Skip to content
2000
image of Diosmin as Antidiabetic Agent: A Comprehensive Mechanistic Approach

Abstract

Diabetes mellitus is a chronic metabolic disorder which occurs due to deficiency of insulin or resistance to insulin receptor. There are naturally occurring compounds found in various plants, foods, and herbs that have potent anti-diabetic properties. They help to control blood sugar levels by increasing insulin sensitivity and stimulating glucose absorption in cells. Diosmin, a flavonoid glycoside found primarily in citrus fruits, has shown outstanding potential as a therapeutic agent due to its significant anti-diabetic, anti-inflammatory, antioxidant, and vascular-protective properties. Here, we review the diosmin molecular mechanism and its ability to regulate oxidative stress, reduce inflammatory cytokines, improve endothelial function, and explore its pathway for anti-diabetic properties. In addition, preclinical and clinical data that supports diosmin efficacy in decreasing blood glucose, enhancing insulin sensitivity, and delaying the development of diabetic squeal was considered. Furthermore, diosmin has shown great potential in a variety of therapeutic domains when associated with other drugs in combinational studies, and many diosmin-based drug delivery studies have been reported. This review also investigates the molecular processes and clinical uses of diosmin, emphasizing its therapeutic potential as an additional drug in diabetes control through a comprehensive review of current studies.

Loading

Article metrics loading...

/content/journals/cbc/10.2174/0115734072348359250115072824
2025-01-23
2025-09-28
Loading full text...

Full text loading...

References

  1. Umanath K. Lewis J.B. Update on diabetic nephropathy: Core curriculum 2018. Am. J. Kidney Dis. 2018 71 6 884 895 10.1053/j.ajkd.2017.10.026 29398179
    [Google Scholar]
  2. Atlas D. International diabetes federation. IDF Diabetes Atlas 7th ed International Diabetes Federation Brussels, Belgium 2015 33 2
    [Google Scholar]
  3. Pradeepa R. Mohan V. Epidemiology of type 2 diabetes in India. Indian J. Ophthalmol. 2021 69 11 2932 2938 10.4103/ijo.IJO_1627_21 34708726
    [Google Scholar]
  4. Li Y. Liu Y. Liu S. Gao M. Wang W. Chen K. Huang L. Liu Y. Diabetic vascular diseases: Molecular mechanisms and therapeutic strategies. Signal Transduct. Target. Ther. 2023 8 1 152 10.1038/s41392‑023‑01400‑z 37037849
    [Google Scholar]
  5. Aodah A.H. Devi S. Alkholifi F.K. Yusufoglu H.S. Foudah A.I. Alam A. Effects of taraxerol on oxidative and inflammatory mediators in isoproterenol-induced cardiotoxicity in an animal model. Molecules 2023 28 10 4089 10.3390/molecules28104089 37241830
    [Google Scholar]
  6. Mathur P. Rani V. MicroRNAs: A critical regulator and a promising therapeutic and diagnostic molecule for diabetic cardiomyopathy. Curr. Gene Ther. 2021 21 4 313 326 10.2174/1566523221666210311111619 33719971
    [Google Scholar]
  7. Alter P. Rupp H. Stoll F. Adams P. Figiel J.H. Klose K.J. Rominger M.B. Maisch B. Increased enddiastolic wall stress precedes left ventricular hypertrophy in dilative heart failure—Use of the volume-based wall stress index. Int. J. Cardiol. 2012 157 2 233 238 10.1016/j.ijcard.2011.07.092 21862155
    [Google Scholar]
  8. Weintraub R.G. Semsarian C. Macdonald P. Dilated cardiomyopathy. Lancet 2017 390 10092 400 414 10.1016/S0140‑6736(16)31713‑5 28190577
    [Google Scholar]
  9. Alkholifi F.K. Devi S. Yusufoglu H.S. Alam A. The cardioprotective effect of Corosolic Acid in the Diabetic rats: A possible mechanism of the PPAR-γ pathway. Molecules 2023 28 3 929 10.3390/molecules28030929 36770602
    [Google Scholar]
  10. Akhtar M.S. Alavudeen S.S. Raza A. Imam M.T. Almalki Z.S. Tabassum F. Iqbal M.J. Current understanding of structural and molecular changes in diabetic cardiomyopathy. Life Sci. 2023 332 122087 10.1016/j.lfs.2023.122087 37714373
    [Google Scholar]
  11. Biswas A. Choudhury A.D. Agrawal S. Bisen A.C. Sanap S.N. Verma S.K. Kumar M. Mishra A. Kumar S. Chauhan M. Bhatta R.S. Recent insights into the etiopathogenesis of diabetic retinopathy and its management. J. Ocul. Pharmacol. Ther. 2024 40 1 13 33 10.1089/jop.2023.0068 37733327
    [Google Scholar]
  12. Lee B. Afshari N.A. Shaw P.X. Oxidative stress and antioxidants in cataract development. Curr. Opin. Ophthalmol. 2024 35 1 57 63 10.1097/ICU.0000000000001009 37882550
    [Google Scholar]
  13. Zhu J. Hu Z. Luo Y. Liu Y. Luo W. Du X. Luo Z. Hu J. Peng S. Diabetic peripheral neuropathy: Pathogenetic mechanisms and treatment. Front. Endocrinol. (Lausanne) 2024 14 1265372 10.3389/fendo.2023.1265372 38264279
    [Google Scholar]
  14. Houldsworth A. Role of oxidative stress in neurodegenerative disorders: A review of reactive oxygen species and prevention by antioxidants. Brain Commun. 2023 6 1 fcad356 10.1093/braincomms/fcad356 38214013
    [Google Scholar]
  15. Kakar M. Chakarborty P. Behl T. Singh S. Sharma N. Sachdeva M. Insight into the role of inflammation in progression of diabetes associated neuropathy. Res. J. Pharm. Technol. 2020 13 5477 5483
    [Google Scholar]
  16. Bogucka–Kocka A. Woźniak M. Feldo M. Kocki J. Szewczyk K. Diosmin–isolation techniques, determination in plant material and pharmaceutical formulations, and clinical use. Nat Prod Commun 2013 8 4 545 550 10.1177/1934578X1300800435 23738475
    [Google Scholar]
  17. Peng Z. Zhang H. Li W. Yuan Z. Xie Z. Zhang H. Cheng Y. Chen J. Xu J. Comparative profiling and natural variation of polymethoxylated flavones in various citrus germplasms. Food Chem. 2021 354 129499 10.1016/j.foodchem.2021.129499 33752115
    [Google Scholar]
  18. Wang Z. Zhao S. Tao S. Hou G. Zhao F. Tan S. Meng Q. Dioscorea spp.: Bioactive compounds and potential for the treatment of inflammatory and metabolic diseases. Molecules 2023 28 6 2878 10.3390/molecules28062878 36985850
    [Google Scholar]
  19. Zhu Y.L. Huang W. Ni J.R. Liu W. Li H. Production of diosgenin from Dioscorea zingiberensis tubers through enzymatic saccharification and microbial transformation. Appl. Microbiol. Biotechnol. 2010 85 5 1409 1416 10.1007/s00253‑009‑2200‑8 19730849
    [Google Scholar]
  20. Bıtıs L. Kultur S. Melıkoglu G. Ozsoy N. Can A. Flavonoids and antioxidant activity of Rosa agrestis leaves. Nat. Prod. Res. 2010 24 6 580 589 10.1080/14786410903075507 20397108
    [Google Scholar]
  21. Androutsopoulos V.P. Spandidos D.A. The flavonoids diosmetin and luteolin exert synergistic cytostatic effects in human hepatoma HepG2 cells via CYP1A-catalyzed metabolism, activation of JNK and ERK and P53/P21 up-regulation. J. Nutr. Biochem. 2013 24 2 496 504 10.1016/j.jnutbio.2012.01.012 22749133
    [Google Scholar]
  22. Srinivasan S. Pari L. Ameliorative effect of diosmin, a citrus flavonoid against streptozotocin-nicotinamide generated oxidative stress induced diabetic rats. Chem. Biol. Interact. 2012 195 1 43 51 10.1016/j.cbi.2011.10.003 22056647
    [Google Scholar]
  23. Ai F. Ma Y. Wang J. Li Y. Preparation, physicochemical characterization and in-vitro dissolution studies of diosmin-cyclodextrin inclusion complexes. Iran. J. Pharm. Res. 2014 13 4 1115 1123 25587299
    [Google Scholar]
  24. Chen X. Xu L. Guo S. Wang Z. Jiang L. Wang F. Zhang J. Liu B. Profiling and comparison of the metabolites of diosmetin and diosmin in rat urine, plasma and feces using UHPLC-LTQ-Orbitrap MSn. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci. 2019 1124 58 71 10.1016/j.jchromb.2019.05.030 31177049
    [Google Scholar]
  25. Chung S. Kim H.J. Choi H.K. Park J.H. Hwang J.T. Comparative study of the effects of diosmin and diosmetin on fat accumulation, dyslipidemia, and glucose intolerance in mice fed a high‐fat high‐sucrose diet. Food Sci. Nutr. 2020 8 11 5976 5984 10.1002/fsn3.1883 33282249
    [Google Scholar]
  26. Wójciak M. Feldo M. Borowski G. Kubrak T. Płachno B.J. Sowa I. Antioxidant potential of diosmin and diosmetin against oxidative stress in endothelial cells. Molecules 2022 27 23 8232 10.3390/molecules27238232 36500323
    [Google Scholar]
  27. Shalkami A.S. Hassan M.I.A. Bakr A.G. Anti-inflammatory, antioxidant and anti-apoptotic activity of diosmin in acetic acid-induced ulcerative colitis. Hum. Exp. Toxicol. 2018 37 1 78 86 10.1177/0960327117694075 29187079
    [Google Scholar]
  28. Ali T.M. Abo-Salem O.M. El Esawy B.H. El Askary A. The potential protective effects of diosmin on streptozotocin-induced diabetic cardiomyopathy in rats. Am. J. Med. Sci. 2020 359 1 32 41 10.1016/j.amjms.2019.10.005 31902439
    [Google Scholar]
  29. Zeya B. Nafees S. Imtiyaz K. Uroog L. Fakhri K. Rizvi M. Diosmin in combination with naringenin enhances apoptosis in colon cancer cells. Oncol. Rep. 2021 47 1 4 10.3892/or.2021.8215 34738632
    [Google Scholar]
  30. Senthamizhselvan O. Manivannan J. Silambarasan T. Raja B. Diosmin pretreatment improves cardiac function and suppresses oxidative stress in rat heart after ischemia/reperfusion. Eur. J. Pharmacol. 2014 736 131 137 10.1016/j.ejphar.2014.04.026 24769512
    [Google Scholar]
  31. Habib C.N. Mohamed M.R. Tadros M.G. Tolba M.F. Menze E.T. Masoud S.I. The potential neuroprotective effect of diosmin in rotenone-induced model of Parkinson’s disease in rats. Eur. J. Pharmacol. 2022 914 174573 10.1016/j.ejphar.2021.174573 34656609
    [Google Scholar]
  32. Huang M. Singh N. Kainth R. Khalid M. Kushwah A.S. Kumar M. Mechanistic insight into diosmin-induced neuroprotection and memory improvement in intracerebroventricular-quinolinic acid rat model: Resurrection of mitochondrial functions and antioxidants. Evid. Based Complement. Alternat. Med. 2022 2022 1 1 14 10.1155/2022/8584558 35300069
    [Google Scholar]
  33. EL-Dakhly S.M. Salama A.A.A. Hassanin S.O.M. Yassen N.N. Hamza A.A. Amin A. Aescin and diosmin each alone or in low dose- combination ameliorate liver damage induced by carbon tetrachloride in rats. BMC Res. Notes 2020 13 1 259 10.1186/s13104‑020‑05094‑2 32460808
    [Google Scholar]
  34. Salem M.B. El-Lakkany N.M. Seif el-Din S.H. Hammam O.A. Samir S. Diosmin alleviates ulcerative colitis in mice by increasing Akkermansia muciniphila abundance, improving intestinal barrier function, and modulating the NF-κB and Nrf2 pathways. Heliyon 2024 10 6 e27527 10.1016/j.heliyon.2024.e27527 38500992
    [Google Scholar]
  35. Şimşek E. Koçak O. Yıldırım K. Kuruoğlu A. Taşkın N.D. Bozkurt S. İmir N. Ataş C. Akçit E.T. Çoban M. Çoban A.Y. The anti-angiogenic and anti-microbial effect of diosmin: Potential receptor interactions via molecular docking. Rev. Bras. Farmacogn. 2023 33 2 422 431 10.1007/s43450‑023‑00365‑y
    [Google Scholar]
  36. Karnieli E. Armoni M. Transcriptional regulation of the insulin-responsive glucose transporter GLUT4 gene: From physiology to pathology. Am. J. Physiol. Endocrinol. Metab. 2008 295 1 E38 E45 10.1152/ajpendo.90306.2008 18492767
    [Google Scholar]
  37. van Gerwen J. Shun-Shion A.S. Fazakerley D.J. Insulin signalling and GLUT4 trafficking in insulin resistance. Biochem. Soc. Trans. 2023 51 3 1057 1069 10.1042/BST20221066 37248992
    [Google Scholar]
  38. Jain D. Bansal M.K. Dalvi R. Upganlawar A. Somani R. Protective effect of diosmin against diabetic neuropathy in experimental rats. J. Integr. Med. 2014 12 1 35 41 10.1016/S2095‑4964(14)60001‑7 24461593
    [Google Scholar]
  39. Jyoti U. Kansal S.K. Kumar P. Goyal S. Possible vasculoprotective role of linagliptin against sodium arsenite-induced vascular endothelial dysfunction. Naunyn Schmiedebergs Arch. Pharmacol. 2016 389 2 167 175 10.1007/s00210‑015‑1184‑4 26497187
    [Google Scholar]
  40. Jyoti U. Mittal N. Singh T.G. Singh R. Devi S. Taraxerol: A Promising Natural Product in the Management of inflammation. Nat. Prod. J. 2024 14 e290224227560
    [Google Scholar]
  41. Mirzaei M. Moosavi M. Mansouri E. Mohtadi S. Khodayar M.J. Diosmin exerts hepatoprotective and antihyperglycemic effects against sodium arsenite-induced toxicity through the modulation of oxidative stress and inflammation in mice. J. Trace Elem. Med. Biol. 2023 78 127154 10.1016/j.jtemb.2023.127154 36934613
    [Google Scholar]
  42. Pari L. Srinivasan S. Antihyperglycemic effect of diosmin on hepatic key enzymes of carbohydrate metabolism in streptozotocin-nicotinamide-induced diabetic rats. Biomed. Pharmacother. 2010 64 7 477 481 10.1016/j.biopha.2010.02.001 20362409
    [Google Scholar]
  43. Om H. El-Naggar M.E. El-Banna M. Fouda M.M.G. Othman S.I. Allam A.A. Morsy O.M. Combating atherosclerosis with targeted Diosmin nanoparticles-treated experimental diabetes. Invest. New Drugs 2020 38 5 1303 1315 10.1007/s10637‑020‑00905‑6 32048108
    [Google Scholar]
  44. Alkhalaf M.I. Diosmin protects against acrylamide-induced toxicity in rats: Roles of oxidative stress and inflammation. J. King Saud Univ. Sci. 2020 32 2 1510 1515 10.1016/j.jksus.2019.12.005
    [Google Scholar]
  45. AlAsmari A.F. Alharbi M. Alqahtani F. Alasmari F. AlSwayyed M. Alzarea S.I. Al-Alallah I.A. Alghamdi A. Hakami H.M. Alyousef M.K. Sari Y. Ali N. Diosmin alleviates doxorubicin-induced liver injury via modulation of oxidative stress-mediated hepatic inflammation and apoptosis via NfkB and MAPK pathway: A preclinical study. Antioxidants 2021 10 12 1998 10.3390/antiox10121998 34943101
    [Google Scholar]
  46. Ahmed S. Mundhe N. Borgohain M. Chowdhury L. Kwatra M. Bolshette N. Ahmed A. Lahkar M. Diosmin modulates the NF-kB signal transduction pathways and downregulation of various oxidative stress markers in alloxan-induced diabetic nephropathy. Inflammation 2016 39 5 1783 1797 10.1007/s10753‑016‑0413‑4 27492452
    [Google Scholar]
  47. Zhao W.M. Li X.L. Zhu Y. Shi R. Wang Z.J. Xiao J.P. Wang D.G. Diosmin ameliorates renal fibrosis through inhibition of inflammation by regulating SIRT3-mediated NF-κB p65 nuclear translocation. BMC Complement. Med. Ther. 2024 24 1 29 10.1186/s12906‑023‑04330‑z 38195573
    [Google Scholar]
  48. Vafa A. Afzal S.M. Barnwal P. Rashid S. Shahid A. Alpashree Islam J. Sultana S. Protective role of diosmin against testosterone propionate-induced prostatic hyperplasia in Wistar rats: Plausible role of oxidative stress and inflammation. Hum. Exp. Toxicol. 2020 39 9 1133 1146 10.1177/0960327119889655 31797688
    [Google Scholar]
  49. Abohashem R.S. Ahmed H.H. Sayed A.H. Effat H. Primary protection of diosmin against doxorubicin cardiotoxicity via inhibiting oxido-inflammatory stress and apoptosis in rats. Cell Biochem. Biophys. 2024 82 2 1353 1366 10.1007/s12013‑024‑01289‑7 38743136
    [Google Scholar]
  50. Mohtadi S. Shariati S. Mansouri E. Khodayar M.J. Nephroprotective effect of diosmin against sodium arsenite-induced renal toxicity is mediated via attenuation of oxidative stress and inflammation in mice. Pestic. Biochem. Physiol. 2023 197 105652 10.1016/j.pestbp.2023.105652 38072527
    [Google Scholar]
  51. Anwer M.K. Aldawsari M.F. Iqbal M. Almutairy B.K. Soliman G.A. Aboudzadeh M.A. Diosmin-loaded nanoemulsion-based gel formulation: Development, optimization, wound healing and anti-inflammatory studies. Gels 2023 9 2 95 10.3390/gels9020095 36826265
    [Google Scholar]
  52. Deng J. Zheng C. Hua Z. Ci H. Wang G. Chen L. Diosmin mitigates high glucose-induced endoplasmic reticulum stress through PI3K/AKT pathway in HK-2 cells. BMC Complement. Med. Ther. 2022 22 1 116 10.1186/s12906‑022‑03597‑y 35477428
    [Google Scholar]
  53. Yu J. Hu Y. Sheng M. Gao M. Guo W. Zhang Z. Wang D. Wu X. Li J. Chen Y. Zhao W. Liu C. Cui X. Chen X. Zhao C. Chen H. Xiao J. Chen S. Luo C. Xu L. Gu X. Ma X. Selective PPARγ modulator diosmin improves insulin sensitivity and promotes browning of white fat. J. Biol. Chem. 2023 299 4 103059 10.1016/j.jbc.2023.103059 36841479
    [Google Scholar]
  54. Gopalakrishnan V. Iyyam Pillai S. Subramanian S.P. Synthesis, spectral characterization, and biochemical evaluation of antidiabetic properties of a new zinc‐diosmin complex studied in high fat diet fed‐low dose streptozotocin induced experimental type 2 diabetes in rats. Biochem. Res. Int. 2015 2015 1 1 11 10.1155/2015/350829 26783461
    [Google Scholar]
  55. Hsu C.C. Lin M. Cheng J.T. Wu M. Diosmin, a citrus nutrient, activates imidazoline receptors to alleviate blood glucose and lipids in type 1-like diabetic rats. Nutrients 2017 9 7 684 10.3390/nu9070684 28665324
    [Google Scholar]
  56. Hardie D.G. Ross F.A. Hawley S.A. AMPK: a nutrient and energy sensor that maintains energy homeostasis. Nat. Rev. Mol. Cell Biol. 2012 13 4 251 262 10.1038/nrm3311 22436748
    [Google Scholar]
  57. Musi N. AMP-activated protein kinase and type 2 diabetes. Curr. Med. Chem. 2006 13 5 583 589 10.2174/092986706776055724 16515522
    [Google Scholar]
  58. Can L. Siyu H. Mengdi Z. Xueyu W. Baiwang C. Tingjie W. Ruoyu D. Hua S. Natural diosmin alleviating obesity and NAFLD by regulating AMPK pathway. Chin. J. Nat. Med. 2024 22 0 1 10
    [Google Scholar]
  59. Behl T. Kaur I. Sehgal A. Sharma E. Kumar A. Grover M. Bungau S. Unfolding Nrf2 in diabetes mellitus. Mol. Biol. Rep. 2021 48 1 927 939 10.1007/s11033‑020‑06081‑3 33389540
    [Google Scholar]
  60. Zheng H. Whitman S.A. Wu W. Wondrak G.T. Wong P.K. Fang D. Zhang D.D. Therapeutic potential of Nrf2 activators in streptozotocin-induced diabetic nephropathy. Diabetes 2011 60 11 3055 3066 10.2337/db11‑0807 22025779
    [Google Scholar]
  61. Uruno A. Furusawa Y. Yagishita Y. Fukutomi T. Muramatsu H. Negishi T. Sugawara A. Kensler T.W. Yamamoto M. The Keap1-Nrf2 system prevents onset of diabetes mellitus. Mol. Cell. Biol. 2013 33 15 2996 3010 10.1128/MCB.00225‑13 23716596
    [Google Scholar]
  62. Mei Z. Du L. Liu X. Chen X. Tian H. Deng Y. Zhang W. Diosmetin alleviated cerebral ischemia/reperfusion injury in vivo and in vitro by inhibiting oxidative stress via the SIRT1/Nrf2 signaling pathway. Food Funct. 2022 13 1 198 212 10.1039/D1FO02579A 34881386
    [Google Scholar]
  63. Patel S. Santani D. Role of NF-κB in the pathogenesis of diabetes and its associated complications. Pharmacol. Rep. 2009 61 4 595 603 10.1016/S1734‑1140(09)70111‑2 19815941
    [Google Scholar]
  64. Grubić Rotkvić P. Planinić Z. Liberati Pršo A.M. Šikić J. Galić E. Rotkvić L. The mystery of diabetic cardiomyopathy: From early concepts and underlying mechanisms to novel therapeutic possibilities. Int. J. Mol. Sci. 2021 22 11 5973 10.3390/ijms22115973 34205870
    [Google Scholar]
  65. Suryavanshi S.V. Kulkarni Y.A. NF-κβ: A potential target in the management of vascular complications of diabetes. Front. Pharmacol. 2017 8 798 10.3389/fphar.2017.00798 29163178
    [Google Scholar]
  66. Liu B. Shi Y. Peng W. Zhang Q. Liu J. Chen N. Zhu R. Diosmetin induces apoptosis by upregulating p53 via the TGF-β signal pathway in HepG2 hepatoma cells. Mol. Med. Rep. 2016 14 1 159 164 10.3892/mmr.2016.5258 27176768
    [Google Scholar]
  67. Johnson D.E. O’Keefe R.A. Grandis J.R. Targeting the IL-6/JAK/STAT3 signalling axis in cancer. Nat. Rev. Clin. Oncol. 2018 15 4 234 248 10.1038/nrclinonc.2018.8 29405201
    [Google Scholar]
  68. Hillmer E.J. Zhang H. Li H.S. Watowich S.S. STAT3 signaling in immunity. Cytokine Growth Factor Rev. 2016 31 1 15 10.1016/j.cytogfr.2016.05.001 27185365
    [Google Scholar]
  69. Ning R. Chen G. Fang R. Zhang Y. Zhao W. Qian F. Diosmetin inhibits cell proliferation and promotes apoptosis through STAT3/c-Myc signaling pathway in human osteosarcoma cells. Biol. Res. 2021 54 1 40 10.1186/s40659‑021‑00363‑1 34922636
    [Google Scholar]
  70. Helmy M.W. Ghoneim A.I. Katary M.A. Elmahdy R.K. The synergistic anti-proliferative effect of the combination of diosmin and BEZ-235 (dactolisib) on the HCT-116 colorectal cancer cell line occurs through inhibition of the PI3K/Akt/mTOR/NF-κB axis. Mol. Biol. Rep. 2020 47 3 2217 2230 10.1007/s11033‑020‑05327‑4 32088816
    [Google Scholar]
  71. Pushkaran A.C. Vinod V. Vanuopadath M. Nair S.S. Nair S.V. Vasudevan A.K. Biswas R. Mohan C.G. Combination of repurposed drug diosmin with amoxicillin-clavulanic acid causes synergistic inhibition of mycobacterial growth. Sci. Rep. 2019 9 1 6800 10.1038/s41598‑019‑43201‑x 31043655
    [Google Scholar]
  72. Osama H. Hamed E.O. Mahmoud M.A. Abdelrahim M.E.A. The effect of hesperidin and diosmin individually or in combination on metabolic profile and neuropathy among diabetic patients with metabolic syndrome: A randomized controlled trial. J. Diet. Suppl. 2023 20 5 749 762 10.1080/19390211.2022.2107138 35946912
    [Google Scholar]
  73. Yasım A. Özbağ D. Kılınç M. Çıralık H. Toru İ. The effect of diosmin-hesperidin combination treatment on the lipid profile and oxidativeantioxidative system in high-cholesterol diet-fed rats. Turk Gogus Kalp Damar Cerrahisi Derg. 2011 1 55 61
    [Google Scholar]
  74. Batchvarov I. One-year diosmin therapy (600 mg) in patients with chronic venous insufficiency—Results and analysis. J Biomed Clin Res. 2010 3 1
    [Google Scholar]
  75. Xiang L. Su Z. An interactive effect of Diosmin and High-intensity interval training on gene expression and activity of antioxidant enzymes in patients with type 2 diabetes. Int. Neurourol. J. 2024 28 1 282 291
    [Google Scholar]
  76. Rinaldi A. Zeno R. Peluso A. del Guercio L. Sodo M. Turchino D. Iandoli R. Costa D. Serra R. Bracale U.M. Efficacy of high-dose diosmin therapy in chronic venous disease treated with endovenous ablation: A quality-of-life analysis. J. Vasc. Dis. 2024 3 1 49 57 10.3390/jvd3010004
    [Google Scholar]
  77. Serra R. Ielapi N. Bitonti A. Candido S. Fregola S. Gallo A. Loria A. Muraca L. Raimondo L. Velcean L. Guadagna S. Gallelli L. Efficacy of a low-dose diosmin therapy on improving symptoms and quality of life in patients with chronic venous disease: Randomized, double-blind, placebo-controlled trial. Nutrients 2021 13 3 999 10.3390/nu13030999 33808784
    [Google Scholar]
  78. Xiao J. Dietary flavonoid aglycones and their glycosides: Which show better biological significance? Crit. Rev. Food Sci. Nutr. 2017 57 9 1874 1905 26176651
    [Google Scholar]
  79. Rahman M. Almalki W.H. Afzal O. Kazmi I. Alfawaz Altamimi A.S. Alghamdi S. Al-Abbasi F.A. Altowayan W.M. Alrobaian M. Alharbi K.S. Beg S. Saleem S. Kumar V. Diosmin-loaded solid nanoparticles as nano-antioxidant therapy for management of hepatocellular carcinoma: QbD-based optimization, in vitro and in vivo evaluation. J. Drug Deliv. Sci. Technol. 2021 61 102213 10.1016/j.jddst.2020.102213
    [Google Scholar]
  80. Atia N.M. Hazzah H.A. Gaafar P.M.E. Abdallah O.Y. Diosmin nanocrystal–loaded wafers for treatment of diabetic ulcer: In vitro and in vivo evaluation. J. Pharm. Sci. 2019 108 5 1857 1871 10.1016/j.xphs.2018.12.019 30599171
    [Google Scholar]
  81. Udapurkar P.P. Bhusnure O.G. Kamble S.R. Diosmin phytosomes: Development, optimization and physicochemical characterization. Indian Journal of Pharmaceutical Education and Research 2018 52 4s s29 s36 10.5530/ijper.52.4s.73
    [Google Scholar]
  82. Mujtaba M.A. Eltaib L. Akmal N.N. Hassan K.A. Fabrication and characterization of nanosuspension formulation of diosmin for enhanced oral delivery. Int. J. Pharm. Sci. Res. 2020 52 1143 1148 10.13040/IJPSR.0975‑8232.12(2).1143‑48
    [Google Scholar]
  83. Amal Hussein H.S. El-Enin A.S. Design and characterization of Diosmin-cyclodextrin complex as a novel transdermal gel. Int J Pharm Bio Sci. 2016 7 2 70 77
    [Google Scholar]
  84. Mehndiratta P. Jalwal P. Dahiya J. Lata S. Formulation development and evaluation of gastroresistant microparticles of diosmin for the treatment of Chronic Venous Insufficiency (CVI). International Journal of Pharma Professional’s Research 2015 6 4 1289 1297
    [Google Scholar]
  85. Cazaubon M. Benigni J.P. Steinbruch M. Jabbour V. Gouhier-Kodas C. Is there a difference in efficacy of diosmin and micronized purified flavonoid fraction for the treatment of chronic venous disorders? Review of available evidence. Vasc. Health Risk Manag. 2021 17 591 600 10.2147/VHRM.S324112 34556990
    [Google Scholar]
/content/journals/cbc/10.2174/0115734072348359250115072824
Loading
/content/journals/cbc/10.2174/0115734072348359250115072824
Loading

Data & Media loading...


  • Article Type:
    Review Article
Keywords: NF-κB ; AMPK ; diabetes mellitus ; insulin signaling ; Diosmin ; GLUT
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test