautzenbergP. RutgersS. PrinsN. CzarneckiM. DobryniewskiJ. IlkowskiJ. KlodowskaG. Krygowska-WajsA. KucharskiR. MickielewiczA. RatajczakM. ZbochM. ZielinskiT. Abizanda SolerP. Agüera MoralesE. Baquero ToledoM. Blesa GonzálezR. Boada RoviraM. Del Olmo RodriguezA. KrupinskiJ. Linazasoro CristobalG. López ArrietaJ. Riverol FernandezM. Sanchez Del Valle DiazR. Viñuela FernandezF. JonssonM. ÖstlundH. MacSweeneyJ.E. MummeryC. AgroninM. AlaT. BondW. SchaerfF. BrodyM. EdwardsK. ForchettiC. SoodA. GeldmacherD. GoldsteinM. GoodmanI. HartD. HonigL. JustizW. LeveyA. LoskS. MarshallG. MartinezW. McAllisterP. McElveenW.A. Maldonado-RoblesO. MurphyC. NairM. NairA. OmidvarO. OskooilarN. PorsteinssonA. RosenbloomM. RussellD. SajjadiS.A. PierceA. SallowayS. ShaS. ShahR. SharmaS. SmithW. SteinL. StoukidesJ. TheinS. TurnerR. WatsonD. WeismanD. Safety and efficacy of Semorinemab in individuals with prodromal to mild Alzheimer disease.JAMA Neurol.202279875876710.1001/jamaneurol.2022.1375 35696185
    [Google Scholar]
  58. AyalonG. LeeS.H. AdolfssonO. Foo-AtkinsC. AtwalJ.K. BlendstrupM. BoolerH. BravoJ. BrendzaR. BrunsteinF. ChanR. ChandraP. CouchJ.A. DatwaniA. DemeuleB. DiCaraD. EricksonR. ErnstJ.A. ForemanO. HeD. HötzelI. KeeleyM. KwokM.C.M. Lafrance-VanasseJ. LinH. LuY. LukW. ManserP. MuhsA. NguH. PfeiferA. PihlgrenM. RaoG.K. Scearce-LevieK. SchauerS.P. SmithW.B. SolanoyH. TengE. WildsmithK.R. Bumbaca YadavD. YingY. FujiR.N. KerchnerG.A. Antibody semorinemab reduces tau pathology in a transgenic mouse model and engages tau in patients with Alzheimer’s disease.Sci. Transl. Med.202113593eabb263910.1126/scitranslmed.abb2639 33980574
    [Google Scholar]
  59. VazM. SilvestreS. Alzheimer’s disease: Recent treatment strategies.Eur. J. Pharmacol.202088717355410.1016/j.ejphar.2020.173554 32941929
    [Google Scholar]
  60. NeațuM. CovaliuA. IonițăI. JugurtA. DavidescuE.I. PopescuB.O. Monoclonal antibody therapy in Alzheimer’s disease.Pharmaceutics20231616010.3390/pharmaceutics16010060 38258071
    [Google Scholar]
  61. AlbertM. Mairet-CoelloG. DanisC. LiegerS. CaillierezR. CarrierS. SkrobalaE. LandrieuI. MichelA. SchmittM. CitronM. DowneyP. CouradeJ.P. BuéeL. ColinM. Prevention of tau seeding and propagation by immunotherapy with a central tau epitope antibody.Brain201914261736175010.1093/brain/awz100 31038156
    [Google Scholar]
  62. HöglingerG.U. LitvanI. MendoncaN. WangD. ZhengH. Rendenbach-MuellerB. LonH.K. JinZ. FissehaN. BudurK. GoldM. RymanD. FlorianH. AhmedA. AibaI. AlbaneseA. BertramK. BordelonY. BowerJ. BroschJ. ClaassenD. ColosimoC. CorvolJ-C. CudiaP. DanieleA. DefebvreL. Driver-DunckleyE. DuquetteA. EleopraR. EusebioA. FungV. GeldmacherD. GolbeL. GrandasF. HallD. HatanoT. HöglingerG.U. HonigL. HuiJ. KerwinD. KikuchiA. KimberT. KimuraT. KumarR. LitvanI. LjubenkovP. LorenzlS. LudolphA. MariZ. McFarlandN. MeissnerW. Mir RiveraP. MochizukiH. MorganJ. MunhozR. NishikawaN. O’SullivanJ. OedaT. OizumiH. OnoderaO. Ory-MagneF. PeckhamE. PostumaR. QuattroneA. QuinnJ. RuggieriS. SarnaJ. SchulzP.E. SlevinJ. TagliatiM. WileD. WszolekZ. XieT. ZesiewiczT. Safety and efficacy of tilavonemab in progressive supranuclear palsy: A phase 2, randomised, placebo-controlled trial.Lancet Neurol.202120318219210.1016/S1474‑4422(20)30489‑0 33609476
    [Google Scholar]
  63. WestT. HuY. VergheseP.B. BatemanR.J. BraunsteinJ.B. FogelmanI. BudurK. FlorianH. MendoncaN. HoltzmanD.M. Preclinical and clinical development of ABBV-8E12, a humanized anti-Tau antibody, for treatment of Alzheimer’s disease and other Tauopathies.J. Prev. Alzheimers Dis.201744236241 29181488
    [Google Scholar]
  64. AbbVie Inc. A study to evaluate the efficacy and safety of ABBV-8E12 in participants with early Alzheimer’s disease. ClinicalTrials.gov Identifier: NCT02880956. 2016. https://clinicaltrials.gov/ct2/show/NCT02880956
  65. SongC. ShiJ. ZhangP. ZhangY. XuJ. ZhaoL. ZhangR. WangH. ChenH. Immunotherapy for alzheimer’s disease: Targeting β-amyloid and beyond.Transl. Neurodegener.20221111810.1186/s40035‑022‑00292‑3 35300725
    [Google Scholar]
  66. ParumsD.V. Editorial: Targets for disease-modifying therapies in Alzheimer’s disease, including amyloid β and tau protein.Med. Sci. Monit.20212727e934077 34305135
    [Google Scholar]
  67. WillisB.A. LoA.C. DageJ.L. ShcherbininS. ChinchenL. AndersenS.W. LaBellE.S. PerahiaD.G.S. HauckP.M. LoweS.L. Safety, tolerability, and pharmacokinetics of zagotenemab in participants with symptomatic alzheimer’s disease: A phase i clinical trial.J. Alzheimers Dis. Rep.2023711015102410.3233/ADR‑230012 37849628
    [Google Scholar]
  68. Eli Lilly and Company. A study of LY3303560 in healthy participants and participants with Alzheimer’s disease (AD). ClinicalTrials.gov Identifier: NCT02754830. 2016. https://clinicaltrials.gov/study/NCT02754830
  69. Eli Lilly and Company. A study of LY3303560 in participants with mild cognitive impairment. ClinicalTrials.gov Identifier: NCT03019536; 2023. https://www.clinicaltrials.gov/study/NCT03019536
  70. SopkoR. GolonzhkaO. ArndtJ. QuanC. CzerkowiczJ. CameronA. SmithB. MurugesanY. GibbonsG. KimS.J. TrojanowskiJ.Q. LeeV.M.Y. BrundenK.R. GrahamD.L. WeinrebP.H. HeringH. Characterization of tau binding by gosuranemab.Neurobiol. Dis.202014610512010.1016/j.nbd.2020.105120 32991997
    [Google Scholar]
  71. DamT. BoxerA.L. GolbeL.I. HöglingerG.U. MorrisH.R. LitvanI. LangA.E. CorvolJ.C. AibaI. GrundmanM. YangL. Tidemann-MillerB. KupfermanJ. HarperK. KamisogluK. WaldM.J. GrahamD.L. GedneyL. O’GormanJ. HaeberleinS.B. Safety and efficacy of anti-tau monoclonal antibody gosuranemab in progressive supranuclear palsy: A phase 2, randomized, placebo-controlled trial.Nat. Med.20212781451145710.1038/s41591‑021‑01455‑x 34385707
    [Google Scholar]
  72. BrightJ. HussainS. DangV. WrightS. CooperB. ByunT. RamosC. SinghA. ParryG. StaglianoN. Griswold-PrennerI. Human secreted tau increases amyloid-beta production.Neurobiol. Aging201536269370910.1016/j.neurobiolaging.2014.09.007 25442111
    [Google Scholar]
  73. BoxerA.L. QureshiI. AhlijanianM. GrundmanM. GolbeL.I. LitvanI. HonigL.S. TuiteP. McFarlandN.R. O’SuilleabhainP. XieT. TirucheraiG.S. BechtoldC. BordelonY. GeldmacherD.S. GrossmanM. IsaacsonS. ZesiewiczT. OlssonT. MuralidharanK.K. GrahamD.L. O’GormanJ. HaeberleinS.B. DamT. Safety of the tau-directed monoclonal antibody BIIB092 in progressive supranuclear palsy: A randomised, placebo-controlled, multiple ascending dose phase 1b trial.Lancet Neurol.201918654955810.1016/S1474‑4422(19)30139‑5 31122495
    [Google Scholar]
  74. CzerkowiczJ. Tzu-YingL. WeipingC. KubraK. Pharmacokinetic and target engagement analysis of anti-tau antibody gosuranemab [BIIB092] in cynomolgus monkey central nervous system fluid compartments.Am. J. Alzheimer's Dis.201915128810.1016/j.jalz.2019.06.3697
    [Google Scholar]
  75. QureshiI.A. TirucheraiG. AhlijanianM.K. KolaitisG. BechtoldC. GrundmanM. A randomized, single ascending dose study of intravenous BIIB092 in healthy participants.Alzheimers Dement. (N. Y.)20184174675510.1016/j.trci.2018.10.007 30581980
    [Google Scholar]
  76. OstrowitzkiS. BittnerT. SinkK.M. MackeyH. RabeC. HonigL.S. CassettaE. WoodwardM. BoadaM. van DyckC.H. GrimmerT. SelkoeD.J. SchneiderA. BlondeauK. HuN. QuartinoA. ClaytonD. DoltonM. DangY. OstaszewskiB. Sanabria-BohórquezS.M. RabbiaM. TothB. EichenlaubU. SmithJ. HonigbergL.A. DoodyR.S. Evaluating the safety and efficacy of Crenezumab vs placebo in adults with early Alzheimer disease.JAMA Neurol.202279111113112110.1001/jamaneurol.2022.2909 36121669
    [Google Scholar]
  77. SimsJ.R. ZimmerJ.A. EvansC.D. LuM. ArdayfioP. SparksJ. WesselsA.M. ShcherbininS. WangH. Monkul NeryE.S. CollinsE.C. SolomonP. SallowayS. ApostolovaL.G. HanssonO. RitchieC. BrooksD.A. MintunM. SkovronskyD.M. AbreuR. AgarwalP. AggarwalP. AgroninM. AllenA. AltamiranoD. AlvaG. AndersenJ. AndersonA. AndersonD. ArnoldJ. AsadaT. AsoY. AtitV. AyalaR. BadruddojaM. Badzio-jagielloH. BajacekM. BartonD. BearD. BenjaminS. BergeronR. BhatiaP. BlackS. BlockA. BolouriM. BondW. BouthillierJ. BrangmanS. BrewB. BrisbinS. BriskenT. BrodtmannA. BrodyM. BroschJ. BrownC. BrownstoneP. BukowczanS. BurnsJ. CabreraA. CapoteH. CarrascoA. Cevallos YepezJ. ChavezE. ChertkowH. Chyrchel-paszkiewiczU. CiabarraA. ClemmonsE. CohenD. CohenR. CohenI. ConchaM. CostellB. CrimminsD. Cruz-paganY. CueliA. CupeloR. CzarneckiM. DarbyD. DautzenbergP. De DeynP. De La GandaraJ. DeckK. DibenedettoD. DibuonoM. DinnersteinE. DiricanA. DixitS. DobryniewskiJ. DrakeR. DrysdaleP. DuaraR. DuffyJ. EllenbogenA. FaradjiV. FeinbergM. FeldmanR. FishmanS. FlitmanS. ForchettiC. FragaI. FrankA. FrishbergB. FujigasakiH. FukaseH. FumeroI. FurihataK. GallowayC. GandhiR. GeorgeK. GermainM. GitelmanD. GoetschN. GoldfarbD. GoldsteinM. GoldstickL. Gonzalez RojasY. GoodmanI. GreeleyD. GriffinC. GrigsbyE. GroszD. HafnerK. HartD. HeneinS. HerskowitzB. HigashiS. HigashiY. HoG. HodgsonJ. HohenbergM. HollenbeckL. HolubR. HoriT. HortJ. IlkowskiJ. IngramK.J. IsaacM. IshikawaM. JanuL. JohnstonM. JulioW. JustizW. KagaT. KakigiT. KalaferM. KamijoM. KaplanJ. KarathanosM. KatayamaS. KaulS. KeeganA. KerwinD. KhanU. KhanA. KimuraN. KirkG. KlodowskaG. KowaH. KutzC. KwentusJ. LaiR. LallA. LawrenceM. LeeE. LeonR. LinkerG. LisewskiP. LissJ. LiuC. LoskS. LukaszykE. LynchJ. MacfarlaneS. MacsweeneyJ. ManneringN. MarkovicO. MarksD. MasdeuJ. MatsuiY. MatsuishiK. McallisterP. McconneheyB. McelveenA. McgillL. MeccaA. MegaM. MensahJ. MickielewiczA. MinaeianA. MocherlaB. MurphyC. MurphyP. NagashimaH. NairA. NairM. NardandreaJ. NashM. NasreddineZ. NishidaY. NortonJ. NunezL. OchiaiJ. OhkuboT. OkamuraY. OkorieE. OliveraE. O’mahonyJ. OmidvarO. Ortiz-CruzD. OsowaA. PapkaM. ParkerA. PatelP. PatelA. PatelM. PatryC. PeckhamE. PfefferM. PietrasA. PlopperM. PorsteinssonA. Poulin RobitailleR. PrinsN. PuenteO. RatajczakM. RheeM. RitterA. RodriguezR. Rodriguez AblesL. RojasJ. RossJ. RoyerP. RubinJ. RussellD. RutgersS.M. RutrickS. SadowskiM. SafirsteinB. SagisakaT. ScharreD. SchneiderL. SchreiberC. SchriftM. SchulzP. SchwartzH. SchwartzbardJ. ScottJ. SelemL. SethiP. ShaS. SharlinK. SharmaS. ShiovitzT. ShiwachR. SladekM. SloanB. SmithA. SolomonP. SorialE. SosaE. StedmanM. SteenS. SteinL. StolyarA. StoukidesJ. SudohS. SuttonJ. SyedJ. SzigetiK. TachibanaH. TakahashiY. TatenoA. TaylorJ.D. TaylorK. TcheremissineO. ThebaudA. TheinS. ThurmanL. ToenjesS. TojiH. TomaM. TranD. TruebaP. TsujimotoM. TurnerR. UchiyamaA. UssorowskaD. VaishnaviS. ValorE. VandersluisJ. VasquezA. VelezJ. VergheseC. Vodickova-borzovaK. WatsonD. WeidmanD. WeismanD. WhiteA. WillinghamK. WinkelI. WinnerP. WinstonJ. WolffA. YagiH. YamamotoH. YathirajS. YoshiyamaY. ZbochM. Donanemab in early symptomatic Alzheimer disease.JAMA2023330651252710.1001/jama.2023.13239 37459141
    [Google Scholar]
  78. BatemanR.J. SmithJ. DonohueM.C. DelmarP. AbbasR. SallowayS. WojtowiczJ. BlennowK. BittnerT. BlackS.E. KleinG. BoadaM. GrimmerT. TamaokaA. PerryR.J. TurnerR.S. WatsonD. WoodwardM. ThanasopoulouA. LaneC. BaudlerM. FoxN.C. CummingsJ.L. FontouraP. DoodyR.S. Two phase 3 trials of Gantenerumab in early Alzheimer’s disease.N. Engl. J. Med.2023389201862187610.1056/NEJMoa2304430 37966285
    [Google Scholar]
  79. van DyckC.H. SwansonC.J. AisenP. BatemanR.J. ChenC. GeeM. KanekiyoM. LiD. ReydermanL. CohenS. FroelichL. KatayamaS. SabbaghM. VellasB. WatsonD. DhaddaS. IrizarryM. KramerL.D. IwatsuboT. Lecanemab in early Alzheimer’s disease.N. Engl. J. Med.2023388192110.1056/NEJMoa2212948 36449413
    [Google Scholar]
  80. SperlingR.A. DonohueM.C. RamanR. RafiiM.S. JohnsonK. MastersC.L. van DyckC.H. IwatsuboT. MarshallG.A. YaariR. ManciniM. HoldridgeK.C. CaseM. SimsJ.R. AisenP.S. Trial of Solanezumab in preclinical Alzheimer’s disease.N. Engl. J. Med.2023389121096110710.1056/NEJMoa2305032 37458272
    [Google Scholar]
  81. AndreasenN. SimeoniM. OstlundH. LisjoP.I. FladbyT. LoercherA.E. ByrneG.J. MurrayF. Scott-StevensP.T. WallinA. ZhangY.Y. BrongeL.H. ZetterbergH. NordbergA.K. YeoA.J. KhanS.A. HilpertJ. MistryP.C. First administration of the Fc-attenuated anti-β amyloid antibody GSK933776 to patients with mild Alzheimer’s disease: A randomized, placebo-controlled study.PLoS One2015103e009815310.1371/journal.pone.0098153 25789616
    [Google Scholar]
  82. SperlingR. HenleyD. AisenP.S. RamanR. DonohueM.C. ErnstromK. RafiiM.S. StrefferJ. ShiY. KarcherK. RaghavanN. TymofyeyevY. BogertJ. BrashearH.R. NovakG. ThipphawongJ. SaadZ.S. KolbH. RofaelH. SangaP. RomanoG. Biomarker outcomes of atabecestat in preclinical Alzheimer disease a truncated randomized phase 2b/3 clinical trial.JAMA Neurol.202178329330110.1001/jamaneurol.2020.4857 33464300
    [Google Scholar]
  83. WesselsA.M. TariotP.N. ZimmerJ.A. SelzlerK.J. BraggS.M. AndersenS.W. LandryJ. KrullJ.H. DowningA.M. WillisB.A. ShcherbininS. MullenJ. BarkerP. SchumiJ. SheringC. MatthewsB.R. SternR.A. VellasB. CohenS. MacSweeneyE. BoadaM. SimsJ.R. Efficacy and safety of Lanabecestat for treatment of early and mild Alzheimer disease.JAMA Neurol.202077219920910.1001/jamaneurol.2019.3988 31764959
    [Google Scholar]
  84. EganM.F. KostJ. TariotP.N. AisenP.S. CummingsJ.L. VellasB. SurC. MukaiY. VossT. FurtekC. MahoneyE. Harper MozleyL. VandenbergheR. MoY. MichelsonD. Randomized trial of verubecestat for mild-to-moderate Alzheimer’s disease.N. Engl. J. Med.2018378181691170310.1056/NEJMoa1706441 29719179
    [Google Scholar]
  85. ShulmanM. KongJ. O’GormanJ. RattiE. RajagovindanR. ViolletL. HuangE. SharmaS. RacineA.M. CzerkowiczJ. GrahamD. LiY. HeringH. HaeberleinS.B. TANGO: A placebo-controlled randomized phase 2 study of efficacy and safety of the anti-tau monoclonal antibody gosuranemab in early Alzheimer’s disease.Nature Aging20233121591160110.1038/s43587‑023‑00523‑w 38012285
    [Google Scholar]
  86. Update on regulatory review of lecanemab for early Alzheimer’s disease in the European Union2024Available from: https://www.eisai.com/news/2024/news202455.html
  87. ChenT. O’GormanJ. RajagovindanR. Castrillo-VigueraC. CurialeR.P. DoranG.G. TianY. PatelD. von HehnC. DoranS.J. HockC. Results from the long-term extension of PRIME: A randomized Phase 1b trial of aducanumab.Alzheimers Dement.2024203406341510.1002/alz.13755
    [Google Scholar]
  88. DoranS.J. SawyerR.P. Risk factors in developing amyloid related imaging abnormalities (ARIA) and clinical implications.Front. Neurosci.20241818132678410.3389/fnins.2024.1326784 38312931
    [Google Scholar]
  89. Biogen. A phase 2 multicenter randomized parallel-group doubleblind controlled study of Aducanumab (BIIB037) in subjects with mild cognitive impairment due to Alzheimer’s disease or with mild Alzheimer’s disease dementia to evaluate the safety of continued dosing in subjects with asymptomatic amyloid-related imaging abnormalities. ClinicalTrials.gov identifier: NCT03639987, 2018. https://clinicaltrials.gov/study/NCT03639987
  90. Biogen. 221AD302 phase 3 study of Aducanumab (BIIB037) in subjects with early Alzheimer’s disease. ClinicalTrials.gov identifier: NCT02484547, 2015. https://clinicaltrials.gov/study/NCT02484547
  91. Biogen. Phase 3b open-label safety study of BIIB037 (Aducanumab) in subjects with Alzheimer’s disease previously in studies 221AD103, 221AD301, 221AD302 and 221AD205. ClinicalTrials.gov identifier: NCT04241068, 2020. https://clinicaltrials.gov/study/NCT04241068
  92. Eli Lilly and Company. Study of LY3002813 in participants with early symptomatic Alzheimer disease (TRAILBLAZER-ALZ). ClinicalTrials.gov identifier: NCT03367403, 2017. https://clinicaltrials.gov/study/NCT03367403
  93. Eli Lilly and Company. Trailblazer-ALZ2: study of Donanemab (LY3002813) in participants with early Alzheimer’s disease. ClinicalTrials.gov identifier: NCT04437511, 2020. https://clinicaltrials.gov/study/NCT04437511
  94. Eli Lilly and Company. Donanemab (LY3002813) study in participants with preclinical Alzheimer’s disease (TRAILBLAZERALZ3). ClinicalTrials.gov identifier: NCT05026866, 2021. https://clinicaltrials.gov/study/NCT05026866
  95. Eli Lilly and Company. Study of different Donanemab (LY3002813) dosing regimens in adults with early symptomatic Alzheimer’s disease (TRAILBLAZER-ALZ6). ClinicalTrials.gov identifier: NCT05738486, 2023. https://clinicaltrials.gov/study/NCT05738486
  96. Eisai Inc.; Biogen. Study 201 (BAN2401-G000-201): Lecanemab in subjects with early Alzheimer’s disease/mild cognitive impairment. ClinicalTrials.gov identifier: NCT01767311, 2013. https://clinicaltrials.gov/study/NCT01767311
  97. Eisai Inc.; Biogen. Study to confirm safety and efficacy of BAN2401 in participants with early Alzheimer’s disease. Clinical- Trials.gov identifier: NCT03887455, 2019. https://clinicaltrials.gov/study/NCT03887455
  98. Eli Lilly and Company. Study of Donanemab (LY3002813) in participants with early Alzheimer’s disease (Japanese subgroup of TRAILBLAZER-ALZ2). ClinicalTrials.gov identifier: NCT04468659, 2020. https://clinicaltrials.gov/study/NCT04468659
  99. Eli Lilly and Company. Donanemab (LY3002813) study in participants with preclinical Alzheimer’s disease (TRAILBLAZERALZ3). ClinicalTrials.gov identifier: NCT05269394, 2022. https://clinicaltrials.gov/study/NCT05269394
  100. Eli Lilly and Company. Study to evaluate safety, tolerability, and efficacy of Donanemab (LY3002813) in subjects with early Alzheimer’s disease. ClinicalTrials.gov identifier: NCT05463731, 2022. https://clinicaltrials.gov/study/NCT05463731
/content/journals/cbc/10.2174/0115734072347198241226113039
Loading
/content/journals/cbc/10.2174/0115734072347198241226113039
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test