Skip to content
2000
Volume 21, Issue 8
  • ISSN: 1573-4072
  • E-ISSN: 1875-6646

Abstract

Current developments provide an overview of alginate electrospinning for biopolymers in pharmaceutical and biological applications, but their volatile nature and susceptibility to degradation pose challenges to their storage and use. Due to their innate medicinal qualities, pure essential oils have drawn a lot of attention to their many uses, such as aromatherapy and medicine. However, the stability, regulated release, and sustained efficacy of EOs are complicated by their brittleness and sensitivity. Bio-based small carriers as well as polymers have recently come to light as a viable solution to these problems. To improve the stability and therapeutic efficacy of essential oils, this review study investigates the novel use of bio-based microcarriers and polymers. By encapsulating essential oils within biocompatible materials, such as microcarriers and polymers derived from natural sources, researchers have been able to extend their shelf life, improve their controlled release, and enhance their bioavailability. The general stability, as well as bioavailability of these encapsulated EOs, are improved by the interaction of the natural qualities of essential oils with the specific properties of bio-based polymers. This paper examines the design and manufacturing concepts of bio-based microcarriers, emphasizing encapsulating techniques and the variables affecting release kinetics. Additionally, it highlights the potential uses of EO-loaded tiny carriers in various fields, such as cosmetics, agriculture, and medicine. This paper also delves into recent advancements in this field, discussing the fabrication techniques, characterization methods, and application areas of bio-based microcarriers and polymers for essential oil delivery.

Loading

Article metrics loading...

/content/journals/cbc/10.2174/0115734072332644240926100113
2024-12-17
2025-11-21
Loading full text...

Full text loading...

References

  1. AljaafariM.N. AlAliA.O. BaqaisL. AlqubaisyM. AlAliM. MoloukiA. Ong-AbdullahJ. AbushelaibiA. LaiK.S. LimS.H.E. An overview of the potential therapeutic applications of essential oils.Molecules202126362810.3390/molecules26030628 33530290
    [Google Scholar]
  2. BhallaY. GuptaV.K. JaitakV. Anticancer activity of essential oils: a review.J. Sci. Food Agric.201393153643365310.1002/jsfa.6267 23765679
    [Google Scholar]
  3. Cardoso-UgarteG.A. Ramírez-CoronaN. López-MaloA. PalouE. San Martín-GonzálezM.F. Jiménez-MunguíaM.T. Modeling phase separation and droplet size of W/O emulsions with oregano essential oil as a function of its formulation and homogenization conditions.J. Dispers. Sci. Technol.20183971065107310.1080/01932691.2017.1382370
    [Google Scholar]
  4. PicherskyE. NoelJ.P. DudarevaN. Biosynthesis of plant volatiles: nature’s diversity and ingenuity.Science2006311576280881110.1126/science.1118510 16469917
    [Google Scholar]
  5. DonsìF. AnnunziataM. VincensiM. FerrariG. Design of nanoemulsion-based delivery systems of natural antimicrobials: Effect of the emulsifier.J. Biotechnol.2012159434235010.1016/j.jbiotec.2011.07.001 21763730
    [Google Scholar]
  6. CaloJ.R. CrandallP.G. O’BryanC.A. RickeS.C. Essential oils as antimicrobials in food systems – A review.Food Control20155411111910.1016/j.foodcont.2014.12.040
    [Google Scholar]
  7. Lopes-LutzD. AlvianoD.S. AlvianoC.S. KolodziejczykP.P. Screening of chemical composition, antimicrobial and antioxidant activities of Artemisia essential oils.Phytochemistry20086981732173810.1016/j.phytochem.2008.02.014 18417176
    [Google Scholar]
  8. ManzuoerhR. FarahpourM.R. OryanA. SonboliA. Effectiveness of topical administration of Anethum graveolens essential oil on MRSA-infected wounds.Biomed. Pharmacother.20191091650165810.1016/j.biopha.2018.10.117 30551419
    [Google Scholar]
  9. BrahmiF. AbdenourA. BrunoM. SilviaP. AlessandraP. DaniloF. DrifaY-G. FahmiE.M. KhodirM. MohamedC. Chemical composition and in vitro antimicrobial, insecticidal and antioxidant activities of the essential oils of Mentha pulegium L. and Mentha rotundifolia (L.) Huds growing in Algeria.Ind. Crops Prod.2016889610510.1016/j.indcrop.2016.03.002
    [Google Scholar]
  10. ModarresiM. FarahpourM.R. BaradaranB. Topical application of Mentha piperita essential oil accelerates wound healing in infected mice model.Inflammopharmacology201927353153710.1007/s10787‑018‑0510‑0 29980963
    [Google Scholar]
  11. FarahpourM.R. MirzakhaniN. DoostmohammadiJ. EbrahimzadehM. Hydroethanolic Pistacia atlantica hulls extract improved wound healing process; evidence for mast cells infiltration, angiogenesis and RNA stability.Int. J. Surg.201517889810.1016/j.ijsu.2015.03.019 25849027
    [Google Scholar]
  12. SperottoA.R.M. MouraD.J. PéresV.F. DamascenoF.C. CaramãoE.B. HenriquesJ.A.P. SaffiJ. Cytotoxic mechanism of Piper gaudichaudianum Kunth essential oil and its major compound nerolidol.Food Chem. Toxicol.201357576810.1016/j.fct.2013.03.013 23523831
    [Google Scholar]
  13. ShishirM.R.I. XieL. SunC. ZhengX. ChenW. Advances in micro and nano-encapsulation of bioactive compounds using biopolymer and lipid-based transporters.Trends Food Sci. Technol.201878346010.1016/j.tifs.2018.05.018
    [Google Scholar]
  14. AzizT. UllahA. AliA. ShabeerM. ShahM.N. HaqF. IqbalM. UllahR. KhanF.U. Manufactures of bio‐degradable and bio‐based polymers for bio‐materials in the pharmaceutical field.J. Appl. Polym. Sci.202213929e5262410.1002/app.52624
    [Google Scholar]
  15. TaoM. ChenJ. HuangK. Bio-based antimicrobial delivery systems for improving microbial safety and quality of raw or minimally processed foods.Curr. Opin. Food Sci.20214118920010.1016/j.cofs.2021.04.011
    [Google Scholar]
  16. UkoL. NobyH. ZkriaA. ElKadyM. Electrospraying of bio-based chitosan microcapsules using novel mixed cross-linker: Experimental and response surface methodology optimization.Materials (Basel)20221523844710.3390/ma15238447 36499942
    [Google Scholar]
  17. RaoZ. LeiX. ChenY. LingJ. ZhaoJ. MingJ. Facile fabrication of robust bilayer film loaded with chitosan active microspheres for potential multifunctional food packing.Int. J. Biol. Macromol.202323112336210.1016/j.ijbiomac.2023.123362 36690235
    [Google Scholar]
  18. BiS. BarinelliV. SobkowiczM.J. Degradable controlled release fertilizer composite prepared via extrusion: Fabrication, characterization, and release mechanisms.Polymers (Basel)202012230110.3390/polym12020301 32024294
    [Google Scholar]
  19. BedianL. Villalba-RodríguezA.M. Hernández-VargasG. Parra-SaldivarR. IqbalH.M.N. Bio-based materials with novel characteristics for tissue engineering applications – A review.Int. J. Biol. Macromol.20179883784610.1016/j.ijbiomac.2017.02.048 28223133
    [Google Scholar]
  20. MachadoT.O. BeckersS.J. FischerJ. MüllerB. SayerC. de AraújoP.H.H. LandfesterK. WurmF.R. Bio-based lignin nanocarriers loaded with fungicides as a versatile platform for drug delivery in plants.Biomacromolecules20202172755276310.1021/acs.biomac.0c00487 32543851
    [Google Scholar]
  21. SalernoA. PascualC.D. Bio-based polymers, supercritical fluids and tissue engineering.Process Biochem.201550582683810.1016/j.procbio.2015.02.009
    [Google Scholar]
  22. KimY. MaL. HuangK. NitinN. Bio-based antimicrobial compositions and sensing technologies to improve food safety.Curr. Opin. Biotechnol.20237910287110.1016/j.copbio.2022.102871 36621220
    [Google Scholar]
  23. EfratiR. NatanM. PelahA. HabererA. BaninE. DotanA. OphirA. The combined effect of additives and processing on the thermal stability and controlled release of essential oils in antimicrobial films.J. Appl. Polym. Sci.201413115app.4056410.1002/app.40564
    [Google Scholar]
  24. PanditJ. AqilM. SultanaY. Nanoencapsulation technology to control release and enhance bioactivity of essential oils.In: Encapsulations.Elsevier201659764010.1016/B978‑0‑12‑804307‑3.00014‑4
    [Google Scholar]
  25. KfouryM. AuezovaL. Greige-GergesH. FourmentinS. Promising applications of cyclodextrins in food: Improvement of essential oils retention, controlled release and antiradical activity.Carbohydr. Polym.201513126427210.1016/j.carbpol.2015.06.014 26256184
    [Google Scholar]
  26. González-RezaR.M. Hernández-SánchezH. Quintanar-GuerreroD. Alamilla-BeltránL. Cruz-NarváezY. Zambrano-ZaragozaM.L. Synthesis, controlled release, and stability on storage of chitosan-thyme essential oil nanocapsules for food applications.Gels20217421210.3390/gels7040212 34842688
    [Google Scholar]
  27. MaesC. BouquillonS. FauconnierM.L. Encapsulation of essential oils for the development of biosourced pesticides with controlled release: A review.Molecules20192414253910.3390/molecules24142539 31336803
    [Google Scholar]
  28. CollinsM.N. RenG. YoungK. PinaS. ReisR.L. OliveiraJ.M. Scaffold fabrication technologies and structure/function properties in bone tissue engineering.Adv. Funct. Mater.20213121201060910.1002/adfm.202010609
    [Google Scholar]
  29. KurakulaM. Raghavendra NaveenN. Electrospraying: A facile technology unfolding the chitosan based drug delivery and biomedical applications.Eur. Polym. J.202114711032610.1016/j.eurpolymj.2021.110326
    [Google Scholar]
  30. ProcopioA. LagrecaE. JamaledinR. La MannaS. CorradoB. Di NataleC. OnestoV. Recent fabrication methods to produce polymer-based drug delivery matrices (experimental and in silico approaches).Pharmaceutics202214487210.3390/pharmaceutics14040872 35456704
    [Google Scholar]
  31. BallaE. DaniilidisV. KarliotiG. KalamasT. StefanidouM. BikiarisN.D. VlachopoulosA. KoumentakouI. BikiarisD.N. Poly (lactic Acid): A versatile biobased polymer for the future with multifunctional properties-From monomer synthesis, polymerization techniques and molecular weight increase to PLA applications.Polymers (Basel)20211311182210.3390/polym13111822 34072917
    [Google Scholar]
  32. JoseD.A. PrakashP. ChakrapaniPB. Containers based on polymers.Micro-Nano-containers Smart Appl.2022179
    [Google Scholar]
  33. Puertas-BartoloméM. Mora-BozaA. García-FernándezL. Emerging biofabrication techniques: A review on natural polymers for biomedical applications.Polymers (Basel)2021138120910.3390/polym13081209 33918049
    [Google Scholar]
  34. DashM. ChielliniF. OttenbriteR.M. ChielliniE. Chitosan—A versatile semi-synthetic polymer in biomedical applications.Prog. Polym. Sci.2011368981101410.1016/j.progpolymsci.2011.02.001
    [Google Scholar]
  35. GeorgeM. AbrahamT.E. Polyionic hydrocolloids for the intestinal delivery of protein drugs: Alginate and chitosan — a review.J. Control. Release2006114111410.1016/j.jconrel.2006.04.017 16828914
    [Google Scholar]
  36. BoatengJ.S. MatthewsK.H. StevensH.N.E. EcclestonG.M. Wound healing dressings and drug delivery systems: a review.J. Pharm. Sci.20089782892292310.1002/jps.21210 17963217
    [Google Scholar]
  37. FarrisS. SchaichK.M. LiuL.S. PiergiovanniL. YamK.L. Development of polyion-complex hydrogels as an alternative approach for the production of bio-based polymers for food packaging applications: a review.Trends Food Sci. Technol.200920831633210.1016/j.tifs.2009.04.003
    [Google Scholar]
  38. LiuZ. JiaoY. WangY. ZhouC. ZhangZ. Polysaccharides-based nanoparticles as drug delivery systems.Adv. Drug Deliv. Rev.200860151650166210.1016/j.addr.2008.09.001 18848591
    [Google Scholar]
  39. JainR.A. The manufacturing techniques of various drug loaded biodegradable poly(lactide-co-glycolide) (PLGA) devices.Biomaterials200021232475249010.1016/S0142‑9612(00)00115‑0 11055295
    [Google Scholar]
  40. ChenG.Q. WuQ. The application of polyhydroxyalkanoates as tissue engineering materials.Biomaterials200526336565657810.1016/j.biomaterials.2005.04.036 15946738
    [Google Scholar]
  41. AltmanG.H. DiazF. JakubaC. CalabroT. HoranR.L. ChenJ. LuH. RichmondJ. KaplanD.L. Silk-based biomaterials.Biomaterials200324340141610.1016/S0142‑9612(02)00353‑8 12423595
    [Google Scholar]
  42. O’DonnellP.B. McGinityJ.W. Preparation of microspheres by the solvent evaporation technique.Adv. Drug Deliv. Rev.1997281254210.1016/S0169‑409X(97)00049‑5 10837563
    [Google Scholar]
  43. AmeriM. MaaY.F. Spray drying of biopharmaceuticals: stability and process considerations.Dry. Technol.200624676376810.1080/03602550600685275
    [Google Scholar]
  44. MuhozaB. XiaS. WangX. ZhangX. LiY. ZhangS. Microencapsulation of essential oils by complex coacervation method: preparation, thermal stability, release properties and applications.Crit. Rev. Food Sci. Nutr.20226251363138210.1080/10408398.2020.1843132 33176432
    [Google Scholar]
  45. PanH. LiL. HuL. CuiX. Continuous aligned polymer fibers produced by a modified electrospinning method.Polymer (Guildf.)200647144901490410.1016/j.polymer.2006.05.012
    [Google Scholar]
  46. DuY. MoL. WangX. WangH. GeX. QiuT. Preparation of mint oil microcapsules by microfluidics with high efficiency and controllability in release properties.Microfluid. Nanofluidics20202464210.1007/s10404‑020‑02346‑2
    [Google Scholar]
  47. PatilD.K. Synthesis, characterization and controlled release studies of ethyl cellulose microcapsules incorporating essential oil using an emulsion solvent evaporation method. Am. J. Essen.Oils Nat. Prod.2016412331
    [Google Scholar]
  48. Alvarenga BotrelD. Vilela BorgesS. Victória de Barros FernandesR. Dantas VianaA. Maria Gomes da CostaJ. Reginaldo MarquesG. Evaluation of spray drying conditions on properties of microencapsulated oregano essential oil.Int. J. Food Sci. Technol.201247112289229610.1111/j.1365‑2621.2012.03100.x
    [Google Scholar]
  49. TavaresL. NoreñaC.P.Z. Encapsulation of ginger essential oil using complex coacervation method: Coacervate formation, rheological property, and physicochemical characterization.Food Bioprocess Technol.20201381405142010.1007/s11947‑020‑02480‑3
    [Google Scholar]
  50. HosseiniF. MiriM.A. NajafiM. SoleimanifardS. AranM. Encapsulation of rosemary essential oil in zein by electrospinning technique.J. Food Sci.20218694070408610.1111/1750‑3841.15876 34392535
    [Google Scholar]
  51. FarahmandA. EmadzadehB. GhoraniB. PonceletD. Droplet-based millifluidic technique for encapsulation of cinnamon essential oil: Optimization of the process and physicochemical characterization.Food Hydrocoll.202212910760910.1016/j.foodhyd.2022.107609
    [Google Scholar]
  52. VishwakarmaG.S. GautamN. BabuJ.N. MittalS. JaitakV. Polymeric encapsulates of essential oils and their constituents: A review of preparation techniques, characterization, and sustainable release mechanisms.Polym. Rev. (Phila. Pa.)201656466870110.1080/15583724.2015.1123725
    [Google Scholar]
  53. de OliveiraE.F. PaulaH.C.B. PaulaR.C.M. Alginate/cashew gum nanoparticles for essential oil encapsulation.Colloids Surf. B Biointerfaces201411314615110.1016/j.colsurfb.2013.08.038 24077112
    [Google Scholar]
  54. HadidiM. PouraminS. AdinepourF. HaghaniS. JafariS.M. Chitosan nanoparticles loaded with clove essential oil: Characterization, antioxidant and antibacterial activities.Carbohydr. Polym.202023611607510.1016/j.carbpol.2020.116075 32172888
    [Google Scholar]
  55. GhasemiM. MiriM.A. NajafiM.A. TavakoliM. HadadiT. Encapsulation of Cumin essential oil in zein electrospun fibers: Characterization and antibacterial effect.J. Food Meas. Charact.20221621613162410.1007/s11694‑021‑01268‑z
    [Google Scholar]
  56. SoltanzadehM. PeighambardoustS.H. GhanbarzadehB. MohammadiM. LorenzoJ.M. Chitosan nanoparticles encapsulating lemongrass (Cymbopogon commutatus) essential oil: Physicochemical, structural, antimicrobial and in-vitro release properties.Int. J. Biol. Macromol.20211921084109710.1016/j.ijbiomac.2021.10.070 34673101
    [Google Scholar]
  57. KaboudiZ. PeighambardoustS.H. NourbakhshH. SoltanzadehM. Nanoencapsulation of Chavir (Ferulago angulata) essential oil in chitosan carrier: Investigating physicochemical, morphological, thermal, antimicrobial and release profile of obtained nanoparticles.Int. J. Biol. Macromol.202323712396310.1016/j.ijbiomac.2023.123963 36906207
    [Google Scholar]
  58. KayaciF. ErtasY. UyarT. Enhanced thermal stability of eugenol by cyclodextrin inclusion complex encapsulated in electrospun polymeric nanofibers.J. Agric. Food Chem.201361348156816510.1021/jf402923c 23898890
    [Google Scholar]
  59. ChiriacA.P. RusuA.G. NitaL.E. MacsimA.M. TudorachiN. RoscaI. StoicaI. TampuD. AfloriM. DorofteiF. Synthesis of poly(ethylene brassylate-co-squaric acid) as potential essential oil carrier.Pharmaceutics202113447710.3390/pharmaceutics13040477 33916007
    [Google Scholar]
  60. OdjoK. Al-MaqtariQ.A. YuH. XieY. GuoY. LiM. DuY. LiuK. ChenY. YaoW. Preparation and characterization of chitosan-based antimicrobial films containing encapsulated lemon essential oil by ionic gelation and cranberry juice.Food Chem.202239713378110.1016/j.foodchem.2022.133781 35940093
    [Google Scholar]
  61. RastehI. PirniaM. MiriM.A. SaraniS. Encapsulation of Zataria multiflora essential oil in electrosprayed zein microcapsules: Characterization and antimicrobial properties.Ind. Crops Prod.202420811779410.1016/j.indcrop.2023.117794
    [Google Scholar]
  62. UpadhyayN. SinghV.K. DwivedyA.K. ChaudhariA.K. DubeyN.K. Assessment of nanoencapsulated Cananga odorata essential oil in chitosan nanopolymer as a green approach to boost the antifungal, antioxidant and in situ efficacy.Int. J. Biol. Macromol.202117148049010.1016/j.ijbiomac.2021.01.024 33428956
    [Google Scholar]
  63. KumarS.; Pooja.; Trotta, F.; Rao, R. Encapsulation of babchi oil in cyclodextrin-based nanosponges: physicochemical characterization, photodegradation, and in vitro cytotoxicity studies.Pharmaceutics201810416910.3390/pharmaceutics10040169 30261580
    [Google Scholar]
  64. BarhoumA. JeevanandamJ. RastogiA. SamynP. BolukY. DufresneA. DanquahM.K. BechelanyM. Plant celluloses, hemicelluloses, lignins, and volatile oils for the synthesis of nanoparticles and nanostructured materials.Nanoscale20201245228452289010.1039/D0NR04795C 33185217
    [Google Scholar]
  65. SamrotA.V. SamanvithaS.K. ShobanaN. RenittaE.R. SenthilkumarP. KumarS.S. AbiramiS. DhivaS. BavanilathaM. PrakashP. SaigeethaS. ShreeK.S. ThirumuruganR. The synthesis, characterization and applications of polyhydroxyalkanoates (PHAs) and PHA-based nanoparticles.Polymers (Basel)20211319330210.3390/polym13193302 34641118
    [Google Scholar]
  66. Wróblewska-KrepsztulJ. RydzkowskiT. Michalska-PożogaI. ThakurV.K. Biopolymers for biomedical and pharmaceutical applications: Recent advances and overview of alginate electrospinning.Nanomaterials (Basel)20199340410.3390/nano9030404 30857370
    [Google Scholar]
  67. GuptaS. VariyarP.S. Nanoencapsulation of essential oils for sustained release: application as therapeutics and antimicrobials.In: Encapsulations.Elsevier201664167210.1016/B978‑0‑12‑804307‑3.00015‑6
    [Google Scholar]
  68. CorradoI. Di GirolamoR. Regalado-GonzálezC. PezzellaC. Polyhydroxyalkanoates-based nanoparticles as essential oil carriers.Polymers (Basel)202214116610.3390/polym14010166 35012189
    [Google Scholar]
  69. BiliaA.R. GuccioneC. IsacchiB. RigheschiC. FirenzuoliF. BergonziM.C. Essential oils loaded in nanosystems: A developing strategy for a successful therapeutic approach.Evid. Based Complement. Alternat. Med.2014201465159310.1155/2014/651593
    [Google Scholar]
  70. EsmaeiliA. AsgariA. In vitro release and biological activities of Carum copticum essential oil (CEO) loaded chitosan nanoparticles.Int. J. Biol. Macromol.20158128329010.1016/j.ijbiomac.2015.08.010 26257380
    [Google Scholar]
  71. SuX. LiB. ChenS. WangX. SongH. ShenB. ZhengQ. YangM. YueP. Pore engineering of micro/mesoporous nanomaterials for encapsulation, controlled release and variegated applications of essential oils.J. Control. Release202436710713410.1016/j.jconrel.2024.01.005 38199524
    [Google Scholar]
  72. São PedroA. Espírito SantoI. DetoniC. da SilvaC.V. Cabral-AlbuquerqueE. The use of nanotechnology as an approach for essential oil-based formulations with antimicrobial activity. In: Microbial pathogens and strategies for combating them: Science, technology and education2013213641374
    [Google Scholar]
  73. Safaeian LaeinS. KatouzianI. MozafariM.R. Farnudiyan-HabibiA. AkbarbagluZ. ShadanM.R. SarabandiK. Biological and thermodynamic stabilization of lipid-based delivery systems through natural biopolymers; controlled release and molecular dynamics simulations.Crit. Rev. Food Sci. Nutr.2023227728774710.1080/10408398.2023.2191281 36950963
    [Google Scholar]
  74. SzczepanowiczK. BazylińskaU. PietkiewiczJ. Szyk-WarszyńskaL. WilkK.A. WarszyńskiP. Biocompatible long-sustained release oil-core polyelectrolyte nanocarriers: From controlling physical state and stability to biological impact.Adv. Colloid Interface Sci.201522267869110.1016/j.cis.2014.10.005 25453660
    [Google Scholar]
  75. TortoriciS. CiminoC. RicuperoM. MusumeciT. BiondiA. SiscaroG. CarboneC. ZappalàL. Nanostructured lipid carriers of essential oils as potential tools for the sustainable control of insect pests.Ind. Crops Prod.202218111476610.1016/j.indcrop.2022.114766
    [Google Scholar]
  76. ElzoghbyA.O. SamyW.M. ElgindyN.A. Protein-based nanocarriers as promising drug and gene delivery systems.J. Control. Release20121611384910.1016/j.jconrel.2012.04.036 22564368
    [Google Scholar]
  77. YammineJ. Advances in essential oils encapsulation: development, characterization and release mechanisms.Polym. Bull.20238138373882
    [Google Scholar]
  78. LacatusuI. BadeaN. StanR. MegheaA. Novel bio-active lipid nanocarriers for the stabilization and sustained release of sitosterol.Nanotechnology2012234545570210.1088/0957‑4484/23/45/455702 23064178
    [Google Scholar]
  79. ShenY. NiZ.J. ThakurK. ZhangJ.G. HuF. WeiZ.J. Preparation and characterization of clove essential oil loaded nanoemulsion and pickering emulsion activated pullulan-gelatin based edible film.Int. J. Biol. Macromol.202118152853910.1016/j.ijbiomac.2021.03.133 33794240
    [Google Scholar]
  80. GunasekaranT. HaileT. NigusseT. DhanarajuM.D. Nanotechnology: an effective tool for enhancing bioavailability and bioactivity of phytomedicine.Asian Pac. J. Trop. Biomed.20144S1S710.12980/APJTB.4.2014C980 25183064
    [Google Scholar]
  81. MaryamI. Nanoencapsulation of essential oils with enhanced antimicrobial activity: A new way of combating antimicrobial Resistance.J. Pharmacogn. Phytochem.201543165170
    [Google Scholar]
  82. AzizZ.A.A. SetaparS.H.M. Nanotechnology: An effective approach for enhancing therapeutics and bioavailability of phytomedicines. In:Functional Bionanomaterials2020477110.1007/978‑3‑030‑41464‑1_3
    [Google Scholar]
  83. SeverinoP. AndreaniT. ChaudM. BenitesC. PinhoS. SoutoE. Essential oils as active ingredients of lipid nanocarriers for chemotherapeutic use.Curr. Pharm. Biotechnol.201516436537010.2174/1389201016666150206111253 25658380
    [Google Scholar]
  84. GarciaC.R. MalikM.H. BiswasS. TamV.H. RumbaughK.P. LiW. LiuX. Nanoemulsion delivery systems for enhanced efficacy of antimicrobials and essential oils.Biomater. Sci.202210363365310.1039/D1BM01537K 34994371
    [Google Scholar]
  85. KatopodiA. DetsiA. Solid Lipid Nanoparticles and Nanostructured Lipid Carriers of natural products as promising systems for their bioactivity enhancement: The case of essential oils and flavonoids.Colloids Surf. A Physicochem. Eng. Asp.202163012752910.1016/j.colsurfa.2021.127529
    [Google Scholar]
  86. KumariS. GoyalA. Sönmez GürerE. Algın YaparE. GargM. SoodM. SindhuR.K. Bioactive loaded novel nano-formulations for targeted drug delivery and their therapeutic potential.Pharmaceutics2022145109110.3390/pharmaceutics14051091 35631677
    [Google Scholar]
  87. SwainS.S. PaidesettyS.K. PadhyR.N. HussainT. Nano-technology platforms to increase the antibacterial drug suitability of essential oils: A drug prospective assessment.OpenNano2023910011510.1016/j.onano.2022.100115
    [Google Scholar]
  88. CiminoC. MaurelO.M. MusumeciT. BonaccorsoA. DragoF. SoutoE.M.B. PignatelloR. CarboneC. Essential oils: Pharmaceutical applications and encapsulation strategies into lipid-based delivery systems.Pharmaceutics202113332710.3390/pharmaceutics13030327 33802570
    [Google Scholar]
  89. AdeyemiS.B. AkereA.M. OregeJ.I. EjeromegheneO. OregeO.B. AkoladeJ.O. Polymeric nanoparticles for enhanced delivery and improved bioactivity of essential oils.Heliyon202396e1654310.1016/j.heliyon.2023.e16543 37484246
    [Google Scholar]
  90. RehmanA. JafariS.M. AadilR.M. AssadpourE. RandhawaM.A. MahmoodS. Development of active food packaging via incorporation of biopolymeric nanocarriers containing essential oils.Trends Food Sci. Technol.202010110612110.1016/j.tifs.2020.05.001
    [Google Scholar]
  91. LimX.Y. LiJ. YinH.M. HeM. LiL. ZhangT. Stabilization of Essential Oil: Polysaccharide-Based Drug Delivery System with Plant-like Structure Based on Biomimetic Concept.Polymers (Basel)20231516333810.3390/polym15163338 37631395
    [Google Scholar]
  92. CampeloM.S. MeloE.O. ArraisS.P. NascimentoF.B.S.A. GramosaN.V. SoaresS.A. RibeiroM.E.N.P. SilvaC.R. JúniorH.V.N. RicardoN.M.P.S. Clove essential oil encapsulated on nanocarrier based on polysaccharide: A strategy for the treatment of vaginal candidiasis.Colloids Surf. A Physicochem. Eng. Asp.202161012573210.1016/j.colsurfa.2020.125732
    [Google Scholar]
  93. HashemiS.M.B. KavehS. AbediE. PhimolsiripolY. Polysaccharide-based edible films/coatings for the preservation of meat and fish products: Emphasis on incorporation of lipid-based nanosystems loaded with bioactive compounds.Foods20231217326810.3390/foods12173268 37685201
    [Google Scholar]
  94. MengY. QiuC. LiX. McClementsD.J. SangS. JiaoA. JinZ. Polysaccharide-based nano-delivery systems for encapsulation, delivery, and pH-responsive release of bioactive ingredients.Crit. Rev. Food Sci. Nutr.202464118720110.1080/10408398.2022.2105800 35930011
    [Google Scholar]
  95. DanilaA. MuresanE.I. IbanescuS.A. PopescuA. DanuM. ZahariaC. TürkoğluG.C. ErkanG. StarasA.I. Preparation, characterization, and application of polysaccharide-based emulsions incorporated with lavender essential oil for skin-friendly cellulosic support.Int. J. Biol. Macromol.202119140541310.1016/j.ijbiomac.2021.09.090 34547316
    [Google Scholar]
  96. NosratiH. HeydariM. TootiaeiZ. GanjbarS. KhodaeiM. Delivery of antibacterial agents for wound healing applications using polysaccharide-based scaffolds.J. Drug Deliv. Sci. Technol.20238410451610.1016/j.jddst.2023.104516
    [Google Scholar]
  97. SrivastavaN. ChoudhuryA.R. Microbial Polysaccharide-Based Nanoformulations for Nutraceutical Delivery.ACS Omega2022745407244073910.1021/acsomega.2c06003 36406482
    [Google Scholar]
  98. ChatterjeeS. MahmoodS. HillesA.R. ThomasS. RoyS. ProvaznikV. RomeroE.L. GhosalK. Cationic starch: A functionalized polysaccharide based polymer for advancement of drug delivery and health care system - A review.Int. J. Biol. Macromol.202324812575710.1016/j.ijbiomac.2023.125757 37429342
    [Google Scholar]
  99. SaricaogluF.T. TurhanS. Performance of mechanically deboned chicken meat protein coatings containing thyme or clove essential oil for storage quality improvement of beef sucuks.Meat Sci.201915810791210.1016/j.meatsci.2019.107912 31421517
    [Google Scholar]
  100. MajidiyanN. HadidiM. AzadikhahD. MorenoA. Protein complex nanoparticles reinforced with industrial hemp essential oil: Characterization and application for shelf-life extension of Rainbow trout fillets.Food Chem. X20221310020210.1016/j.fochx.2021.100202 35499007
    [Google Scholar]
  101. ChenL. RemondettoG.E. SubiradeM. Food protein-based materials as nutraceutical delivery systems.Trends Food Sci. Technol.200617527228310.1016/j.tifs.2005.12.011
    [Google Scholar]
  102. Alizadeh-SaniM. RhimJ.W. Azizi-LalabadiM. Hemmati-DinarvandM. EhsaniA. Preparation and characterization of functional sodium caseinate/guar gum/TiO2/cumin essential oil composite film.Int. J. Biol. Macromol.202014583584410.1016/j.ijbiomac.2019.11.004 31726161
    [Google Scholar]
  103. Ribeiro-SantosR. AndradeM. Sanches-SilvaA. Application of encapsulated essential oils as antimicrobial agents in food packaging.Curr. Opin. Food Sci.201714788410.1016/j.cofs.2017.01.012
    [Google Scholar]
  104. CaiL. WangY. Physicochemical and antioxidant properties based on fish sarcoplasmic protein/chitosan composite films containing ginger essential oil nanoemulsion.Food Bioprocess Technol.202114115116310.1007/s11947‑020‑02564‑0
    [Google Scholar]
  105. KumarA. KanwarR. MehtaS.K. Recent development in essential oil-based nanocarriers for eco-friendly and sustainable agri-food applications: a review.ACS Agric. Sci Technol.20222582383710.1021/acsagscitech.2c00100
    [Google Scholar]
  106. EjazM. ArfatY.A. MullaM. AhmedJ. Zinc oxide nanorods/clove essential oil incorporated Type B gelatin composite films and its applicability for shrimp packaging.Food Packag. Shelf Life20181511312110.1016/j.fpsl.2017.12.004
    [Google Scholar]
  107. DelshadiR. BahramiA. TaftiA.G. BarbaF.J. WilliamsL.L. Micro and nano-encapsulation of vegetable and essential oils to develop functional food products with improved nutritional profiles.Trends Food Sci. Technol.2020104728310.1016/j.tifs.2020.07.004
    [Google Scholar]
  108. SalmieriS. LacroixM. Physicochemical properties of alginate/polycaprolactone-based films containing essential oils.J. Agric. Food Chem.20065426102051021410.1021/jf062127z 17177561
    [Google Scholar]
  109. ShendurseA.M. Milk protein based edible films and coatings-preparation, properties and food applications.J. Nut. Health Food Eng.20188221922610.15406/jnhfe.2018.08.00273
    [Google Scholar]
  110. Dajic StevanovicZ. SieniawskaE. GlowniakK. ObradovicN. Pajic-LijakovicI. Natural macromolecules as carriers for essential oils: From extraction to biomedical application.Front. Bioeng. Biotechnol.2020856310.3389/fbioe.2020.00563 32671026
    [Google Scholar]
  111. JampilekJ. KralovaK. Anticancer applications of essential oils formulated into lipid-based delivery nanosystems.Pharmaceutics20221412268110.3390/pharmaceutics14122681 36559176
    [Google Scholar]
  112. BaldimI. PazianiM.H. Grizante BariãoP.H. KressM.R.Z. OliveiraW.P. Nanostructured lipid carriers loaded with Lippia sidoides essential oil as a strategy to combat the multidrug-resistant Candida auris.Pharmaceutics202214118010.3390/pharmaceutics14010180 35057078
    [Google Scholar]
  113. NajjariN. SariS. SaffariM. KelidariH. NokhodchiA. Formulation optimization and characterization of Pistacia atlantica Desf. essential oil-loaded nanostructured lipid carriers on the proliferation of human breast cancer cell line SKBR3 (in vitro studies).J. Herb. Med.20223610060010.1016/j.hermed.2022.100600
    [Google Scholar]
  114. ReetaR.M. JohnM. NewtonA. Fabrication and characterisation of Lavender oil and plant phospholipid based sumatriptan succinate hybrid nano lipid carriers.Pharmaceutical and Biomedical Research202010.18502/pbr.v6i1.3430
    [Google Scholar]
  115. BaldimI. SouzaC.R.F. OliveiraW.P. Encapsulation of essential oils in lipid-based nanosystems. Phytotechnology.CRC Press202119723010.1201/9781003225416‑10
    [Google Scholar]
  116. YariE. SariS. KelidariH. Asare-AddoK. NokhodchiA. Effect of rosa damascena essential oil loaded in nanostructured lipid carriers on the proliferation of human breast cancer cell line MDA-MB-231 in comparison with cisplatin.J. Pharm. Innov.2024191410.1007/s12247‑024‑09809‑x
    [Google Scholar]
  117. JayakumarK. Development of lipid based tetrahydrocurcumin nutricosmetics: Investigation of essential oil as preservation sysyem; PSG college Of pharmacy: Coimbatore2017
    [Google Scholar]
  118. Fernández-QuirozD. TohidiM.M. PaymardB. Lucero-AcuñaA. Immobilization of essential oils in biopolymeric matrices: recent approaches for controlled delivery systems.Stud. Nat. Prod. Chem.20237836540110.1016/B978‑0‑323‑91253‑2.00005‑4
    [Google Scholar]
  119. LukovaP. KatsarovP. Contemporary aspects of designing marine polysaccharide microparticles as drug carriers for biomedical application.Pharmaceutics2023158212610.3390/pharmaceutics15082126 37631340
    [Google Scholar]
  120. PremjitY. PandhiS. KumarA. RaiD.C. DuaryR.K. MahatoD.K. Current trends in flavor encapsulation: A comprehensive review of emerging encapsulation techniques, flavour release, and mathematical modelling.Food Res. Int.202215111087910.1016/j.foodres.2021.110879 34980409
    [Google Scholar]
  121. Korbecka-GlinkaG. PiekarskaK. Wiśniewska-WronaM. The use of carbohydrate biopolymers in plant protection against pathogenic fungi.Polymers (Basel)20221414285410.3390/polym14142854 35890629
    [Google Scholar]
  122. BruyninckxK. DusselierM. Sustainable chemistry considerations for the encapsulation of volatile compounds in laundry-type applications.ACS Sustain. Chem.& Eng.2019798041805410.1021/acssuschemeng.9b00677
    [Google Scholar]
  123. ChielliniF. PirasA.M. ErricoC. Micro/nanostructured polymeric systems for biomedical and pharmaceutical applications.Nanomedicine (Lond)2008333679310.2217/17435889.3.3.367
    [Google Scholar]
  124. ShahiniM.H. TaheriN. MohammadlooH.E. RamezanzadehB. A comprehensive overview of nano and micro carriers aiming at curtailing corrosion progression.J. Taiwan Inst. Chem. Eng.202112625226910.1016/j.jtice.2021.06.053
    [Google Scholar]
  125. CoiaiS. CampanellaB. PaulertR. CicognaF. BramantiE. LazzeriA. PistelliL. ColtelliM-B. Rosmarinic acid and Ulvan from terrestrial and marine sources in anti-microbial bionanosystems and biomaterials.Appl. Sci. (Basel)20211119924910.3390/app11199249
    [Google Scholar]
  126. AlvesT.F.R. MorsinkM. BatainF. ChaudM.V. AlmeidaT. FernandesD.A. da SilvaC.F. SoutoE.B. SeverinoP. Applications of natural, semi-synthetic, and synthetic polymers in cosmetic formulations.Cosmetics2020747510.3390/cosmetics7040075
    [Google Scholar]
  127. XiaoL. WangB. YangG. GauthierM. Poly(Lactic acid)-based biomaterials: Synthesis, modification and applications. In:Biomedical Science, Engineering and Technology201210.5772/23927
    [Google Scholar]
  128. DishishaT. Microbial production of bio-based chemicals: A biorefinery perspective.. Doctoral Thesis, Lund University2013
    [Google Scholar]
  129. PepelnjakT. StojšićJ. SevšekL. MovrinD. MilutinovićM. Influence of process parameters on the characteristics of additively manufactured parts made from advanced biopolymers.Polymers (Basel)202315371610.3390/polym15030716 36772018
    [Google Scholar]
  130. VolovaT.G. Natural-based polymers for biomedical applications.CRC Press201710.1201/9781315366036
    [Google Scholar]
  131. SazuanN.S.A. ZubairiS.I. MohdN.H. DaikR. Synthesising injectable molecular self-curing polymer from monomer derived from lignocellulosic oil palm empty fruit bunch biomass: A review on treating Osteoarthritis.Arab. J. Chem.202316210450010.1016/j.arabjc.2022.104500
    [Google Scholar]
  132. SharifN. Khoshnoudi-NiaS. JafariS.M. Nano/microencapsulation of anthocyanins; A systematic review and meta-analysis.Food Res. Int.202013210907710.1016/j.foodres.2020.109077 32331692
    [Google Scholar]
  133. ZamboulisA. NanakiS. MichailidouG. KoumentakouI. LazaridouM. AinaliN.M. XanthopoulouE. BikiarisD.N. Chitosan and its derivatives for ocular delivery formulations: Recent advances and developments.Polymers (Basel)2020127151910.3390/polym12071519 32650536
    [Google Scholar]
  134. NejatianM. DarabzadehN. BodbodakS. SaberianH. RafieeZ. KharazmiM.S. JafariS.M. Practical application of nanoencapsulated nutraceuticals in real food products; a systematic review.Adv. Colloid Interface Sci.202230510269010.1016/j.cis.2022.102690 35525089
    [Google Scholar]
  135. SunW. ZhaoX. WebbE. XuG. ZhangW. WangY. Advances in metal–organic framework-based hydrogel materials: preparation, properties and applications.J. Mater. Chem. A Mater. Energy Sustain.20231152092212710.1039/D2TA08841J
    [Google Scholar]
  136. AggarwalJ. The realm of biopolymers and their usage: an overview.J. Environ. Treat. Tech.20208210051016
    [Google Scholar]
  137. GunduS. VarshneyN. SahiA.K. MahtoS.K. Recent developments of biomaterial scaffolds and regenerative approaches for craniomaxillofacial bone tissue engineering.J. Polym. Res.20222937310.1007/s10965‑022‑02928‑4
    [Google Scholar]
  138. ZannouO. OussouK.F. ChabiI.B. AwadN.M.H. AïssiM.V. GoksenG. MortasM. OzF. ProestosC. KayodéA.P.P. Nanoencapsulation of cyanidin 3-O-glucoside: Purpose, technique, bioavailability, and stability.Nanomaterials (Basel)202313361710.3390/nano13030617 36770579
    [Google Scholar]
  139. GonçalvesS. RomanoA. Aromatic oils from forest and their application.In: Non-Timber Forest Products. HusenA. BachhetiR.K. BachhetiA. Springer202110.1007/978‑3‑030‑73077‑2_2
    [Google Scholar]
/content/journals/cbc/10.2174/0115734072332644240926100113
Loading
/content/journals/cbc/10.2174/0115734072332644240926100113
Loading

Data & Media loading...


  • Article Type:
    Review Article
Keyword(s): essential oil; fabrication; microcarriers; Polymeric nanocarriers; SEM; XRD
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test