Skip to content
2000
Volume 21, Issue 4
  • ISSN: 1573-4072
  • E-ISSN: 1875-6646

Abstract

Objective

An investigation on the antioxidant activity and ADME properties of some N-phenylalkanehydrazides (NPhs) in comparison with ascorbic acid was carried out.

Materials and Methods

The power of the compounds to scavenge the superoxide anion radical was examined using cyclic voltammetry. Furthermore, molecular docking was used to examine how NPhs bind to the antioxidant enzyme glutathione peroxidase (GPx). Finally, ADME properties were predicted using the SwissADME webserver.

Results

The results showed that the studied compounds had significantly higher EC values than Vitamin C and displayed spontaneous binding with GPx with binding energy similar to ascorbic acid. Also, substantial values emerged from the predictive analysis of drug-likeness and bioavailability characteristics.

Discussion

First, the EC of the compounds under study was determined by assessing the decrease in the anodic current peak intensity; this demonstrated significant radical scavenging activity. Next, the electrostatic way of binding with ROS radical and with antioxidant enzyme was disclosed by the binding free energies; however, the oxygen and nitrogen atoms in the compounds' structures might make many conventional hydrogen bonds with amino acids. Finally, NPh (a) followed all the rules for drug-likeness and bioavailability estimates, making it a promising moiety for synthesising new antioxidant chemicals.

Conclusion

The current study is a hybrid of experimental and computational methods that complement each other perfectly.

Loading

Article metrics loading...

/content/journals/cbc/10.2174/0115734072325272240712114444
2024-07-22
2025-09-12
Loading full text...

Full text loading...

References

  1. ZulaikhahS.T. The role of antioxidant to prevent free radicals in the body.Sains Medika : Jurnal Kedokteran dan Kesehatan201781394510.30659/sainsmed.v8i1.1012
    [Google Scholar]
  2. SiesH. JonesD.P. Reactive oxygen species (ROS) as pleiotropic physiological signalling agents.Nat. Rev. Mol. Cell Biol.202021736338310.1038/s41580‑020‑0230‑332231263
    [Google Scholar]
  3. WangL. TangJ. WangL. TanF. SongH. ZhouJ. LiF. Oxidative stress in oocyte aging and female reproduction.J. Cell. Physiol.2021236127966798310.1002/jcp.3046834121193
    [Google Scholar]
  4. GeB. LisdatF. Superoxide sensor based on cytochrome c immobilized on mixed-thiol SAM with a new calibration method.Anal. Chim. Acta20024541536410.1016/S0003‑2670(01)01545‑8
    [Google Scholar]
  5. BarrosoM.F. Delerue-MatosC. OliveiraM.B.P.P. Electrochemical DNA-sensor for evaluation of total antioxidant capacity of flavours and flavoured waters using superoxide radical damage.Biosens. Bioelectron.20112693748375410.1016/j.bios.2011.02.01521474298
    [Google Scholar]
  6. BhatiyaM. DuttaroyA.K. PathakS. BanerjeeA. Cellular Aging: An introduction, principle, hallmarks, and aging-associated diseases.Evidence-based Functional Foods for Prevention of Age-related Diseases. PathakS. BanerjeeA. DuttaroyA.K. SingaporeSpringer202310.1007/978‑981‑99‑0534‑8_1
    [Google Scholar]
  7. MouadaH. LanezT. ZafarI. ROS scavenging, DNA binding and NADPH oxidase inhibition potential of N′-Ferrocenylmethyl-N’- phenylpropionohydrazide using cyclic voltammetry and molecular docking.J. Organomet. Chem.2024100712302610.1016/j.jorganchem.2024.123026
    [Google Scholar]
  8. SarıkayaE. DoğanS. Glutathione Peroxidase in Health and Diseases.Glutathione System and Oxidative Stress in Health and DiseaseLondonInTechOpen2020
    [Google Scholar]
  9. JenaA.B. SamalR.R. BholN.K. DuttaroyA.K. Cellular Red-Ox system in health and disease: The latest update.Biomed. Pharmacother.202316211460610.1016/j.biopha.2023.11460636989716
    [Google Scholar]
  10. GęgotekA. SkrzydlewskaE. Antioxidative and anti-Inflammatory activity of ascorbic acid.Antioxidants20221110199310.3390/antiox1110199336290716
    [Google Scholar]
  11. Sánchez-MorenoC. Methods used to evaluate the free radical scavenging activity in foods and biological systems.Food Sci. Technol. Int.20028312113710.1177/1082013202008003770
    [Google Scholar]
  12. Van AckerS.A.B.E. Van Den BergD. TrompM.N.J.L. GriffioenD.H. Van BennekomW.P. Van Der VijghW.J.F. BastA. Structural aspects of antioxidant activity of flavonoids.Free Radic. Biol. Med.199620333134210.1016/0891‑5849(95)02047‑08720903
    [Google Scholar]
  13. FerreiraR.Q. GrecoS.J. DelarmelinaM. WeberK.C. Electrochemical quantification of the structure/antioxidant activity relationship of flavonoids.Electrochim. Acta201516316116610.1016/j.electacta.2015.02.164
    [Google Scholar]
  14. BočekI. StarčevićK. Novak JovanovićI. VianelloR. HranjecM. Novel imidazo[4,5-b]pyridine derived acrylonitriles: A combined experimental and computational study of their antioxidative potential.J. Mol. Liq.202134211752710.1016/j.molliq.2021.117527
    [Google Scholar]
  15. Novak JovanovićI. VianelloR. JadreškoD. RacanéL. HranjecM. Electrochemical oxidation and superoxide radical scavenging activity of 2-hydroxy/methoxy-phenylbenzothiazole derivatives.J. Electroanal. Chem.202394711778710.1016/j.jelechem.2023.117787
    [Google Scholar]
  16. VasudevanD. WendtH. Electroreduction of oxygen in aprotic media.J. Electroanal. Chem.19953921-2697410.1016/0022‑0728(95)04044‑O
    [Google Scholar]
  17. Le BourvellecC. HauchardD. DarchenA. BurgotJ.L. AbasqM.L. Validation of a new method using the reactivity of electrogenerated superoxide radical in the antioxidant capacity determination of flavonoids.Talanta20087541098110310.1016/j.talanta.2008.01.00718585189
    [Google Scholar]
  18. AhmedS. ShakeelF. Antioxidant activity coefficient, mechanism, and kinetics of different derivatives of flavones and flavanones towards superoxide radical.Czech J. Food Sci.201230215316310.17221/447/2010‑CJFS
    [Google Scholar]
  19. VermaS.K. VermaR. RakeshK.P. GowdaD.C. Design, synthesis and structure-activity studies of amino acids conjugated quinazolinone-Schiff’s bases as potential antioxidant and anti-inflammatory agents.European J Med Chem Reports2022610008710.1016/j.ejmcr.2022.100087
    [Google Scholar]
  20. UllasB.J. RakeshK.P. ShivakumarJ. GowdaD.C. ChandrashekaraP.G. Multi-targeted quinazolinone-Schiff’s bases as potent bio-therapeutics.Results in Chemistry2020210006710.1016/j.rechem.2020.100067
    [Google Scholar]
  21. RakeshK.P. RameshS. KumarH.M. ChandanS. GowdaD.C. Quinazolinones linked amino acids derivatives as a new class of promising antimicrobial, antioxidant and anti-inflammatory agents.Eur. J. Chem.20156325426010.5155/eurjchem.6.3.254‑260.1233
    [Google Scholar]
  22. LiC. SridharaM.B. RakeshK.P. VivekH.K. ManukumarH.M. ShantharamC.S. QinH.L. Multi-targeted dihydrazones as potent biotherapeutics.Bioorg. Chem.20188138939510.1016/j.bioorg.2018.08.02430199841
    [Google Scholar]
  23. RakeshK.P. ManukumarH.M. GowdaD.C. Schiff’s bases of quinazolinone derivatives: Synthesis and SAR studies of a novel series of potential anti-inflammatory and antioxidants.Bioorg. Med. Chem. Lett.20152551072107710.1016/j.bmcl.2015.01.01025638040
    [Google Scholar]
  24. CharltonN.C. MastyuginM. TörökB. TörökM. Structural features of small molecule antioxidants and strategic modifications to improve potential bioactivity.Molecules2023283105710.3390/molecules2803105736770724
    [Google Scholar]
  25. BoulebdH. ZineY. KhodjaI.A. MermerA. DemirA. DebacheA. Synthesis and radical scavenging activity of new phenolic hydrazone/hydrazide derivatives: Experimental and theoretical studies.J. Mol. Struct.2022124913154610.1016/j.molstruc.2021.131546
    [Google Scholar]
  26. SztankeM. SztankeK. Biologically important hydrazide-containing fused azaisocytosines as antioxidant agents.Redox Rep.201722657258110.1080/13510002.2017.136433028812524
    [Google Scholar]
  27. PopiołekŁ. The application of hydrazones and hydrazide-hydrazones in the synthesis of bioactive azetidin-2-one derivatives: A mini review.Biomed. Pharmacother.202316311485310.1016/j.biopha.2023.11485337178574
    [Google Scholar]
  28. KhelefA. Synthèse et étude du comportement anodique de quelques N-ferrocenyl-N-phenylalkanamides et N'-ferrocenyl-N'-phenylalkanehydrazides et étude structurale de leurs phases cristallines.Doctoral dissertation, Université Mohamed Khider Biskra.2014
    [Google Scholar]
  29. RanaS. DixitS. MittalA. In silico target identification and validation for antioxidant and anti-inflammatory activity of selective phytochemicals.Brazilian Arch. Biol. Technol.20196290048
    [Google Scholar]
  30. TaghizadehM.S. NiaziA. MoghadamA. AfsharifarA. Experimental, molecular docking and molecular dynamic studies of natural products targeting overexpressed receptors in breast cancer.PLoS One2022175e026796110.1371/journal.pone.026796135536789
    [Google Scholar]
  31. Pushpalatha Ramadevi Chandra KishoreS. BellucciS. Computational-Simulation-Based Behavioral Analysis of Chemical Compounds.J Comp Sci20237519610.3390/jcs7050196
    [Google Scholar]
  32. KurniaD. AjiatiD. HeliawatiL. SumiarsaD. Potential of flavonol and sulfur compounds from Allium leaves as an antioxidant and xanthine oxidase inhibition in silico study.Food Chem Adv2023310038310.1016/j.focha.2023.100383
    [Google Scholar]
  33. DainaA. MichielinO. ZoeteV. SwissADME: A free web tool to evaluate pharmacokinetics, drug-likeness and medicinal chemistry friendliness of small molecules.Sci. Rep.2017714271710.1038/srep4271728256516
    [Google Scholar]
  34. ZeghebN. BoubekriC. LanezT. LanezE. KüçükkılınçT.T. ÖzE. In vitro and in silico determination of some n-ferrocenylmethylaniline derivatives as anti-proliferative agents against MCF-7 human breast cancer cell lines.Anticancer Agents Med Chem20222271426143710.2174/1871520621666210624141712
    [Google Scholar]
  35. ViannaD.R. BubolsG. MeirellesG. SilvaB.V. Da RochaA. LanznasterM. MonserratJ.M. GarciaS.C. Von PoserG. Eifler-LimaV.L. Evaluation of the antioxidant capacity of synthesized coumarins.Int. J. Mol. Sci.20121367260727010.3390/ijms1306726022837692
    [Google Scholar]
  36. OzsozM. ErdemA. KaraP. KermanK. OzkanD. Electrochemical biosensor for the detection of interaction between arsenic trioxide and DNA based on guanine signal.Electroanalysis200315761361910.1002/elan.200390077
    [Google Scholar]
  37. ChuX. ShenG.L. JiangJ.H. KangT.F. XiongB. YuR.Q. Voltammetric studies of the interaction of daunomycin anticancer drug with DNA and analytical applications.Anal. Chim. Acta19983731293810.1016/S0003‑2670(98)00362‑6
    [Google Scholar]
  38. CarterM.T. RodriguezM. BardA.J. Voltammetric studies of the interaction of metal chelates with DNA. 2. Tris-chelated complexes of cobalt(III) and iron(II) with 1,10-phenanthroline and 2,2′-bipyridine.J. Am. Chem. Soc.1989111248901891110.1021/ja00206a020
    [Google Scholar]
  39. ZhaoG.C. ZhuJ.J. ZhangJ.J. ChenH.Y. Voltammetric studies of the interaction of methylene blue with DNA by means of β-cyclodextrin.Anal. Chim. Acta19993942-333734410.1016/S0003‑2670(99)00292‑5
    [Google Scholar]
  40. YueL. JiangN. WuA. QiuW. ShenX. QinD. LiH. LinJ. LiangS. WuJ. Plumbagin can potently enhance the activity of xanthine oxidase: In vitro, in vivo and in silico studies.BMC Pharmacol. Toxicol.20212214510.1186/s40360‑021‑00511‑z34274011
    [Google Scholar]
  41. MouadaH. LanezT. ZafarI. SherM.A. ZeghebN. N’-Ferrocenylmethyl-N’-phenylbenzohydrazide as a potential DNA binding compound: A combined experimental and computational studyJ Coord. Chem20237616-241984199810.1080/00958972.2023.2275247
    [Google Scholar]
  42. AlamS. KhanF. 3D-QSAR, docking, ADME/tox studies on flavone analogs reveal anticancer activity through tankyrase inhibition.Sci. Rep.201991541410.1038/s41598‑019‑41984‑730932078
    [Google Scholar]
/content/journals/cbc/10.2174/0115734072325272240712114444
Loading
/content/journals/cbc/10.2174/0115734072325272240712114444
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test