Skip to content
2000
Volume 21, Issue 8
  • ISSN: 1573-4072
  • E-ISSN: 1875-6646

Abstract

The traditional use of medicinal plants holds a wealth of ancient wisdom that inspires modern research. , generally recognized as betel leaf, is valued in traditional medicine systems across various cultures for its diverse health benefits. The betel leaves have several significant uses as antioxidant, anti-inflammatory, and antiapoptotic activity which help in neuroprotection. Many phytochemicals are present in the betel leaves, including hydroxychavicol, caryophyllene, eugenols, tannins, and polyphenols, which have positive activity on neurological and other cognitive impairments. Some studies have shown that has a cholinergic activity that directly decreases the butyrylcholinesterase (BChE) and acetylcholinesterase (AChE), which are significantly associated with reduced levels of Acetylcholine (Ach) levels in cholinergic dysfunction. This review article delves into the historical significance of traditional medicine and its relevance to contemporary neuropharmacology. By revisiting the age-old wisdom surrounding , we aim to uncover its potential as a valuable source of natural neuropharmacological agents for various neurological conditions.

Loading

Article metrics loading...

/content/journals/cbc/10.2174/0115734072342263241115074638
2024-10-17
2025-12-15
Loading full text...

Full text loading...

References

  1. GuhaP. JainR. Status report on production, processing and marketing of betel leaf (Piper betle L.) Agricultural and Food Engineering Department, IIT, Kharagpur, India19971522
    [Google Scholar]
  2. YusroF. Medicinal Plants in the Surrounding Environment and Their Level of Utilization for Women’s Health in Masbangun Village, Kayong Utara Regency.J. Biol. Makasar202051186198
    [Google Scholar]
  3. DeS. SenT. ChatterjeeM. Reduction of oxidative stress by an ethanolic extract of leaves of Piper betle (Paan) Linn. decreased methotrexate-induced toxicity.Mol. Cell. Biochem.20154091-219119710.1007/s11010‑015‑2524‑x 26276309
    [Google Scholar]
  4. PradhanD. Golden heart of the nature: Piper betle L.J. Pharmacogn. Phytochem.201316147167
    [Google Scholar]
  5. DwivediV. TripathiS. Review study on potential activity of Piper betle.J. Pharmacogn. Phytochem.2014349398
    [Google Scholar]
  6. AnandU. NandyS. MundhraA. DasN. PandeyD.K. DeyA. A review on antimicrobial botanicals, phytochemicals and natural resistance modifying agents from Apocynaceae family: Possible therapeutic approaches against multidrug resistance in pathogenic microorganisms.Drug Resist. Updat.20205110069510.1016/j.drup.2020.100695 32442892
    [Google Scholar]
  7. DasT. AnandU. PandeyS.K. AshbyC.R.Jr AssarafY.G. ChenZ.S. DeyA. Therapeutic strategies to overcome taxane resistance in cancer.Drug Resist. Updat.20215510075410.1016/j.drup.2021.100754 33691261
    [Google Scholar]
  8. DattaS. RamamurthyP.C. AnandU. SinghS. SinghA. DhanjalD.S. DhakaV. KumarS. KapoorD. NandyS. KumarM. KoshyE.P. DeyA. ProćkówJ. SinghJ. Wonder or evil?: Multifaceted health hazards and health benefits of Cannabis sativa and its phytochemicals.Saudi J. Biol. Sci.202128127290731310.1016/j.sjbs.2021.08.036 34867033
    [Google Scholar]
  9. MitraS. AnandU. SanyalR. JhaN.K. BehlT. MundhraA. GhoshA. Radha; Kumar, M.; Proćków, J.; Dey, A. Neoechinulins: Molecular, cellular, and functional attributes as promising therapeutics against cancer and other human diseases.Biomed. Pharmacother.202214511237810.1016/j.biopha.2021.112378 34741824
    [Google Scholar]
  10. MohammedM.J. AnandU. AltemimiA.B. TripathiV. GuoY. Pratap-SinghA. Phenolic composition, antioxidant capacity and antibacterial activity of white wormwood (Artemisia herba-alba).Plants202110116410.3390/plants10010164 33467047
    [Google Scholar]
  11. PaulS. ChakrabortyS. AnandU. DeyS. NandyS. GhoraiM. SahaS.C. PatilM.T. KandimallaR. ProćkówJ. DeyA. Withania somnifera (L.) Dunal (Ashwagandha): A comprehensive review on ethnopharmacology, pharmacotherapeutics, biomedicinal and toxicological aspects.Biomed. Pharmacother.202114311217510.1016/j.biopha.2021.112175 34649336
    [Google Scholar]
  12. TandonB. AnandU. AlexB.K. KaurP. NandyS. ShekhawatM.S. SanyalR. PandeyD.K. KoshyE.P. DeyA. Statistical optimization of in vitro callus induction of wild and cultivated varieties of Mucuna pruriens L. (DC.) using response surface methodology and assessment of L-Dopa biosynthesis.Ind. Crops Prod.202116911362610.1016/j.indcrop.2021.113626
    [Google Scholar]
  13. AğagündüzD. ÇelikM.N. Çıtar DazıroğluM.E. CapassoR. Emergent drug and nutrition interactions in COVID-19: A comprehensive narrative review.Nutrients2021135155010.3390/nu13051550 34064534
    [Google Scholar]
  14. AnandU. CabrerosC. MalJ. BallesterosF.Jr SillanpääM. TripathiV. BontempiE. Novel coronavirus disease 2019 (COVID-19) pandemic: From transmission to control with an interdisciplinary vision.Environ. Res.202119711112610.1016/j.envres.2021.111126 33831411
    [Google Scholar]
  15. BariM.S. KhandokarL. HaqueE. RomanoB. CapassoR. SeidelV. HaqueM.A. RashidM.A. Ethnomedicinal uses, phytochemistry, and biological activities of plants of the genus Gynura.J. Ethnopharmacol.202127111383410.1016/j.jep.2021.113834 33465439
    [Google Scholar]
  16. FernándezJ. SilvánB. Entrialgo-CadiernoR. VillarC.J. CapassoR. UrangaJ.A. LombóF. AbaloR. Antiproliferative and palliative activity of flavonoids in colorectal cancer.Biomed. Pharmacother.202114311224110.1016/j.biopha.2021.112241 34649363
    [Google Scholar]
  17. MartínezV. Iriondo De-HondA. BorrelliF. CapassoR. del CastilloM.D. AbaloR. Cannabidiol and other non-psychoactive cannabinoids for prevention and treatment of gastrointestinal disorders: Useful nutraceuticals?Int. J. Mol. Sci.2020219306710.3390/ijms21093067 32357565
    [Google Scholar]
  18. TalleiT.E. A comprehensive review of the potential use of green tea polyphenols in the management of COVID-19.Evid. Based Complement. Alternat. Med.202120217170736
    [Google Scholar]
  19. MatsumuraS. Search for β-Secretase inhibitors from natural spices.Nat. Prod. Commun.201611450751010.1177/1934578X1601100423
    [Google Scholar]
  20. UpadhyayaS. GangachannaiahS. Lakshmi ChandrashekarP. Effect of piper betel leaf extract on learning and memory in aluminium chloride induced Alzheimer’s disease in Wistar rats.Biomed. Pharmacol. J.20191231425143110.13005/bpj/1771
    [Google Scholar]
  21. TeleanuR. ChircovC. GrumezescuA. VolceanovA. TeleanuD. Antioxidant therapies for neuroprotection-A review.J. Clin. Med.2019810165910.3390/jcm8101659 31614572
    [Google Scholar]
  22. ShuklaR. SachanS. MishraA. KumarS. A scientific review on common chewing plant of Asians: Pipier betle Linn.J. Harmonized Res. Pharm.201541110
    [Google Scholar]
  23. PrakashU. Studies on phytochemistry and bioefficancy of cultivars of Piper betle Linn.Int. J. Res. Pharm. Sci.2014529498
    [Google Scholar]
  24. ShirnameL.P. Correlation of mutagenicity and tumorigenicity of betel quid and its ingredients.Nutr. Cancer198352879110.1080/01635588309513783
    [Google Scholar]
  25. DepiS. Review of traditional use, phytochemical and pharmacological activity of Piper betle LGIJHSR2020535966
    [Google Scholar]
  26. GulhaneH. Effects of Piper betle leaves (paan) extract as antidepressant and anti-anxiety in experimental animals.Mintage J. Pharm. Med. Sci.20151215
    [Google Scholar]
  27. SalehiB. Potential phytopharmacy and food applications of Capsicum spp.: A comprehensive review NPC201813112018
    [Google Scholar]
  28. Sharifi-RadM. OzcelikB. AltınG. Daşkaya-DikmenC. MartorellM. Ramírez-AlarcónK. Alarcón-ZapataP. Morais-BragaM.F.B. CarneiroJ.N.P. Alves Borges LealA.L. CoutinhoH.D.M. GyawaliR. TahergorabiR. IbrahimS.A. Sahrifi-RadR. SharopovF. SalehiB. del Mar ContrerasM. Segura-CarreteroA. SenS. AcharyaK. Sharifi-RadJ. Salvia spp. plants-from farm to food applications and phytopharmacotherapy.Trends Food Sci. Technol.20188024226310.1016/j.tifs.2018.08.008
    [Google Scholar]
  29. MishraA.P. Bioactive compounds and health benefits of edible Rumex species.A review2018
    [Google Scholar]
  30. Sharifi-RadM. FokouP.V.T. SharopovF. MartorellM. AdemiluyiA.O. RajkovicJ. SalehiB. MartinsN. IritiM. Sharifi-RadJ. Antiulcer agents: From plant extracts to phytochemicals in healing promotion.Molecules2018237175110.3390/molecules23071751 30018251
    [Google Scholar]
  31. AbdolshahiA. Naybandi-AtashiS. Heydari-MajdM. SalehiB. KobarfardF. AyatollahiS.A. AtaA. TabanelliG. Sharifi-RadM. MontanariC. IritiM. Sharifi-RadJ. Antibacterial activity of some Lamiaceae species against Staphylococcus aureus in yoghurt-based drink (Doogh).Cell. Mol. Biol.2018648717710.14715/cmb/2018.64.8.11 29981686
    [Google Scholar]
  32. Milton PrabuS. MuthumaniM. ShagirthaK. Protective effect of Piper betle leaf extract against cadmium-induced oxidative stress and hepatic dysfunction in rats.Saudi J. Biol. Sci.201219222923910.1016/j.sjbs.2012.01.005 23961183
    [Google Scholar]
  33. RaiS. Therapeutic potentials and untoward effects of Piper betle and its quid.Advances in Traditional Medicine200554272282
    [Google Scholar]
  34. DeshpandeS. KadamD. GCMS analysis and antibacterial activity of Piper betle (Linn) leaves against Streptococcus mutans.Asian J. Pharm. Clin. Res.2013699101
    [Google Scholar]
  35. VermaS. GuptaM.L. DuttaA. SankhwarS. ShuklaS.K. FloraS.J.S. Modulation of ionizing radiation induced oxidative imbalance by semi-fractionated extract of Piper betle: An in vitro and in vivo assessment.Oxid. Med. Cell. Longev.201031445210.4161/oxim.3.1.10349 20716927
    [Google Scholar]
  36. BajpaiV. SharmaD. KumarB. MadhusudananK.P. Profiling of Piper betle Linn. cultivars by direct analysis in real time mass spectrometric technique.Biomed. Chromatogr.201024121283128610.1002/bmc.1437 21077247
    [Google Scholar]
  37. PandeyA. BaniS. Hydroxychavicol inhibits immune responses to mitigate cognitive dysfunction in rats.J. Neuroimmunol.20102261-2485810.1016/j.jneuroim.2010.05.031 20605227
    [Google Scholar]
  38. Viveros-ParedesJ. González-CastañedaR. GertschJ. Chaparro-HuertaV. López-RoaR. Vázquez-VallsE. Beas-ZarateC. Camins-EspunyA. Flores-SotoM. Neuroprotective Effects of β-caryophyllene against dopaminergic neuron injury in a murine model of Parkinson’s disease induced by MPTP.Pharmaceuticals (Basel)20171036010.3390/ph10030060 28684694
    [Google Scholar]
  39. PrasadS.N. Muralidhara. Neuroprotective efficacy of eugenol and isoeugenol in acrylamide-induced neuropathy in rats: Behavioral and biochemical evidence.Neurochem. Res.201338233034510.1007/s11064‑012‑0924‑9 23161090
    [Google Scholar]
  40. AbbaszadehF. FakhriS. KhanH. Targeting apoptosis and autophagy following spinal cord injury: Therapeutic approaches to polyphenols and candidate phytochemicals.Pharmacol. Res.202016010506910.1016/j.phrs.2020.105069 32652198
    [Google Scholar]
  41. NussbaumR.L. EllisC.E. Alzheimer’s disease and Parkinson’s disease.N. Engl. J. Med.2003348141356136410.1056/NEJM2003ra020003 12672864
    [Google Scholar]
  42. SzwajgierD. Baranowska-WójcikE. Terpenes and phenylpropanoids as acetyl-and butyrylcholinesterase inhibitors: A comparative study.Curr. Alzheimer Res.2019161096397310.2174/1567205016666191010105115 31660828
    [Google Scholar]
  43. BoiangiuR.S. BrinzaI. HancianuM. Erdogan OrhanI. ErenG. GündüzE. ErtasH. HritcuL. CioancaO. Cognitive facilitation and antioxidant effects of an essential oil mix on scopolamine-induced amnesia in rats: Molecular modeling of in vitro and in vivo approaches.Molecules2020257151910.3390/molecules25071519 32230815
    [Google Scholar]
  44. MatsudaH. MorikawaT. ManagiH. YoshikawaM. Antiallergic principles from Alpinia galanga: structural requirements of phenylpropanoids for inhibition of degranulation and release of TNF-α and IL-4 in RBL-2H3 cells.Bioorg. Med. Chem. Lett.200313193197320210.1016/S0960‑894X(03)00710‑8 12951092
    [Google Scholar]
  45. IchikawaH. MurakamiA. AggarwalB.B. 1′-Acetoxychavicol acetate inhibits RANKL-induced osteoclastic differentiation of RAW 264.7 monocytic cells by suppressing nuclear factor-kappaB activation.Mol. Cancer Res.20064427528110.1158/1541‑7786.MCR‑05‑0227 16603641
    [Google Scholar]
  46. GrzannaR. PhanP. PolotskyA. LindmarkL. FrondozaC.G. Ginger extract inhibits β-amyloid peptide-induced cytokine and chemokine expression in cultured THP-1 monocytes.J. Altern. Complement. Med.20041061009101310.1089/acm.2004.10.1009 15673995
    [Google Scholar]
  47. MocchegianiE. CostarelliL. GiacconiR. MalavoltaM. BassoA. PiacenzaF. OstanR. CeveniniE. GonosE.S. FranceschiC. MontiD. Vitamin E–gene interactions in aging and inflammatory age-related diseases: Implications for treatment. A systematic review.Ageing Res. Rev.2014148110110.1016/j.arr.2014.01.001 24418256
    [Google Scholar]
  48. CrouzinN. de Jesus FerreiraM-C. Cohen-SolalC. BarbanelG. GuiramandJ. VignesM. Neuroprotection induced by vitamin E against oxidative stress in hippocampal neurons: Involvement of TRPV1 channels.Mol. Nutr. Food Res.201054449650510.1002/mnfr.200900188 20087852
    [Google Scholar]
  49. MangialascheF. XuW. KivipeltoM. CostanziE. ErcolaniS. PigliautileM. CecchettiR. BaglioniM. SimmonsA. SoininenH. TsolakiM. KloszewskaI. VellasB. LovestoneS. MecocciP. Tocopherols and tocotrienols plasma levels are associated with cognitive impairment.Neurobiol. Aging201233102282229010.1016/j.neurobiolaging.2011.11.019 22192241
    [Google Scholar]
  50. JamesonJ.L. Harrison’s principles of internal medicine.McGraw-Hill Education2018
    [Google Scholar]
  51. GoodmanL.S. Goodman and Gilman’s the pharmacological basis of therapeutics.McGraw-Hill New York1996Vol. 1549
    [Google Scholar]
  52. SaravananR. Rajendra PrasadN. PugalendiK.V. Effect of Piper betle leaf extract on alcoholic toxicity in the rat brain.J. Med. Food20036326126510.1089/10966200360716689 14585193
    [Google Scholar]
  53. KumarA. SiddiqiN.J. AlrashoodS.T. KhanH.A. DubeyA. SharmaB. Protective effect of eugenol on hepatic inflammation and oxidative stress induced by cadmium in male rats.Biomed. Pharmacother.202113911158810.1016/j.biopha.2021.111588 33862491
    [Google Scholar]
  54. KregielJ. MalekN. PopikP. StarowiczK. RygulaR. Anandamide mediates cognitive judgement bias in rats.Neuropharmacology201610114615310.1016/j.neuropharm.2015.09.009 26363193
    [Google Scholar]
  55. Kim; Cho, K.H.; Shin, M.S.; Lee, J.M.; Cho, H.S.; Kim, C.J.; Shin, D.H.; Yang, H.J. Berberine prevents nigrostriatal dopaminergic neuronal loss and suppresses hippocampal apoptosis in mice with Parkinson’s disease.Int. J. Mol. Med.201433487087810.3892/ijmm.2014.1656 24535622
    [Google Scholar]
  56. AntzoulatosE. JakowecM.W. PetzingerG.M. WoodR.I. Sex differences in motor behavior in the MPTP mouse model of Parkinson’s disease.Pharmacol. Biochem. Behav.201095446647210.1016/j.pbb.2010.03.009 20347863
    [Google Scholar]
  57. FernagutP.O. DiguetE. LabattuB. TisonF. A simple method to measure stride length as an index of nigrostriatal dysfunction in mice.J. Neurosci. Methods2002113212313010.1016/S0165‑0270(01)00485‑X 11772434
    [Google Scholar]
  58. DalaiM.K. BhadraS. BandyopadhyayA. MukherjeeP.K. Evaluation of anti-cholinesterase activity of the standardized extract of Piper betel L. leaf.Orient. Pharm. Exp. Med.2014141313510.1007/s13596‑013‑0141‑3
    [Google Scholar]
  59. EkambaramP. BalanC. Efficacy of salivary and diastase extracts of Piper betle in modulating the cellular stress in placental trophoblast during preeclampsia.Pharmacognosy Res.20191112510.4103/pr.pr_112_18
    [Google Scholar]
  60. MilbournH.R. ToomeyL.M. GavrielN. GrayC.G.G. GoughA.H. FehilyB. GiacciM.K. FitzgeraldM. Limiting oxidative stress following neurotrauma with a combination of ion channel inhibitors.Discov. Med.201723129361369 28877447
    [Google Scholar]
  61. GiacciM.K. BartlettC.A. SmithN.M. IyerK.S. ToomeyL.M. JiangH. GuagliardoP. KilburnM.R. FitzgeraldM. Oligodendroglia are particularly vulnerable to oxidative damage after neurotrauma in vivo.J. Neurosci.201838296491650410.1523/JNEUROSCI.1898‑17.2018 29915135
    [Google Scholar]
  62. LeeY.M. HeW. LiouY.C. The redox language in neurodegenerative diseases: Oxidative post-translational modifications by hydrogen peroxide.Cell Death Dis.20211215810.1038/s41419‑020‑03355‑3 33431811
    [Google Scholar]
  63. BartelsA. LeendersK. Cyclooxygenase and neuroinflammation in parkinson’s disease neurodegeneration.Curr. Neuropharmacol.201081626810.2174/157015910790909485 20808546
    [Google Scholar]
  64. LambertT.W. SoskolneC.L. BergumV. HowellJ. DossetorJ.B. Ethical perspectives for public and environmental health: fostering autonomy and the right to know.Environ. Health Perspect.2003111213313710.1289/ehp.4477 12573894
    [Google Scholar]
  65. MeredithG.E. RademacherD.J. MPTP mouse models of parkinson’s disease: An update.J. Parkinsons Dis.201111193310.3233/JPD‑2011‑11023 23275799
    [Google Scholar]
  66. TebayL.E. RobertsonH. DurantS.T. VitaleS.R. PenningT.M. Dinkova-KostovaA.T. HayesJ.D. Mechanisms of activation of the transcription factor Nrf2 by redox stressors, nutrient cues, and energy status and the pathways through which it attenuates degenerative disease.Free Radic. Biol. Med.201588Pt B10814610.1016/j.freeradbiomed.2015.06.02126122708
    [Google Scholar]
  67. KobayashiE.H. SuzukiT. FunayamaR. NagashimaT. HayashiM. SekineH. TanakaN. MoriguchiT. MotohashiH. NakayamaK. YamamotoM. Nrf2 suppresses macrophage inflammatory response by blocking proinflammatory cytokine transcription.Nat. Commun.2016711162410.1038/ncomms11624 27211851
    [Google Scholar]
  68. BairdL. Dinkova-KostovaA.T. The cytoprotective role of the Keap1–Nrf2 pathway.Arch. Toxicol.201185424127210.1007/s00204‑011‑0674‑5 21365312
    [Google Scholar]
  69. MageshS. ChenY. HuL. Small molecule modulators of Keap1-Nrf2-ARE pathway as potential preventive and therapeutic agents.Med. Res. Rev.201232468772610.1002/med.21257 22549716
    [Google Scholar]
  70. DoneA.J. TraustadóttirT. Nrf2 mediates redox adaptations to exercise.Redox Biol.20161019119910.1016/j.redox.2016.10.003 27770706
    [Google Scholar]
  71. BanerjeeS. AnandU. GhoshS. RayD. RayP. NandyS. DeshmukhG.D. TripathiV. DeyA. Bacosides from Bacopa monnieri extract: An overview of the effects on neurological disorders.Phytother. Res.202135105668567910.1002/ptr.7203 34254371
    [Google Scholar]
  72. HalderS. AnandU. NandyS. OleksakP. QustiS. AlshammariE.M. El-Saber BatihaG. KoshyE.P. DeyA. Herbal drugs and natural bioactive products as potential therapeutics: A review on pro-cognitives and brain boosters perspectives.Saudi Pharm. J.202129887990710.1016/j.jsps.2021.07.003 34408548
    [Google Scholar]
  73. OgunmokunG. DewanjeeS. ChakrabortyP. ValupadasC. ChaudharyA. KolliV. AnandU. VallamkonduJ. GoelP. PaluruH.P.R. GillK.D. ReddyP.H. De FeoV. KandimallaR. The potential role of cytokines and growth factors in the pathogenesis of alzheimer’s disease.Cells20211010279010.3390/cells10102790 34685770
    [Google Scholar]
  74. MetiV. RuckmaniA. ChandrasheK. KondaV.G.R. MadhaviE. SwatiB. MadhusudhaN. Antidepressant activity of ethanolic extract of Piper betle leaves in mice.Curr. Res. Neurosci.201121111610.3923/crn.2012.11.16
    [Google Scholar]
  75. KumariY. ChooB. ShaikhM. OthmanI. Melatonin receptor agonist Piper betle L. ameliorates dexamethasone induced early life stress in adult zebrafish.Exp. Ther. Med.20191821407141610.3892/etm.2019.7685 31363378
    [Google Scholar]
  76. GoniO. KhanM.F. RahmanM.M. HasanM.Z. KaderF.B. SazzadN. SakibM.A. RomanoB. HaqueM.A. CapassoR. Pharmacological insights on the antidepressant, anxiolytic and aphrodisiac potentials of Aglaonema hookerianum Schott.J. Ethnopharmacol.202126811366410.1016/j.jep.2020.113664 33278545
    [Google Scholar]
  77. FerreresF. OliveiraA.P. Gil-IzquierdoA. ValentãoP. AndradeP.B. Piper betle leaves: Profiling phenolic compounds by HPLC/DAD-ESI/MS(n) and anti-cholinesterase activity.Phytochem. Anal.201425545346010.1002/pca.2515 24733630
    [Google Scholar]
  78. BarrettH.C. BolyanatzA. CrittendenA.N. FesslerD.M.T. FitzpatrickS. GurvenM. HenrichJ. KanovskyM. KushnickG. PisorA. ScelzaB.A. StichS. von RuedenC. ZhaoW. LaurenceS. Small-scale societies exhibit fundamental variation in the role of intentions in moral judgment.Proc. Natl. Acad. Sci. USA2016113174688469310.1073/pnas.1522070113 27035959
    [Google Scholar]
  79. MulderM.B. Intergenerational wealth transmission and the dynamics of inequality in small-scale societies.Science2009326595368268810.1126/science.1178336
    [Google Scholar]
  80. HenrichJ. Markets, religion, community size, and the evolution of fairness and punishment.Science201032759721480148410.1126/science.1182238
    [Google Scholar]
  81. CallaghanT. RochatP. LillardA. ClauxM.L. OddenH. ItakuraS. TapanyaS. SinghS. Synchrony in the onset of mental-state reasoning: Evidence from five cultures.Psychol. Sci.200516537838410.1111/j.0956‑7976.2005.01544.x 15869697
    [Google Scholar]
  82. HouseB.R. KanngiesserP. BarrettH.C. BroeschT. CebiogluS. CrittendenA.N. ErutA. Lew-LevyS. Sebastian-EnescoC. SmithA.M. YilmazS. SilkJ.B. Universal norm psychology leads to societal diversity in prosocial behaviour and development.Nat. Hum. Behav.201941364410.1038/s41562‑019‑0734‑z 31548679
    [Google Scholar]
  83. RossC.T. Borgerhoff MulderM. OhS.Y. BowlesS. BeheimB. BunceJ. CaudellM. ClarkG. ColleranH. CortezC. DraperP. GreavesR.D. GurvenM. HeadlandT. HeadlandJ. HillK. HewlettB. KaplanH.S. KosterJ. KramerK. MarloweF. McElreathR. NolinD. QuinlanM. QuinlanR. Revilla-MinayaC. ScelzaB. SchachtR. ShenkM. UeharaR. VolandE. WillführK. WinterhalderB. ZikerJ. Greater wealth inequality, less polygyny: Rethinking the polygyny threshold model.J. R. Soc. Interface2018151442018003510.1098/rsif.2018.0035 30021924
    [Google Scholar]
  84. PurzyckiB.G. RossC.T. ApicellaC. AtkinsonQ.D. CohenE. McNamaraR.A. WillardA.K. XygalatasD. NorenzayanA. HenrichJ. Material security, life history, and moralistic religions: A cross-cultural examination.PLoS One2018133e019385610.1371/journal.pone.0193856 29513766
    [Google Scholar]
  85. ScelzaB.A. PrallS.P. BlumenfieldT. CrittendenA.N. GurvenM. KlineM. KosterJ. KushnickG. MattisonS.M. PillsworthE. ShenkM.K. StarkweatherK. StieglitzJ. SumC.Y. YamaguchiK. McElreathR. Patterns of paternal investment predict cross-cultural variation in jealous response.Nat. Hum. Behav.201941202610.1038/s41562‑019‑0654‑y 31332300
    [Google Scholar]
  86. SuperC.M. AxiaG. HarknessS. Welles-NystromB. ZyliczP.O. ParmarP. BonichiniS. BermúdezM.R. MoscardinoU. KolarV. PalaciosJ. EliaszA. McGurkH. Culture, temperament, and the “difficult child”: A study in seven Western cultures.Int. J. Dev. Sci.200821-213615710.3233/DEV‑2008‑21209
    [Google Scholar]
  87. SpolaoreE. WacziargR. How deep are the roots of economic development?J. Econ. Lit.201351232536910.1257/jel.51.2.325
    [Google Scholar]
  88. SchroederD. Equitable research partnerships: A global code of conduct to counter ethics dumping.Springer Nature201910.1007/978‑3‑030‑15745‑6
    [Google Scholar]
  89. ErmineW. SinclairR. JefferyB. The ethics of research involving Indigenous peoples.SaskatoonIndigenous Peoples' Health Research Centre2004
    [Google Scholar]
  90. AndersonE.E. SolomonS. HeitmanE. DuBoisJ.M. FisherC.B. KostR.G. LawlessM.E. RamseyC. JonesB. AmmermanA. RossL.F. Research ethics education for community-engaged research: A review and research agenda.J. Empir. Res. Hum. Res. Ethics20127231910.1525/jer.2012.7.2.3 22565579
    [Google Scholar]
  91. TurnerT.R. WagnerJ.K. CabanaG.S. Ethics in biological anthropology.Am. J. Phys. Anthropol.2018165493995110.1002/ajpa.23367 29574844
    [Google Scholar]
  92. SteinsbekkK.S. Kåre MyskjaB. SolbergB. Broad consent versus dynamic consent in biobank research: Is passive participation an ethical problem?Eur. J. Hum. Genet.201321989790210.1038/ejhg.2012.282 23299918
    [Google Scholar]
  93. ScelzaB.A. The ethics and logistics of field-based genetic paternity studies.Evol. Hum. Sci.20202e2210.1017/ehs.2020.23
    [Google Scholar]
  94. First Nations Information Governance Centre2017Available from: https://fnigc.ca/
    [Google Scholar]
  95. RanaJ. The continuous decolonization of anthropology.Etnofoor20183027782
    [Google Scholar]
  96. BlautJ.M. The colonizer’s model of the world: Geographical diffusionism and Eurocentric history1993
    [Google Scholar]
  97. LewisD. Anthropology and Colonialism.Curr. Anthropol.197314558160210.1086/201393
    [Google Scholar]
  98. KennemoreA. PosteroN. Collaborative ethnographic methods: Dismantling the ‘anthropological broom closet’?Lat. Am. Caribb. Stud.202116112410.1080/17442222.2020.1721091
    [Google Scholar]
  99. GreenwoodD.J. Theoretical research, applied research, and action research: The deinstitutionalization of activist researchIn: Engaging Contradictions: Theory, Politics, and Methods of Activist Scholarship; University of California Press: downtown Oakland, California2008319340
    [Google Scholar]
  100. UribeL.G.V. RappaportJ. Rethinking fieldwork and ethnographic writing.Collab. Anthropol.2011411866
    [Google Scholar]
  101. JonesA. JenkinsK. Rethinking collaborationWorking the indigene-colonizer hypen. Handbook of critical and indigenous methodologies.2008471486
    [Google Scholar]
  102. StokesC. PinoJ.A. HaganD.W. TorresG.E. PhelpsE.A. HorensteinN.A. PapkeR.L. Betel quid: New insights into an ancient addiction.Addict. Biol.2022275e1322310.1111/adb.13223 36001424
    [Google Scholar]
  103. LyonF. IARC monographs on the evaluation of carcinogenic risks to humans.2014Available from: https://www.ncbi.nlm.nih.gov/books/NBK419324/
    [Google Scholar]
  104. CirilloN. DuongP.H. ErW.T. DoC.T.N. De SilvaM.E.H. DongY. CheongS.C. SariE.F. McCulloughM.J. ZhangP. PrimeS.S. Are there betel quid mixtures less harmful than others? A scoping review of the association between different betel quid ingredients and the risk of oral submucous fibrosis.Biomolecules202212566410.3390/biom12050664 35625592
    [Google Scholar]
  105. BalakrishnanR. AzamS. KimI.S. ChoiD.K. Neuroprotective effects of black pepper and its bioactive compounds in age-related neurological disorders.Aging Dis.202314375077710.14336/AD.2022.1022 37191428
    [Google Scholar]
  106. KandhareA.D. MukherjeeA.A. BodhankarS.L. Neuroprotective effect of Azadirachta indica standardized extract in partial sciatic nerve injury in rats: Evidence from anti-inflammatory, antioxidant and anti-apoptotic studies.EXCLI J.201716546565 28694757
    [Google Scholar]
  107. GenchiG. LauriaG. CatalanoA. CarocciA. SinicropiM.S. Neuroprotective effects of curcumin in neurodegenerative diseases.Foods20241311177410.3390/foods13111774 38891002
    [Google Scholar]
  108. BiswasP. AnandU. SahaS.C. KantN. MishraT. MasihH. BarA. PandeyD.K. JhaN.K. MajumderM. DasN. GadekarV.S. ShekhawatM.S. KumarM. Radha; Proćków,J. LastraJ.M.P. DeyA. Betelvine (Piper betle L.): A comprehensive insight into its ethnopharmacology, phytochemistry, and pharmacological, biomedical and therapeutic attributes.J. Cell. Mol. Med.202226113083311910.1111/jcmm.17323 35502487
    [Google Scholar]
/content/journals/cbc/10.2174/0115734072342263241115074638
Loading
/content/journals/cbc/10.2174/0115734072342263241115074638
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test