Skip to content
2000
Volume 21, Issue 8
  • ISSN: 1573-4072
  • E-ISSN: 1875-6646

Abstract

Phenothiazine derivatives are a significant class of heterocyclic compounds with a wide range of pharmacological activities. Among these, their antioxidant properties have garnered considerable interest due to potential therapeutic applications in mitigating oxidative stress-related diseases. A new series of phenothiazine derivatives [5a-5h] was reported, produced by conjugating phenothiazine with arylamines an acetyl group. The freshly synthesized compounds were analyzed using MS spectroscopy, 1H-NMR, and 13C-NMR spectral analysis. Two pharmacological techniques-human low-density lipoprotein (LDL) oxidation inhibition assay and the 2,2-diphenyl-1-picrylhydrazyl (DPPH) radical scavenging assay-were used to measure the antioxidant activity. While all the conjugates showed good antioxidant activity, compound 5h exhibited less antioxidant activity. However, compound 2e, which contains a 4-amino-2-methoxyphenol moiety, demonstrated strong antioxidant activity in all experiments and was found to be more effective than the reference antioxidant butylated hydroxyanisole (BHA). This study aims to synthesize a series of novel phenothiazine derivatives, characterize their structures using various analytical techniques, and evaluate their antioxidant activities. A series of phenothiazine derivatives were synthesized using standard organic synthesis protocols. The chemical structures of the synthesized compounds were confirmed using spectroscopic methods, including Nuclear Magnetic Resonance (NMR), Infrared (IR) spectroscopy, Mass Spectrometry (MS), and, where applicable, X-ray crystallography. The synthesized phenothiazine derivatives were successfully characterized by 1H-NMR, 13C-NMR, IR, and MS, which confirmed the expected molecular structures. The purity of the compounds was determined using High-Performance Liquid Chromatography (HPLC). The antioxidant activities of the derivatives were evaluated using the DPPH (2,2-diphenyl-1-picrylhydrazyl) radical scavenging assay, the ABTS (2,2'-azino-bis(3-ethylbenzothiazoline-6-sulphonic acid)) assay, and the FRAP (Ferric Reducing Antioxidant Power) assay. The results demonstrated that several of the synthesized phenothiazine derivatives exhibited significant antioxidant activity, with some compounds showing higher potency than standard antioxidants, such as ascorbic acid and Trolox. The structure-activity relationship (SAR) analysis indicated that the presence of electron-donating groups on the phenothiazine ring enhanced antioxidant activity.

Loading

Article metrics loading...

/content/journals/cbc/10.2174/0115734072334547241217042546
2024-12-31
2025-10-14
Loading full text...

Full text loading...

References

  1. HalliwellB. GrootveldM. The measurement of free radical reactions in humans. Some thoughts for future experimentation.FEBS Lett.1987213191410.1016/0014‑5793(87)81455‑2
    [Google Scholar]
  2. NahataM.C. MoroscoR.S. HippleT.F. Stability of mexiletine in two extemporaneous liquid formulations stored under refrigeration and at room temperature.J. Am. Pharmaceut Assoc.2000402257259
    [Google Scholar]
  3. HalliwellB. GutteridgeJ.M.C. Free radicals in biology and medicine.5th edOxford University Press201510.1093/acprof:oso/9780198717478.001.0001
    [Google Scholar]
  4. BlockG. The data support a role for antioxidants in reducing cancer risk.Nutr. Rev.199250720721310.1111/j.1753‑4887.1992.tb01329.x 1641203
    [Google Scholar]
  5. Rice-EvansC.A. MillerN.J. PagangaG. Structure-antioxidant activity relationships of flavonoids and phenolic acids.Free Radical Biol. Med.199620793395610.1016/0891‑5849(95)02227‑9
    [Google Scholar]
  6. MoosmannB. BehlC. The antioxidant neuroprotective effects of estrogens and phenolic compounds are independent of their estrogenic properties.Free Radical Biol. Med.200233218219010.1016/S0891‑5
    [Google Scholar]
  7. PedulliG.F. Bond dissociation energies of the N−H bond and rate constants for the reaction with alkyl, alkoxyl, and peroxyl radicals of phenothiazines and related compounds.J. Am. Chem. Soc.19991211154610.1021/ja992904u
    [Google Scholar]
  8. ZhiT. QunL. Free-radical-scavenging effect of carbazole derivatives on AAPH-induced hemolysis of human erythrocytes.Bioorg. Med. Chem.200715190310.1016/j.bmc.2007.01.007 17236778
    [Google Scholar]
  9. BateA.B. KalinJ.H. FooksmanE.M. AmoroseE.L. PriceC.M. WilliamsH.M. RodigM.J. MitchellM.O. ChoS.H. WangY. FranzblauS.G. Synthesis and antitubercular activity of quaternized promazine and promethazine derivatives.Bioorg. Med. Chem. Lett.20071751346134810.1016/j.bmcl.2006.11.091 17188865
    [Google Scholar]
  10. DarveshS. DarveshK.V. McDonaldR.S. MataijaD. WalshR. MothanaS. LockridgeO. MartinE. Carbamates with differential mechanism of inhibition toward acetylcholinesterase and butyrylcholinesterase.J. Med. Chem.200851144200421210.1021/jm8002075 18570368
    [Google Scholar]
  11. KubotaK. KurebayashiH. MiyachiH. TobeM. OnishiM. IsobeY. Synthesis and structure–activity relationships of phenothiazine carboxylic acids having pyrimidine-dione as novel histamine H1 antagonists.Bioorg. Med. Chem. Lett.200919102766277110.1016/j.bmcl.2009.03.124 19362477
    [Google Scholar]
  12. BisiA. MeliM. GobbiS. RampaA. TolomeoM. DusonchetL. Multidrug resistance reverting activity and antitumor profile of new phenothiazine derivatives.Bioorg. Med. Chem.200816136474648210.1016/j.bmc.2008.05.040 18522868
    [Google Scholar]
  13. WeissE.A. TauberM.J. KelleyR.F. AhrensM.J. RatnerM.A. WasielewskiM.R. Conformationally gated switching between superexchange and hopping within oligo-p-phenylene-based molecular wires.J. Am. Chem. Soc.200512733118421185010.1021/ja052901j 16104763
    [Google Scholar]
  14. BabelA. JenekheS.A. High electron mobility in ladder polymer field-effect transistors.J. Am. Chem. Soc.200312545136561365710.1021/ja0371810 14599192
    [Google Scholar]
  15. ParkH.H. PintoR.M. CameselleJ.C. SandovalF.J. RojeS. HanK. ChungD.S. SuhJ. HongJ.I. RheeH.W. ChoiS.J. YooS.H. JangY.O. Detection of kinase activity using versatile fluorescence quencher probes.Angew. Chem. Int. Ed.2009131101071010710.1002/ange.201000879
    [Google Scholar]
  16. ItoT. KondoA. TeradaS. NishimotoS. Photoinduced reductive repair of thymine glycol: implications for excess electron transfer through DNA containing modified bases.J. Am. Chem. Soc.200612833109341094210.1021/ja061304+ 16910690
    [Google Scholar]
  17. Vijay KumarH. NaikN. Synthesis and antioxidant properties of some novel 5H-dibenz[b,f]azepine derivatives in different in vitro model systems.Eur. J. Med. Chem.201045121010.1016/j.ejmech.2009.09.016 19846240
    [Google Scholar]
  18. KumarV.H. KumarC.K. NaikN. Synthesis and antioxidant evaluation of novel indole-3-acetic acid analogues.Med. Chem. Res.2011233734110.5155/eurjchem.2.3.337‑341.363
    [Google Scholar]
  19. BloisM.S. Antioxidant determinations by the use of a stable free radical.Nature195818146171199120010.1038/1811199a0
    [Google Scholar]
  20. VoronovaO. ZhuravkovS. KorotkovaE. ArtamonovA. PlotnikovE. Antioxidant properties of new phenothiazine derivatives.Antioxidants2022117137110.3390/antiox11071371 35883860
    [Google Scholar]
  21. CreeseI. BurtD.R. SnyderS.H. Dopamine receptor binding predicts clinical and pharmacological potencies of antischizophrenic drugs.Science1976192423848148310.1126/science.3854 3854
    [Google Scholar]
  22. StahlS.M. MuntnerN. Stahl’s Essential Psychopharmacology: Neuroscientific Basis and Practical Applications.4th edCambridge University Press2013
    [Google Scholar]
  23. CantisaniC. RicciS. GriecoT. PaolinoG. FainaV. SilvestriE. CalvieriS. Topical promethazine side effects: Our experience and review of the literature.BioMed Res. Int.201320131910.1155/2013/151509 24350243
    [Google Scholar]
  24. HaasH.L. SergeevaO.A. SelbachO. Histamine in the nervous system.Physiol. Rev.20088831183124110.1152/physrev.00043.2007 18626069
    [Google Scholar]
  25. RichtandN.M. WelgeJ.A. LogueA.D. KeckP.E. Jr; Strakowski, S.M.; McNamara, R.K. Dopamine and serotonin receptor binding and antipsychotic efficacy.Neuropsychopharmacology20073281715172610.1038/sj.npp.1301305 17251913
    [Google Scholar]
  26. VargaB. CsonkaÁ. CsonkaA. MolnárJ. AmaralL. SpenglerG. Possible biological and clinical applications of phenothiazines.Anticancer Res.201737115983599310.21873/anticanres.12045 29061777
    [Google Scholar]
  27. BhatnagarA. PemawatG. Chem. Biol. Interact.20221247787
    [Google Scholar]
  28. MartinsM. DastidarS.G. FanningS. KristiansenJ.E. MolnarJ. PagèsJ.M. SchelzZ. SpenglerG. ViveirosM. AmaralL. Potential role of non-antibiotics (helper compounds) in the treatment of multidrug-resistant Gram-negative infections: mechanisms for their direct and indirect activities.Int. J. Antimicrob. Agents200831319820810.1016/j.ijantimicag.2007.10.025 18180147
    [Google Scholar]
  29. WangY. KimH.H. LeeJ.H. Biological applications of gallic acid: A review.Antioxidants2019835210.3390/antiox8030052 30832204
    [Google Scholar]
  30. LotitoS.B. FreiB. The increase in the antioxidant capacity of plasma after supplementation with flavonoids is due to the modulation of endogenous antioxidant defenses.Free Radic. Biol. Med.200641565366310.1016/j.freeradbiomed.2006.05.023
    [Google Scholar]
  31. AmaralL. KristiansenJ.E. ViveirosM. AtouguiaJ. Activity of phenothiazines against antibiotic-resistant Mycobacterium tuberculosis: A review supporting further studies that may elucidate the potential use of thioridazine as anti-tuberculosis therapy.J. Antimicrob. Chemother.2001475505511 11328759
    [Google Scholar]
  32. MiskolciC. LabádiI. KuriharaT. MotohashiN. MolnárJ. Therapeutic challenges in the era of antibiotic resistance.Int. J. Antimicrob. Agents2000324S197S199
    [Google Scholar]
  33. MándiY. MolnárJ. Effect of chlorpromazine on conjugal plasmid transfer and sex pili.Acta Microbiol. Acad. Sci. Hung.1981282205210 6114615
    [Google Scholar]
  34. MolnárJ. HaszonI. BodrogiT. MartonyiE. TuriS. Synergistic effect of promethazine with gentamycin in frequently recurring pyelonephritis.Int. Urol. Nephrol.199022540541110.1007/BF02549770 2076929
    [Google Scholar]
  35. MolnarJ. RenJ. KristiansenJ. E. NakamuraM. J. Antiplasmid activity: Loss of bacterial resistance and enhancement of sensitivity to antibiotics. Antonie van Leeuwenhoek199262431932010.1007/BF00572530
    [Google Scholar]
  36. MolnárJ. RenJ. KristiansenJ.E. NakamuraM.J. Effects of some tricyclic psychopharmacons and structurally related compounds on motility of Proteus vulgaris.Antonie van Leeuwenhoek199262431932010.1007/BF00572600 1285649
    [Google Scholar]
  37. AmaralL. ViveirosM. KristiansenJ.E. Phenothiazines: potential alternatives for the management of antibiotic resistant infections of tuberculosis and malaria in developing countries.Trop. Med. Int. Health20016121016102210.1046/j.1365‑3156.2001.00804.x 11737839
    [Google Scholar]
  38. KimJ.H. LeeY.J. SohnH.J. SongK.J. KwonD. KwonM.H. ImK.I. ShinH.J. Therapeutic effect of rokitamycin in vitro and on experimental meningoencephalitis due to Naegleria fowleri.Int. J. Antimicrob. Agents200832541141710.1016/j.ijantimicag.2008.05.018 18762406
    [Google Scholar]
  39. HirschmanS.Z. GarfinkelE. Inhibition of hepatitis B DNA polymerase by intercalating agents.Nature1978271564668168310.1038/271681a0 625339
    [Google Scholar]
  40. HiraiH. TakedaS. NatoriS. SekimizuK. Inhibition of SV40 DNA replication in vitro by chlorpromazine.Biol. Pharm. Bull.199316656556710.1248/bpb.16.565 8395935
    [Google Scholar]
  41. GalgóczyL. BácsiA. HomaM. VirághM. PappT. VágvölgyiC. In vitro antifungal activity of phenothiazines and their combination with amphotericin B against different Candida species.Mycoses2011546e737e74310.1111/j.1439‑0507.2010.02010.x 21605196
    [Google Scholar]
  42. SharmaS. KaurH. KhullerG.K. Cell cycle effects of the phenothiazines: trifluoperazine and chlorpromazine in Candida albicans.FEMS Microbiol. Lett.2001199218519010.1111/j.1574‑6968.2001.tb10672.x 11377865
    [Google Scholar]
  43. VitaleR.G. AfeltraJ. MeisJ.F.G.M. VerweijP.E. Activity and post antifungal effect of chlorpromazine and trifluopherazine against Aspergillus, Scedosporium and zygomycetes.Mycoses200750427027610.1111/j.1439‑0507.2007.01371.x 17576318
    [Google Scholar]
  44. GalgóczyL. PappT. KovácsL. ÖrdöghL. VágvölgyiC. In vitro activity of phenothiazines and their combinations with amphotericin B against Zygomycetes causing rhinocerebral zygomycosis.Med. Mycol.200947333133510.1080/13693780802378853 18798117
    [Google Scholar]
  45. AmaralL. KristiansenJ.E. Phenothiazines: potential management of Creutzfeldt–Jacob disease and its variants.Int. J. Antimicrob. Agents200118541141710.1016/S0924‑8579(01)00432‑0 11711254
    [Google Scholar]
  46. KorthC. PetersP.J. Emerging pharmacotherapies for Creutzfeldt-Jakob disease.Arch. Neurol.200663449750110.1001/archneur.63.4.497 16606761
    [Google Scholar]
  47. PavlovaN.N. ThompsonC.B. The Emerging Hallmarks of Cancer Metabolism.Cell Metab.2016231274710.1016/j.cmet.2015.12.006 26771115
    [Google Scholar]
  48. JaiswalJ.K. NylandstedJ. S100 and annexin proteins identify cell membrane damage as the Achilles heel of metastatic cancer cells.Cell Cycle201514450250910.1080/15384101.2014.995495 25565331
    [Google Scholar]
  49. LiuX. MaD. JingX. WangB. YangW. QiuW. Overexpression of ANXA2 predicts adverse outcomes of patients with malignant tumors: a systematic review and meta-analysis.Med. Oncol.201532139210.1007/s12032‑014‑0392‑y 25476478
    [Google Scholar]
  50. JinL. AlesiG.N. KangS. Glutaminolysis as a target for cancer therapy.Oncogene201635283619362510.1038/onc.2015.447 26592449
    [Google Scholar]
  51. GerkeV. CreutzC.E. MossS.E. Annexins: linking Ca2+ signalling to membrane dynamics.Nat. Rev. Mol. Cell Biol.20056644946110.1038/nrm1661 15928709
    [Google Scholar]
  52. GerkeV. MossS.E. Annexins: from structure to function.Physiol. Rev.200282233137110.1152/physrev.00030.2001 11917092
    [Google Scholar]
  53. LauritzenS.P. BoyeT.L. NylandstedJ. Annexins are instrumental for efficient plasma membrane repair in cancer cells.Semin. Cell Dev. Biol.201545323810.1016/j.semcdb.2015.10.028 26498035
    [Google Scholar]
  54. BoyeT.L. NylandstedJ. Annexins in plasma membrane repair.Biol. Chem.20163971096196910.1515/hsz‑2016‑0171 27341560
    [Google Scholar]
  55. Berg KlenowM. IversenC. Wendelboe LundF. MularskiA. Busk HeitmannA.S. DiasC. NylandstedJ. Cohen simonsen, A. annexins A1 and A2 accumulate and are immobilized at cross-linked membrane interferance.Biochemistry202160161248125910.1021/acs.biochem.1c00126 33861586
    [Google Scholar]
  56. FrandsenS.K. McNeilA.K. NovakI. McNeilP.L. GehlJ. Difference in membrane repair capacity between cancer cell lines and a normal cell line.J. Membr. Biol.2016249456957610.1007/s00232‑016‑9910‑5 27312328
    [Google Scholar]
  57. JaiswalJ.K. LauritzenS.P. SchefferL. SakaguchiM. BunkenborgJ. SimonS.M. KallunkiT. JäätteläM. NylandstedJ. S100A11 is required for efficient plasma membrane repair and survival of invasive cancer cells.Nat. Commun.201451379510.1038/ncomms4795 24806074
    [Google Scholar]
  58. HendrichA.B. WesołowskaO. MichalakK. Trifluoperazine induces domain formation in zwitterionic phosphatidylcholine but not in charged phosphatidylglycerol bilayers.Biochimica et. Biophysica Acta20011510414425
    [Google Scholar]
  59. ErikssonÅ. YachninJ. LewensohnR. NilssoA. DNA-dependent protein kinase is inhibited by trifluoperazine.Biochem. Biophys. Res. Commun.2001283472673110.1006/bbrc.2001.4830 11350043
    [Google Scholar]
  60. GangopadhyayS. KarmakarP. DasguptaU. ChakrabortyA. Trifluoperazine stimulates ionizing radiation induced cell killing through inhibition of DNA repair.Mutat. Res. Genet. Toxicol. Environ. Mutagen.2007633211712510.1016/j.mrgentox.2007.05.011 17627868
    [Google Scholar]
  61. GangopadhyayS. KarmakarP. DasguptaU. ChakrabortyA. Trifluoperazine stimulates ionizing radiation induced cell killing through inhibition of DNA repair.Mutat. Res.200763311712510.1016/j.mrgentox.2007.05.011 17627868
    [Google Scholar]
  62. CharpP.A. ReganJ.D. Inhibition of DNA repair by trifluoperazine.Biochim. Biophys. Acta Gene Struct. Expr.19858241343910.1016/0167‑4781(85)90026‑0 3967028
    [Google Scholar]
  63. AmsonR. PeceS. LespagnolA. VyasR. MazzarolG. TosoniD. ColalucaI. VialeG. FerreiraR.S. WynendaeleJ. ChaloinO. HoebekeJ. MarineJ.C. DiFioreP.P. TelermanA. Reciprocal replication relations between P53 and TCTP.Nat. Med.201118919910.1038/nm.2546
    [Google Scholar]
  64. TuynderM. FiucciG. PrieurS. LespagnolA. GéantA. BeaucourtS. DuflautD. BesseS. SusiniL. CavarelliJ. MorasD. AmsonR. TelermanA. Translationally controlled tumor protein is a target of tumor reversion.Proc. Natl. Acad. Sci. USA200410143153641536910.1073/pnas.0406776101
    [Google Scholar]
  65. RonaldS. AwateS. RathA. CarrollJ. GalianoF. DwyerD. Kleiner-HancockH. MathisJ.M. VigodS. DeBenedettiA. Phenothiazine inhibitors of TLKs affect double-strand break repair and DNA damage response recovery and potentiate tumor killing with radiomimetic therapy.Genes Cancer201341-2395310.1177/1947601913479020
    [Google Scholar]
  66. ParkM.S. DongS.M. KimB.R. SeoS.H. KangS. LeeE.J. LeeS.H. RhoS.B. Thioridazine inhibits angiogenesis and tumor growth by targeting the VEGFR-2/PI3K/mTOR pathway in ovarian cancer xenografts.Oncotarget20145134929493410.18632/oncotarget.2063 24952635
    [Google Scholar]
  67. JaszczyszynA. GąsiorowskiK. ŚwiątekP. MalinkaW. Cieślik-BoczulaK. PetrusJ. Czarnik-MatusewiczB. Chemical structure of phenothiazines and their biological activity.Pharmacol. Rep.2012641162310.1016/S1734‑1140(12)70726‑0 22580516
    [Google Scholar]
  68. KangS. DongS.M. KimB.R. ParkM.S. TrinkB. ByunH.J. RhoS.B. Thioridazine induces apoptosis by targeting the PI3K/Akt/mTOR pathway in cervical and endometrial cancer cells.Apoptosis201217998999710.1007/s10495‑012‑0717‑2 22460505
    [Google Scholar]
  69. IkediobiO.N. ReimersM. DurinckS. BlowerP.E. FutrealA.P. StrattonM.R. WeinsteinJ.N. In vitro differential sensitivity of melanomas to phenothiazines is based on the presence of codon 600 BRAF mutation.Mol. Cancer Ther.2008761337134610.1158/1535‑7163.MCT‑07‑2308 18524847
    [Google Scholar]
  70. SudeshnaG. ParimalK. Multiple non-psychiatric effects of phenothiazines: A review.Eur. J. Pharmacol.20106481-361410.1016/j.ejphar.2010.08.045 20828548
    [Google Scholar]
  71. ZhelevZ. OhbaH. BakalovaR. HadjimitovaV. IshikawaM. ShinoharaY. BabaY. Phenothiazines suppress proliferation and induce apoptosis in cultured leukemic cells without any influence on the viability of normal lymphocytes.Cancer Chemother. Pharmacol.200453326727510.1007/s00280‑003‑0738‑1 14663628
    [Google Scholar]
  72. Gil-AdI. ShtaifB. LevkovitzY. NordenbergJ. TalerM. KorovI. WeizmanA. Phenothiazines induce apoptosis in a B16 mouse melanoma cell line and attenuate in vivo melanoma tumor growth.Oncol. Rep.200615110711210.3892/or.15.1.107 16328041
    [Google Scholar]
  73. SpenglerG. MolnarJ. ViveirosM. AmaralL. Thioridazine induces apoptosis of multidrug-resistant mouse lymphoma cells transfected with the human ABCB1 and inhibits the expression of P-glycoprotein.Anticancer Res.2011311242014205 22199281
    [Google Scholar]
  74. MorakM. LodawskaB. PlutaK. LatochaM. Jelen,] M.; Kusmierz, D. Synthesis and anticancer and lipophilic] properties of 10-dialkylaminobutynyl derivatives of 1,8- and 2,7-diazaphenothiazinesd.J. Enzyme Inhib. Med. Chem.2016311132113810.3109/14756366.2015.1101092 27677322
    [Google Scholar]
  75. DabrzalskaM. JanaszewskaA. ZablockaM. MignaniS. MajoralJ. Klajnert-MaculewiczB. Complexing methylene blue with phosphorus dendrimers to increase photodynamic activity.Molecules201722334510.3390/molecules22030345 28241491
    [Google Scholar]
  76. FerreiraR.J. dos SantosD.J.V.A. FerreiraM.J.U. P-glycoprotein and membrane roles in multidrug resistance.Future Med. Chem.20157792994610.4155/fmc.15.36 26061109
    [Google Scholar]
  77. EfferthT. VolmM. Reversal of doxorubicin-resistance in sarcoma 180 tumor cells by inhibition of different resistance mechanisms.Cancer Lett.199370319720210.1016/0304‑3835(93)90231‑W 8102593
    [Google Scholar]
  78. CheonJ.H. LeeB.M. KimH.S. YoonS. Highly Halaven-resistant KBV20C Cancer Cells Can Be Sensitized by Co-treatment with Fluphenazine.Anticancer Res.201636115867587410.21873/anticanres.11172 27793910
    [Google Scholar]
  79. SpenglerG. TakácsD. HorváthA. RiedlZ. HajósG. AmaralL. MolnárJ. Multidrug resistance reversing activity of newly developed phenothiazines on P-glycoprotein (ABCB1)-related resistance of mouse T-lymphoma cells.Anticancer Res.201434417371741 24692704
    [Google Scholar]
  80. SachlosE. RisueñoR.M. LarondeS. ShapovalovaZ. LeeJ.H. RussellJ. MaligM. McNicolJ.D. Fiebig-ComynA. GrahamM. Levadoux-MartinM. LeeJ.B. GiacomelliA.O. HassellJ.A. Fischer-RussellD. TrusM.R. FoleyR. LeberB. XenocostasA. BrownE.D. CollinsT.J. BhatiaM. Identification of drugs including a dopamine receptor antagonist that selectively target cancer stem cells.Cell201214961284129710.1016/j.cell.2012.03.049 22632761
    [Google Scholar]
  81. ChengH-W. LiangY-H. KuoY-L. ChuuC-P. LinC-Y. LeeM-H. WuA.T.H. YehC-T. ChenE.I-T. Whang-PengJ. SuC-L. HuangC-Y.F. Identification of thioridazine, an antipsychotic drug, as an antiglioblastoma and anticancer stem cell agent using public gene expression data.Cell Death Dis.201565e175310.1038/cddis.2015.77 25950483
    [Google Scholar]
  82. ZhangC. GongP. LiuP. ZhouN. ZhouY. WangY. Thioridazine elicits potent antitumor effects in colorectal cancer stem cells.Oncol. Rep.20173721168117410.3892/or.2016.5313 28000884
    [Google Scholar]
/content/journals/cbc/10.2174/0115734072334547241217042546
Loading
/content/journals/cbc/10.2174/0115734072334547241217042546
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test