Skip to content
2000
Volume 21, Issue 4
  • ISSN: 1573-4072
  • E-ISSN: 1875-6646

Abstract

Background

In this study, a new series of 2-amino-6-(substituted)pyrimidin-4-yl-2H-chromen-2-one analogues (S1-S15) was prepared by using the Knovengeal condensation method and evaluated for antimicrobial as well as antioxidant activity.

Methods

To ensure the progress and confirmation of the reactions, TLC was employed. The melting points (MP) were ascertained utilising a Sunbim-made sonar melting point device produced in India. To confirm the chemical structures of these compounds, we employed a range of techniques, including FT-IR, MS, 1H-NMR, and Elemental analysis. The antimicrobial and antifungal activity was evaluated using the tube dilution method, and a DPPH assay was used to assess antioxidant activity.

Results and Discussion

Within the series, S1 demonstrated strong antibacterial efficacy against , with a minimum inhibitory concentration value of 16.26 µg/ml, while compound S7 displayed significant potential against and , with a MIC value of 17.34 µg/ml. For antifungal activity, compounds S7 and S11 are the most potent against , showing a minimum inhibitory concentration of 17.34 µg/ml. In the evaluation of antioxidant activity, it was observed that compounds S2 and S4 displayed outstanding antioxidant properties, with IC values of 13.33 µg/ml and 43.13 µg/ml.

Conclusion

The newly created derivatives exhibited robust antimicrobial and antioxidant characteristics upon assessment through designated methodologies, surpassing the efficacy of conventional drugs in the comparative analysis. Notably, compounds S1, S2, S7, S4, and S11 exhibited even greater activity than the reference drugs. Their structure-activity relationship was also discussed.

Loading

Article metrics loading...

/content/journals/cbc/10.2174/0115734072301970240528053901
2024-06-06
2025-09-12
Loading full text...

Full text loading...

References

  1. MishraR. TomarI. Pyrimidine: The molecule of diverse biological and medicinal importance.Int. J. Pharm. Sci. Res.201124758
    [Google Scholar]
  2. DongreR.S. BhatA.R. MeshramJ.S. Anticancer activity of assorted annulated pyrimidine: A comprehensive review.Am. J. Pharm. Tech. Res.201441138155
    [Google Scholar]
  3. BahashwanS.A. Pharmacological activities of some triazinopyrazolothieno pyrimidine derivatives.Acta Pharm.201767340741410.1515/acph‑2017‑002228858840
    [Google Scholar]
  4. PatelA.A. MehtaA.G. Synthesis of novel heterocyclic compounds and their biological evaluation.Pharma Chem.201021215223
    [Google Scholar]
  5. KhanageS.G. RajuS.A. MohiteP.B. PandhareR.B. Synthesis and pharmacological evaluation of some new pyrimidine derivatives containing 1,2,4-triazole.Adv. Pharm. Bull.20122221322210.5681/apb.2012.03324312796
    [Google Scholar]
  6. SahuM. SiddiquiN. A review on biological importance of pyrimidines in the new era.Int. J. Pharma Sci.201685821
    [Google Scholar]
  7. GoldH.S. MoelleringR.C.Jr Antimicrobial-Drug Resistance.N. Engl. J. Med.1996335191445145310.1056/NEJM1996110733519078875923
    [Google Scholar]
  8. NarwalS. KumarS. VermaP.K. Design, synthesis and antimicrobial evaluation of pyrimidin-2-ol/thiol/amine analogues.Chem. Cent. J.20171115210.1186/s13065‑017‑0284‑229086852
    [Google Scholar]
  9. SarkarA. KumarK.A. DuttaN.K. ChakrabortyP. DastidarS.G. Evaluation of in vitro and in vivo antibacterial activity of dobutamine hydrochloride.Indian J. Med. Microbiol.200321317217810.1016/S0255‑0857(21)03067‑X17643013
    [Google Scholar]
  10. RahamanS.A. Rajendra PasadY. KumarP. KumarB. Synthesis and anti-histaminic activity of some novel pyrimidines.Saudi Pharm. J.200917325525810.1016/j.jsps.2009.08.00123964169
    [Google Scholar]
  11. AndrewsB. KomathiK. MohanS. Synthesis and comparing the antibacterial activities of pyrimidine derivatives.J. Chem. Sci.2017129333534110.1007/s12039‑017‑1228‑z
    [Google Scholar]
  12. AlwanS.M. Al-KaabiJ.A. HashimR.M. Synthesis and preliminary antimicrobial activity of new Schiff bases of pyrido [1, 2-a] pyrimidine derivatives with certain amino acids.Med. Chem.201449635639
    [Google Scholar]
  13. PawarMP. VyasK. ShahNM. NimavatK. Synthesis and antimicrobial activity of some new 2-amino pyrimidine derivatives from 1-(3, 5-dibromo-2-hydroxy-4-methyl phenyl) ethanone.Int. J. Pharma. Res. Scholar20121(2)398403
    [Google Scholar]
  14. BalujaS. ChandaS. NandhaK. Antimicrobial activity of some pyrimidine derivatives in DMF and DMSO. Int Lett Chem.Phys Astron.201556131141
    [Google Scholar]
  15. SinghN. NargundS.L. RashmiP. NargundL.V. Synthesis and antibacterial and anti-inflammatory activity of 4-substituted-thieno [2, 3-d] pyrimidines.Chem. Sin.20123198203
    [Google Scholar]
  16. BuddhM.B. BapodraA.H. LadvaK.D. synthesis and biological evaluation of thiazolo [3, 2-a] pyrimidine derivatives as a new type of potential antimicrobial agents.Ras J Chem.201144824828
    [Google Scholar]
  17. SenbagamR. RajarajanM. VijayakumarR. ManikandanV. BalajiS. VanangamudiG. ThirunarayanaG. Synthesis, spectral correlations and antimicrobial activities of 2-pyrimidine Schiff’s bases. Int Lett Chem.Phys Astron.201553154164
    [Google Scholar]
  18. KhalifaN.M. Abdel-RahmanA.A.H. Abd-ElmoezS.I. FathallaO.A. Abd El-GwaadA.A. A convenient synthesis of some new fused pyridine and pyrimidine derivatives of antimicrobial profiles.Res. Chem. Intermed.20154142295230510.1007/s11164‑013‑1347‑1
    [Google Scholar]
  19. JatB. SantraS. SantraP.K. Synthesis and evaluation of antimicrobial activity of pyrimidine derivatives.Synthesis2019125
    [Google Scholar]
  20. MallikarjunaswamyC. MalleshaL. BhadregowdaD.G. PintoO. Studies on synthesis of pyrimidine derivatives and their antimicrobial activity.Arab. J. Chem.201710S484S49010.1016/j.arabjc.2012.10.008
    [Google Scholar]
  21. RivalY. GrassyG. MichelG. Synthesis and antibacterial activity of some imidazo[1,2-a]pyrimidine derivatives.Chem. Pharm. Bull.19924051170117610.1248/cpb.40.11701394630
    [Google Scholar]
  22. MohamedMS. AwadSM. AhmedNM. Synthesis and antimicrobial activities of new indolyl-pyrimidine derivatives.J. Appl. Pharm. Sci.2011307680
    [Google Scholar]
  23. BarotV.M. DesaiS.D. Synthesis of 2-aminopyrimidine derivatives as antimicrobial agents.Int. J. Chem. Sci.201311865872
    [Google Scholar]
  24. CieplikJ. StolarczykM. PlutaJ. GubrynowiczO. BryndalI. LisT. MikulewiczM. Synthesis and antibacterial properties of pyrimidine derivatives.Acta Pol. Pharm.2011681576521485702
    [Google Scholar]
  25. GuptaY.K. GuptaV. SinghS. Synthesis, characterization and antimicrobial activity of pyrimidine based derivatives.J. Pharm. Res.20137649149510.1016/j.jopr.2013.05.020
    [Google Scholar]
  26. GholapA.R. TotiK.S. ShiraziF. DeshpandeM.V. SrinivasanK.V. Efficient synthesis of antifungal pyrimidines via palladium catalyzed Suzuki/Sonogashira cross-coupling reaction from Biginelli 3,4-dihydropyrimidin-2(1H)-ones.Tetrahedron20086444102141022310.1016/j.tet.2008.08.033
    [Google Scholar]
  27. NakagawaY. BobrovS. SemerC.R. KucharekT.A. HarmotoM. Fungicidal pyrimidine derivatives.Patent WO2005019207A1, 2004
  28. BalzariniJ. McGuiganC. Bicyclic pyrimidine nucleoside analogues (BCNAs) as highly selective and potent inhibitors of varicella-zoster virus replication.J. Antimicrob. Chemother.20025015910.1093/jac/dkf03712096000
    [Google Scholar]
  29. GadhachandaV.R. WuB. WangZ. KuhenK.L. CaldwellJ. ZondlerH. WalterH. HavenhandM. HeY. 4-Aminopyrimidines as novel HIV-1 inhibitors.Bioorg. Med. Chem. Lett.200717126026510.1016/j.bmcl.2006.09.04717035019
    [Google Scholar]
  30. ChitreT.S. KathiravanM.K. ChotheA.S. RakholiyaV.K. AsgaonkarK.D. ShitalM. PatilS.M. BotharaK.G. Synthesis and Antitubercular activity of some substituted pyrimidine derivatives.J. Pharm. Res.2011418821883
    [Google Scholar]
  31. OuyangY. YangH. ZhangP. WangY. KaurS. ZhuX. WangZ. SunY. HongW. NgeowY. WangH. Synthesis of 2, 4-diaminopyrimidine core-based derivatives and biological evaluation of their anti-tubercular activities.Molecules20172210159210.3390/molecules2210159228937657
    [Google Scholar]
  32. ZayatW.A. El-SayedW.A. Abdel-RahmanA.A.H. Anti-hepatitis B virus activity of new pyrimidine and adenine peptide nucleic acid analogues.Z. Naturforsch. C J. Biosci.2009641-261010.1515/znc‑2009‑1‑20219323259
    [Google Scholar]
  33. Abdel-RahmanA.A.H. ZeidI.F. BarakatH.A. El-SayedW.A. Anti-hepatitis B virus activity of new substituted pyrimidine acyclic nucleoside analogues.Z. Naturforsch. C J. Biosci.20096411-1276777210.1515/znc‑2009‑11‑120220158143
    [Google Scholar]
  34. OsmanNA. EL-MahmoudyAM. Hassan AN. Synthesis of new pyrimidine derivatives and evaluation of their anticancer and antimicrobial activities.Synthesis201692
    [Google Scholar]
  35. SridharS. PrasadY.R. DindaS.C. Synthesis and anticancer activity of some novel pyrimidine derivatives.Int. J. Pharm. Sci. Res.20112102562
    [Google Scholar]
  36. AshaD. KavithaC.V. ChandrappaS. PrasannaD.S. VinayaK. RaghavanS.C. RangappaK.S. Novel Ethyl 2-(1-aminocyclobutyl)-5-(benzoyloxy)-6-hydroxy-pyrimidine-4-carboxylate Derivatives: Synthesis and anticancer activities.J. Cancer Ther.201011212810.4236/jct.2010.11003
    [Google Scholar]
  37. ShyykaO. PokhodyloN. FiniukN. MatiychukV. StoikaR. ObushakM. Anticancer Activity Evaluation of New Thieno[2,3-d]pyrimidin-4(3H)-ones and Thieno[3,2-d]pyrimidin-4(3H)-one Derivatives.Sci. Pharm.20188632810.3390/scipharm8603002830012942
    [Google Scholar]
  38. AhmedS.A. NajiT.S. MohammadF.I. Synthesis, characterization and cytotoxic activity of some pyrimidine derivatives.J. Al-Nahrain Uni. Sci.2013162849210.22401/JNUS.16.2.12
    [Google Scholar]
  39. AwadS.M. FathallaO.A. WietrzykJ. MilczarekM. SolimanA.M. MohamedM.S. Synthesis of new pyrimidine derivatives and their antiproliferative activity against selected human cancer cell lines.Res. Chem. Intermed.20154131789180110.1007/s11164‑013‑1312‑z
    [Google Scholar]
  40. CapdevilleR. BuchdungerE. ZimmermannJ. MatterA. Glivec (STI571, imatinib), a rationally developed, targeted anticancer drug.Nat. Rev. Drug Discov.20021749350210.1038/nrd83912120256
    [Google Scholar]
  41. GhorabMM. AlsaidMS. Anticancer activity of some novel thieno [2, 3-d] pyrimidine derivatives.Biomed. Res.2016271110115
    [Google Scholar]
  42. VermaM. VermaP.K. Anticancer and antimicrobial prospective of Pyrimidine derivatives: A review.Pharm Innov J.20198566571
    [Google Scholar]
  43. PandeyS. SuryawanshiS.N. GuptaS. SrivastavaV.M. Synthesis and antileishmanial profile of some novel terpenyl pyrimidines.Eur. J. Med. Chem.2004391196997310.1016/j.ejmech.2004.03.00715501546
    [Google Scholar]
  44. RamV.J. HaqueN. GuruP.Y. Chemotherapeutic agents XXV: synthesis and leishmanicidal activity of carbazolylpyrimidines.Eur. J. Med. Chem.199227885185510.1016/0223‑5234(92)90121‑G
    [Google Scholar]
  45. KarouiA. AlloucheF. DeghrigueM. AgrebiA. BouraouiA. ChabchoubF. Synthesis and pharmacological evaluation of pyrazolopyrimidopyrimidine derivatives: anti-inflammatory agents with gastroprotective effect in rats.Med. Chem. Res.20142331591159810.1007/s00044‑013‑0742‑x24489456
    [Google Scholar]
  46. ShiJ.B. ChenL.Z. WangB.S. HuangX. JiaoM.M. LiuM.M. TangW.J. LiuX.H. Novel pyrazolo [4, 3-d] pyrimidine as potent and orally active inducible nitric oxide synthase (iNOS) dimerization inhibitor with efficacy in rheumatoid arthritis mouse model.J. Med. Chem.20196284013403110.1021/acs.jmedchem.9b0003930925056
    [Google Scholar]
  47. AtatrehN. YoussefA.M. GhattasM.A. Al SorkhyM. AlrawashdehS. Al-HarbiK.B. El-AshmawyI.M. AlmundarijT.I. AbdelghaniA.A. Abd-El-AzizA.S. Anti-inflammatory drug approach: Synthesis and biological evaluation of novel pyrazolo[3,4-d]pyrimidine compounds.Bioorg. Chem.20198639340010.1016/j.bioorg.2019.02.01430763886
    [Google Scholar]
  48. VenuT.D. KhanumS.A. FirdouseA. ManuprasadB.K. ShashikanthS. MohamedR. VishwanthB.S. Synthesis and anti-inflammatory activity of 2-(2-aroylaroxy)-4,6-dimethoxy pyrimidines.Bioorg. Med. Chem. Lett.200818154409441210.1016/j.bmcl.2008.06.06118621525
    [Google Scholar]
  49. FandakliS. Kahri̇manN. Beyza YücelT. Alpay KaraoğluŞ. YayliN. Biological evaluation and synthesis of new pyrimidine-2(1H)-ol/-thiol derivatives derived from chalcones using the solid phase microwave method.Turk. J. Chem.201842252053510.3906/kim‑1711‑9
    [Google Scholar]
  50. LeeH. KimB. AhnJ. KangS. LeeJ. ShinJ. AhnS. LeeS. YoonS. Molecular design, synthesis, and hypoglycemic and hypolipidemic activities of novel pyrimidine derivatives having thiazolidinedione.Eur. J. Med. Chem.200540986287410.1016/j.ejmech.2005.03.01915908051
    [Google Scholar]
  51. AhmedO.M. HusseinA.M. AhmedR.R. Antidiabetic and antioxidant effects of newly synthesized pyrimido [1, 6-a] pyrimidine derivatives in neonatal streptozotocin-induced diabetic Rats.Med. Chem.201221
    [Google Scholar]
  52. KaurN. GautamS. SohalH.S. Anti-diabetic activity of pyrimidine derivatives.Intl J Res.201247199204
    [Google Scholar]
  53. AgrebiA. AlloucheF. FetouiH. ChabchoubF. Synthesis and biological evaluation of new pyrazolo[3,4-d]pyrimidine derivatives.Mediterr. J. Chem.20143286487610.13171/mjc.3.2.2014.13.05.23
    [Google Scholar]
  54. SharmaA. VermaR. SinghH. VermaA.K. VarshneyS. A review on the synthesis and biological evaluation of pyrido-pyrimidine derivatives.World J. Pharm. Pharm. Sci.2018107955965
    [Google Scholar]
  55. AgarwalA. SrivastavaK. PuriS.K. ChauhanP.M.S. Synthesis of 2,4,6-trisubstituted pyrimidines as antimalarial agents.Bioorg. Med. Chem.200513154645465010.1016/j.bmc.2005.04.06115896965
    [Google Scholar]
  56. DudheR. SharmaP.K. VermaP.K. Synthesis and biological activities of some new pyrimidine derivatives from chalcones.Int J Res Dev Pharm Life Sci.201541
    [Google Scholar]
  57. AlamO. KhanS.A. SiddiquiN. AhsanW. VermaS.P. GilaniS.J. Antihypertensive activity of newer 1,4-dihydro-5-pyrimidine carboxamides: Synthesis and pharmacological evaluation.Eur. J. Med. Chem.201045115113511910.1016/j.ejmech.2010.08.02220813434
    [Google Scholar]
  58. OzekiK. IchikawaT. TakeharaH. TanimuraK. SatoM. YaginumaH. Studies on antiallergy agents. III. Synthesis of 2-anilino-1,6-dihydro-6-oxo-5-pyrimidinecarboxylic acids and related compounds.Chem. Pharm. Bull.19893771780178710.1248/cpb.37.17802572333
    [Google Scholar]
  59. HassanA.S. MadyM.F. AwadH.M. HafezT.S. Synthesis and antitumor activity of some new pyrazolo[1,5- a ]pyrimidines.Chin. Chem. Lett.201728238839310.1016/j.cclet.2016.10.022
    [Google Scholar]
  60. GuptaA.K. KayathH.P. AjitS. GeetaS. MishraK.C. Anticonvulsant activity of pyrimidine thiols.Indian J. Pharmacol.199426322710.4103/ijp.IJP_486_20
    [Google Scholar]
  61. LindnerW. BrandesW. Pesticidal thiazolopyrimidine derivatives.Patent US4996208A, 1991.
  62. LiuX.H. WangQ. SunZ.H. WedgeD.E. BecnelJ.J. EstepA.S. TanC.X. WengJ.Q. Synthesis and insecticidal activity of novel pyrimidine derivatives containing urea pharmacophore against Aedes aegypti.Pest Manag. Sci.201773595395910.1002/ps.437027448764
    [Google Scholar]
  63. NezuY. MiyazakiM. SugiyamaK. KajiwaraI. Dimethoxypyrimidines as novel herbicides. Part 1. Synthesis and herbicidal activity of dimethoxyphenoxypyrimidines and analogues.Pestic. Sci.199647210311310.1002/(SICI)1096‑9063(199606)47:2<103::AID‑PS396>3.0.CO;2‑Z
    [Google Scholar]
  64. PatilR. KumbharD. MohireP. JadhavS. PatravaleA. DeshmukhM. DBN catalyzed one-pot efficient synthesis and antioxidant activity of pyrano [2, 3-d] pyrimidine derivatives.Chem Sci Rev Lett.2015416979984
    [Google Scholar]
  65. SharmaV. ChitranshiN. AgarwalA.K. Significance and biological importance of pyrimidine in the microbial world.Int. J. Med. Chem.2014201413110.1155/2014/20278425383216
    [Google Scholar]
  66. AbidaM.I. AlsalmanA.J. Synthesis and evaluation of antimicrobial activity of some 2-morpholinomethylamino-4-(7-unsubstituted/substitutedcoumarin-3-yl)-6-chlorosubstitutedphenyl pyrimidines.Trop. J. Pharm. Res.201615239340410.4314/tjpr.v15i2.24
    [Google Scholar]
  67. StevensD.L. DotterB. Madaras-KellyK. A review of linezolid: The first oxazolidinone antibiotic.Expert Rev. Anti Infect. Ther.200421515910.1586/14787210.2.1.5115482171
    [Google Scholar]
  68. KumarS. LimS.M. RamasamyK. VasudevanM. ShahS.A.A. NarasimhanB. Bis-pyrimidine acetamides: Design, synthesis and biological evaluation.Chem. Cent. J.20171118010.1186/s13065‑017‑0312‑229086907
    [Google Scholar]
  69. CappuccinoJ.G. ShermanN. In microbiology-a laboratory manual.4th edCaliforniaAddison Wesley, Longman, Inc1999263
    [Google Scholar]
  70. India Pharmacopoeia.Ministry of Health Department, Govt. of India2007Vol. 1
    [Google Scholar]
  71. ShahR. VermaP.K. Synthesis of thiophene derivatives and their anti-microbial, antioxidant, anticorrosion and anticancer activity.BMC Chem.20191315410.1186/s13065‑019‑0569‑831384802
    [Google Scholar]
  72. MukherjeePK. Quality Control and Evaluation of Herbal Drugs.2012Elsevier
    [Google Scholar]
/content/journals/cbc/10.2174/0115734072301970240528053901
Loading
/content/journals/cbc/10.2174/0115734072301970240528053901
Loading

Data & Media loading...

Supplements

Supplementary material is available on the publisher’s website along with the published article.

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test