Skip to content
2000
Volume 21, Issue 7
  • ISSN: 1573-4072
  • E-ISSN: 1875-6646

Abstract

To provide a comprehensive, detailed review of the pharmacological benefits of cinnamaldehyde (CA) and its derivatives. Cinnamon is one such medicinally important spice that finds space in all Indian kitchens due to its myriad health benefits. This review aims to compile the scientific literature and provide a comprehensive analysis of pharmacological properties and cellular signalling pathways inhibited by CA. For collecting the literature, databases like PubMed, Scopus, Science Direct, Web of Science, and Google Scholar were searched using the keywords “cinnamaldehyde”, “cinnamic acid”, “molecular targets”, and “pharmacological activities”. Further screening was performed manually by thoroughly reading the abstract or full copy. CA has proven its pharmacological activity against different illnesses/diseases such as cancer, inflammation, bacteria, and fungi, where scientific validations and molecular insights have been made for its targeted signalling pathways. Researchers have synthesized several novel derivatives of CA that highlight, either alone or in synergism, the enhanced effectiveness. However, there is a need to develop a cost-effective and economical approach to produce CA derivatives on a large scale. Research aimed at turning CA into a therapeutic will be beneficial and open the door for other phytoactive compounds as well. CA has a wealth of medicinal potential.

Loading

Article metrics loading...

/content/journals/cbc/10.2174/0115734072322707240902074426
2024-09-26
2025-08-14
Loading full text...

Full text loading...

References

  1. NazzaroF. FratianniF. De MartinoL. CoppolaR. De FeoV. Effect of essential oils on pathogenic bacteria.Pharmaceuticals20136121451147410.3390/ph612145124287491
    [Google Scholar]
  2. SilvaL.N. ZimmerK.R. MacedoA.J. TrentinD.S. Plant natural products targeting bacterial virulence factors.Chem. Rev.2016116169162923610.1021/acs.chemrev.6b0018427437994
    [Google Scholar]
  3. CaloJ.R. CrandallP.G. O’BryanC.A. RickeS.C. Essential oils as antimicrobials in food systems – A review.Food Control20155411111910.1016/j.foodcont.2014.12.040
    [Google Scholar]
  4. YossaN. PatelJ. MillnerP. LoY.M. Essential oils reduce Escherichia coli O157:H7 and Salmonella on spinach leaves.J. Food Prot.201275348849610.4315/0362‑028X.JFP‑11‑34422410222
    [Google Scholar]
  5. FriedmanM. Chemistry, antimicrobial mechanisms, and antibiotic activities of cinnamaldehyde against pathogenic bacteria in animal feeds and human foods.J. Agric. Food Chem.20176548104061042310.1021/acs.jafc.7b0434429155570
    [Google Scholar]
  6. GillA.O. HolleyR.A. Disruption of Escherichia coli, Listeria monocytogenes and Lactobacillus sakei cellular membranes by plant oil aromatics.Int. J. Food Microbiol.200610811910.1016/j.ijfoodmicro.2005.10.00916417936
    [Google Scholar]
  7. BaskaranS.A. AmalaradjouM.A.R. HoaglandT. VenkitanarayananK. Inactivation of Escherichia coli O157:H7 in apple juice and apple cider by trans-cinnamaldehyde.Int. J. Food Microbiol.20101411-212612910.1016/j.ijfoodmicro.2010.04.00220442003
    [Google Scholar]
  8. ZhuG. XiaoZ. Flavors and fragrances: Structure of various flavors with food ingredients.Flavors and Fragrances in Food Processing: Preparation and Characterization Methods.ACS Publications20222118810.1021/bk‑2022‑1433.ch002
    [Google Scholar]
  9. Isaac-RentonM. LiM.K. ParsonsL.M. Cinnamon spice and everything not nice: Many features of intraoral allergy to cinnamic aldehyde.Dermatitis201526311612110.1097/DER.000000000000011225984687
    [Google Scholar]
  10. Meena VangalapatiM.V. SatyaN.S. PrakashD.V.S. Sumanjali AvanigaddaS.A. A review on pharmacological activities and clinical effects of cinnamon species.Res. J. Pharm. Biol. Chem. Sci.2012
    [Google Scholar]
  11. SaeedM. KambohA.A. SyedS.F. BabazadehD. SuheryaniI. ShahQ.A. UmarM. KakarI. NaveedM. Abd El-HackM.E. AlagawanyM. ChaoS. Phytochemistry and beneficial impacts of cinnamon ( Cinnamomum zeylanicum ) as a dietary supplement in poultry diets.Worlds Poult. Sci. J.201874233134610.1017/S0043933918000235
    [Google Scholar]
  12. PathiranaH.N.K.S. WimalasenaS.H.M.P. De SilvaB.C.J. HossainS. HeoG.J. Antibacterial activity of cinnamon (Cinnamomum zeylanicum) essential oil and cinnamaldehyde against fish pathogenic bacteria isolated from cultured olive flounder Paralichthys olivaceus.Indian J. Fish.2019662869210.21077/ijf.2019.66.2.85023‑12
    [Google Scholar]
  13. HajinejadM. GhaddaripouriM. DabzadehM. ForouzanfarF. Sahab-NegahS. Natural cinnamaldehyde and its derivatives ameliorate neuroinflammatory pathways in neurodegenerative diseases.BioMed Res. Int.202020201910.1155/2020/103432533274192
    [Google Scholar]
  14. StevensN. Cinnamon bark essential oil and a novel essential oil blend as potential modulators of glucose metabolism.Doctor of Philosophy (PhD), University of Miami2020
    [Google Scholar]
  15. MishraN. SrivastavaR. Therapeutic and pharmaceutical potential of cinnamon.Research Anthology on Recent Advancements in Ethnopharmacology and Nutraceuticals.IGI Global202269871010.4018/978‑1‑6684‑3546‑5.ch036
    [Google Scholar]
  16. RavindranP.N. Nirmal-BabuK. ShylajaM. Cinnamon and Cassia: The Genus Cinnamomum.CRC press200310.1201/9780203590874
    [Google Scholar]
  17. ThomasJ. KuruvillaK.M. Cinnamon.Handbook of herbs and spices.Elsevier201218219610.1533/9780857095671.182
    [Google Scholar]
  18. AvereschN.J.H. KrömerJ.O. Metabolic engineering of the shikimate pathway for production of aromatics and derived compounds—present and future strain construction strategies.Front. Bioeng. Biotechnol.201863210.3389/fbioe.2018.0003229632862
    [Google Scholar]
  19. StevensN. AllredK. Antidiabetic potential of volatile cinnamon oil: A review and exploration of mechanisms using in silico molecular docking simulations.Molecules202227385310.3390/molecules2703085335164117
    [Google Scholar]
  20. ShreazS. WaniW.A. BehbehaniJ.M. RajaV. IrshadM. KarchedM. AliI. SiddiqiW.A. HunL.T. Cinnamaldehyde and its derivatives, a novel class of antifungal agents.Fitoterapia201611211613110.1016/j.fitote.2016.05.01627259370
    [Google Scholar]
  21. YoonY.J. KimY.H. LeeY.J. ChoiJ. KimC.H. HanD.C. KwonB.M. 2′‐Hydroxycinnamaldehyde inhibits proliferation and induces apoptosis via signal transducer and activator of transcription 3 inactivation and reactive oxygen species generation.Cancer Sci.2019110136637810.1111/cas.1385230375708
    [Google Scholar]
  22. GolshahiH. AraghiA. BaghbanF. Farzad-MohajeriS. Protective effects of 2-methoxycinnamaldehyde an active ingredients of Cinnamomum cassia on warm hepatic ischemia reperfusion injury in rat model.Iran. J. Basic Med. Sci.201922121400140732133057
    [Google Scholar]
  23. BandeleO.J. ClawsonS.J. OsheroffN. Dietary polyphenols as topoisomerase II poisons: B ring and C ring substituents determine the mechanism of enzyme-mediated DNA cleavage enhancement.Chem. Res. Toxicol.20082161253126010.1021/tx800078518461976
    [Google Scholar]
  24. BodakheS.H. SinghA. KhanS.A. ChoudharyR. Cinnamaldehyde attenuates cataractogenesis via restoration of hypertension and oxidative stress in fructose-fed hypertensive rats.J. Pharmacopuncture201619213714410.3831/KPI.2016.19.01527386147
    [Google Scholar]
  25. EspirituM.J. ChenJ. YadavJ. LarkinM. PelletierR.D. ChanJ.M. GcJ.B. NatesanS. HarrelsonJ.P. Mechanisms of herb-drug interactions involving cinnamon and CYP2A6: Focus on time-dependent inhibition by cinnamaldehyde and 2-methoxycinnamaldehyde.Drug Metab. Dispos.202048101028104310.1124/dmd.120.00008732788161
    [Google Scholar]
  26. JiangH. SunS.L. ZhangC. YuanE. WeiQ.Y. ZengZ. Antioxidative activities of natural hydroxy-bearing cinnamaldehydes and cinnamic acids: A comparative study.Trop. J. Pharm. Res.20141261017102210.4314/tjpr.v12i6.22
    [Google Scholar]
  27. ZhuY. MohammadiA. RalphJ. Facile synthesis of 4-hydroxycinnamaldehydes.BioEnergy Res.20125240741110.1007/s12155‑011‑9151‑5
    [Google Scholar]
  28. KimS-A. SungY-K. KwonB-M. YoonJ-H. LeeH. AhnS-G. HongS-H. 2′-Hydroxycinnamaldehyde shows antitumor activity against oral cancer in vitro and in vivo in a rat tumor model.Anticancer Res.201030248949420332459
    [Google Scholar]
  29. BanjerdpongchaiR. PunyatiP. NakrobA. PompimonW. KongtawelertP. 4′-Hydroxycinnamaldehyde from Alpinia galanga (Linn.) induces human leukemic cell apoptosis via mitochondrial and endoplasmic reticulum stress pathways.Asian Pac. J. Cancer Prev.201112359359821627350
    [Google Scholar]
  30. KangH.S. OckJ. LeeH.J. LeeY.J. KwonB.M. HongS.H. Early growth response protein 1 upregulation and nuclear translocation by 2′-benzoyloxycinnamaldehyde induces prostate cancer cell death.Cancer Lett.2013329221722710.1016/j.canlet.2012.11.00623178451
    [Google Scholar]
  31. ZhangY. CaoW. XieY.H. YangQ. LiX.Q. LiuX.X. WangS.W. The comparison of α-bromo-4-chlorocinnamaldehyde and cinnamaldehyde on coxsackie virus B3-induced myocarditis and their mechanisms.Int. Immunopharmacol.201214110711310.1016/j.intimp.2012.06.00722709476
    [Google Scholar]
  32. LiX.Q. LiuX.X. WangX.Y. XieY.H. YangQ. LiuX.X. DingY.Y. CaoW. WangS.W. Cinnamaldehyde derivatives inhibit coxsackievirus B3-induced viral myocarditis.Biomol. Ther.201725327928710.4062/biomolther.2016.07027737525
    [Google Scholar]
  33. SongF. LiH. SunJ. WangS. Protective effects of cinnamic acid and cinnamic aldehyde on isoproterenol-induced acute myocardial ischemia in rats.J. Ethnopharmacol.2013150112513010.1016/j.jep.2013.08.01924001892
    [Google Scholar]
  34. WeiQ.Y. XiongJ.J. JiangH. ZhangC. Wen Ye The antimicrobial activities of the cinnamaldehyde adducts with amino acids.Int. J. Food Microbiol.20111502-316417010.1016/j.ijfoodmicro.2011.07.03421856030
    [Google Scholar]
  35. ShreazS. BhatiaR. KhanN. MuralidharS. ManzoorN. KhanL.A. Influences of cinnamic aldehydes on H+ extrusion activity and ultrastructure of Candida.J. Med. Microbiol.201362223224010.1099/jmm.0.036145‑022034160
    [Google Scholar]
  36. JinY.H. KimS.A. 2-Methoxycinnamaldehyde inhibits the TNF-α-induced proliferation and migration of human aortic smooth muscle cells.Int. J. Mol. Med.201739119119810.3892/ijmm.2016.281827922672
    [Google Scholar]
  37. Van LiefferingeE. ForteC. DegrooteJ. OvynA. Van NotenN. MangelinckxS. MichielsJ. In vitro and in vivo antimicrobial activity of cinnamaldehyde and derivatives towards the intestinal bacteria of the weaned piglet.Ital. J. Anim. Sci.202221149350610.1080/1828051X.2022.2041113
    [Google Scholar]
  38. Roth-WalterF. MoskovskichA. Gomez-CasadoC. Diaz-PeralesA. OidaK. SingerJ. KinaciyanT. FuchsH.C. Jensen-JarolimE. Immune suppressive effect of cinnamaldehyde due to inhibition of proliferation and induction of apoptosis in immune cells: Implications in cancer.PLoS One2014910e10840210.1371/journal.pone.010840225271635
    [Google Scholar]
  39. GanZ. HuangJ. ChenJ. NisarM.F. QiW. Synthesis and antifungal activities of cinnamaldehyde derivatives against Penicillium digitatum causing citrus green mold.J. Food Qual.202020201710.1155/2020/8898692
    [Google Scholar]
  40. SinghG. MauryaS. deLampasonaM.P. CatalanC.A.N. A comparison of chemical, antioxidant and antimicrobial studies of cinnamon leaf and bark volatile oils, oleoresins and their constituents.Food Chem. Toxicol.20074591650166110.1016/j.fct.2007.02.03117408833
    [Google Scholar]
  41. RaoP.V. GanS.H. Cinnamon: A multifaceted medicinal plant.Evid. Based Complement Alternat Med.2014201464294210.1155/2014/642942
    [Google Scholar]
  42. TungY.T. ChuaM.T. WangS.Y. ChangS.T. Anti-inflammation activities of essential oil and its constituents from indigenous cinnamon (Cinnamomum osmophloeum) twigs.Bioresour. Technol.20089993908391310.1016/j.biortech.2007.07.05017826984
    [Google Scholar]
  43. TungY.T. YenP.L. LinC.Y. ChangS.T. Anti-inflammatory activities of essential oils and their constituents from different provenances of indigenous cinnamon ( Cinnamomum osmophloeum ) leaves.Pharm. Biol.201048101130113610.3109/1388020090352772820815702
    [Google Scholar]
  44. WijesekeraR.O.B. ChichesterC.O. The chemistry and technology of cinnamon.CRC Crit. Rev. Food Sci. Nutr.197810113010.1080/10408397809527243
    [Google Scholar]
  45. GotmareS. TambeE. Identification of chemical constituents of cinnamon bark oil by GCMS and comparative study garnered from five different countries.Global J. Sci. Frontier Res. C Biol. Sci.2019193442
    [Google Scholar]
  46. Kamaliroosta L GharachorlooM. KamaliroostaZ. Alimohammad ZadehK.H. Extraction of cinnamon essential oil and identification of its chemical compounds.J. Med. Plants Res.20126460961410.5897/JMPR11.1215
    [Google Scholar]
  47. JayaprakashaG.K. RaoL.J. SakariahK.K. Chemical composition of the volatile oil from the fruits of Cinnamomum zeylanicum Blume.Flavour Fragrance J.199712533133310.1002/(SICI)1099‑1026(199709/10)12:5<331::AID‑FFJ663>3.0.CO;2‑X
    [Google Scholar]
  48. JayaprakashaG.K. RaoL.J. SakariahK.K. Chemical composition of volatile oil from Cinnamomum zeylanicum buds.Z. Naturforsch. C J. Biosci.20025711-1299099310.1515/znc‑2002‑11‑120612562082
    [Google Scholar]
  49. Vallverdú-QueraltA. RegueiroJ. Martínez-HuélamoM. Rinaldi AlvarengaJ.F. LealL.N. Lamuela-RaventosR.M. A comprehensive study on the phenolic profile of widely used culinary herbs and spices: Rosemary, thyme, oregano, cinnamon, cumin and bay.Food Chem.201415429930710.1016/j.foodchem.2013.12.10624518346
    [Google Scholar]
  50. MuhammadD.R.A. DewettinckK. Cinnamon and its derivatives as potential ingredient in functional food—A review.Int. J. Food Prop.20172012710.1080/10942912.2017.1369102
    [Google Scholar]
  51. MalsawmtluangiL. NautiyalB.P. HazarikaT. ChauhanR.S. TavaA. Essential oil composition of bark and leaves of Cinammoum verum Bertch. & Presl from Mizoram, North East India.J. Essent. Oil Res.201628655155610.1080/10412905.2016.1167131
    [Google Scholar]
  52. ThakurS. WaliaB. ChaudharyG. Dalchini (Cinnamomum Zeylanicum): A versatile spice with significant therapeutic potential: Cinnamomum zeylanicum.Int. J. Pharmaceutics Drug Anal.2021126136
    [Google Scholar]
  53. JayaprakashaG.K. Jagan Mohan RaoL. SakariahK.K. Volatile constituents from Cinnamomum zeylanicum fruit stalks and their antioxidant activities.J. Agric. Food Chem.200351154344434810.1021/jf034169i12848508
    [Google Scholar]
  54. IsogaiA. SuzukiA. TamuraS. MurakoshiS. OhashiY. SasadaY. Structures of cinnzeylanine and cinnzeylanol, polyhydroxylated pentacyclic diterpenes from Cinnamonum zeylanicum nees.Agric. Biol. Chem.197640112305230610.1271/bbb1961.40.2305
    [Google Scholar]
  55. PathakR. SharmaH. A review on medicinal uses of Cinnamomum verum (Cinnamon).J. Drug Deliv. Ther.2021116-S16116610.22270/jddt.v11i6‑S.5145
    [Google Scholar]
  56. MorrowG.W. The shikimate pathway: Biosynthesis of phenolic products from shikimic acid.Bioorganic Synthesis: An IntroductionOxford AcademicNew York2016
    [Google Scholar]
  57. BangH.B. LeeY.H. KimS.C. SungC.K. JeongK.J. Metabolic engineering of Escherichia coli for the production of cinnamaldehyde.Microb. Cell Fact.20161511610.1186/s12934‑016‑0415‑926785776
    [Google Scholar]
  58. BangH.B. SonJ. KimS.C. JeongK.J. Systematic metabolic engineering of Escherichia coli for the enhanced production of cinnamaldehyde.Metab. Eng.202376637410.1016/j.ymben.2023.01.00636639020
    [Google Scholar]
  59. SovováH. OpletalL. BártlováM. SajfrtováM. KřenkováM. Supercritical fluid extraction of lignans and cinnamic acid from Schisandra chinensis.J. Supercrit. Fluids2007421889510.1016/j.supflu.2007.01.008
    [Google Scholar]
  60. KoukolJ. ConnE.E. The metabolism of aromatic compounds in higher plants. IV. Purification and properties of the phenylalanine deaminase of Hordeum vulgare.J. Biol. Chem.1961236102692269810.1016/S0021‑9258(19)61721‑714458851
    [Google Scholar]
  61. ShiS. FanD. XiangH. LiH. Effective synthesis of magnetic porous molecularly imprinted polymers for efficient and selective extraction of cinnamic acid from apple juices.Food Chem.201723719820410.1016/j.foodchem.2017.05.08628763986
    [Google Scholar]
  62. WallV.M. EisenstadtA. AgerD.J. LanemanS.A. The heck reaction and cinnamic acid synthesis by heterogeneous catalysis.Platin. Met. Rev.199943413814510.1595/003214099X434138145
    [Google Scholar]
  63. EdwardsM. RourkP.M. RibyP.G. MendhamA.P. Not quite the last word on the Perkin reaction.Tetrahedron201470407245725210.1016/j.tet.2014.07.053
    [Google Scholar]
  64. MitraA.K. DeA. KarchaudhuriN. Application of microwave irradiation techniques for the syntheses of cinnamic acids by doebner condensation.Synth. Commun.199929457358110.1080/00397919908085805
    [Google Scholar]
  65. NijkampK. van LuijkN. de BontJ.A.M. WeryJ. The solvent-tolerant Pseudomonas putida S12 as host for the production of cinnamic acid from glucose.Appl. Microbiol. Biotechnol.200569217017710.1007/s00253‑005‑1973‑715824922
    [Google Scholar]
  66. NodaS. MiyazakiT. MiyoshiT. MiyakeM. OkaiN. TanakaT. OginoC. KondoA. Cinnamic acid production using Streptomyces lividans expressing phenylalanine ammonia lyase.J. Ind. Microbiol. Biotechnol.201138564364810.1007/s10295‑011‑0955‑221424686
    [Google Scholar]
  67. SonJ. JangJ.H. ChoiI.H. LimC.G. JeonE.J. Bae BangH. JeongK.J. Production of trans-cinnamic acid by whole-cell bioconversion from l-phenylalanine in engineered Corynebacterium glutamicum.Microb. Cell Fact.202120114510.1186/s12934‑021‑01631‑134303376
    [Google Scholar]
  68. SohnY.J. KimH.T. JoS.Y. SongH.M. BaritugoK.A. PyoJ. ChoiJ. JooJ.C. ParkS.J. Recent advances in systems metabolic engineering strategies for the production of biopolymers.Biotechnol. Bioprocess Eng.; BBE202025684886110.1007/s12257‑019‑0508‑5
    [Google Scholar]
  69. YimS.S. ChoiJ.W. LeeS.H. JeongK.J. Modular optimization of a hemicellulose-utilizing pathway in Corynebacterium glutamicum for consolidated bioprocessing of hemicellulosic biomass.ACS Synth. Biol.20165433434310.1021/acssynbio.5b0022826808593
    [Google Scholar]
  70. BaritugoK.A.G. KimH.T. DavidY.C. ChoiJ.H. ChoiJ. KimT.W. ParkC. HongS.H. NaJ.G. JeongK.J. JooJ.C. ParkS.J. Recent advances in metabolic engineering of Corynebacterium glutamicum as a potential platform microorganism for biorefinery.Biofuels Bioprod. Biorefin.201812589992510.1002/bbb.1895
    [Google Scholar]
  71. Vargas-TahA. GossetG. Production of cinnamic and p-hydroxycinnamic acids in engineered microbes.Front. Bioeng. Biotechnol.2015311610.3389/fbioe.2015.0011626347861
    [Google Scholar]
  72. GottardiM. KnudsenJ.D. PradoL. OrebM. BranduardiP. BolesE. De novo biosynthesis of trans-cinnamic acid derivatives in Saccharomyces cerevisiae.Appl. Microbiol. Biotechnol.2017101124883489310.1007/s00253‑017‑8220‑x28353001
    [Google Scholar]
  73. NodaS. MiyazakiT. TanakaT. OginoC. KondoA. Production of Streptoverticillium cinnamoneum transglutaminase and cinnamic acid by recombinant Streptomyces lividans cultured on biomass-derived carbon sources.Bioresour. Technol.201210464865110.1016/j.biortech.2011.10.04522115528
    [Google Scholar]
  74. VannelliT. Wei QiW. SweigardJ. GatenbyA.A. SariaslaniF.S. Production of p-hydroxycinnamic acid from glucose in Saccharomyces cerevisiae and Escherichia coli by expression of heterologous genes from plants and fungi.Metab. Eng.20079214215110.1016/j.ymben.2006.11.00117204442
    [Google Scholar]
  75. YeP. SuJ. LinJ. LiY. WuH. Identification of a cinnamoyl-CoA reductase from Cinnamomum cassia involved in trans-cinnamaldehyde biosynthesis.Planta2024259613810.21203/rs.3.rs‑3277916/v1
    [Google Scholar]
  76. WengenmayerH. EbelJ. GrisebachH. Enzymic synthesis of lignin precursors. Purification and properties of a cinnamoyl-CoA: NADPH reductase from cell suspension cultures of soybean (Glycinemax).Eur. J. Biochem.197665252953610.1111/j.1432‑1033.1976.tb10370.x7454
    [Google Scholar]
  77. GruenwaldJ. FrederJ. ArmbruesterN. Cinnamon and health.Crit. Rev. Food Sci. Nutr.201050982283410.1080/1040839090277305220924865
    [Google Scholar]
  78. HanahanD. WeinbergR.A. Hallmarks of cancer: The next generation.Cell2011144564667410.1016/j.cell.2011.02.01321376230
    [Google Scholar]
  79. KingT.C. 5 - Neoplasia.Mosby. KingT.C.B.T-E.I.P. Philadelphia2007111143
    [Google Scholar]
  80. RouleauL. AntonyA.N. BisettoS. NewbergA. DoriaC. LevineM. MontiD.A. HoekJ.B. Synergistic effects of ascorbate and sorafenib in hepatocellular carcinoma: New insights into ascorbate cytotoxicity.Free Radic. Biol. Med.20169530832210.1016/j.freeradbiomed.2016.03.03127036367
    [Google Scholar]
  81. HartkeJ. JohnsonM. GhabrilM. The diagnosis and treatment of hepatocellular carcinomaProceedings of the Seminars in diagnostic pathologyElsevier20173415315910.1053/j.semdp.2016.12.011
    [Google Scholar]
  82. ChenZ. XieH. HuM. HuangT. HuY. SangN. ZhaoY. Recent progress in treatment of hepatocellular carcinoma.Am. J. Cancer Res.20201092993303633042631
    [Google Scholar]
  83. LlovetJ.M. RicciS. MazzaferroV. HilgardP. GaneE. BlancJ.F. de OliveiraA.C. SantoroA. RaoulJ.L. FornerA. SchwartzM. PortaC. ZeuzemS. BolondiL. GretenT.F. GalleP.R. SeitzJ.F. BorbathI. HäussingerD. GiannarisT. ShanM. MoscoviciM. VoliotisD. BruixJ. SHARP Investigators Study Group Sorafenib in advanced hepatocellular carcinoma.N. Engl. J. Med.2008359437839010.1056/NEJMoa070885718650514
    [Google Scholar]
  84. KirsteinM.M. SchweitzerN. SchmidtS. KlöpperA. RingeK.I. LehmannU. MannsM.P. WedemeyerH. VogelA. Long-lasting tumour response to sorafenib therapy in advanced hepatocellular carcinoma.Acta Gastroenterol. Belg.201477438638825682626
    [Google Scholar]
  85. VogelA. BathonM. SaborowskiA. Advances in systemic therapy for the first-line treatment of unresectable HCC.Expert Rev. Anticancer Ther.202121662162810.1080/14737140.2021.188285533499684
    [Google Scholar]
  86. ChoiN.R. KimJ.Y. HongJ.H. HurM.H. ChoH. ParkM.K. KimJ. LeeY.B. ChoE.J. LeeJ.H. YuS.J. YoonJ.H. KimY.J. Comparison of the outcomes between sorafenib and lenvatinib as the first-line systemic treatment for HBV-associated hepatocellular carcinoma: A propensity score matching analysis.BMC Gastroenterol.202222113510.1186/s12876‑022‑02210‑335337274
    [Google Scholar]
  87. ZhaoY. ZhangY.N. WangK.T. ChenL. Lenvatinib for hepatocellular carcinoma: From preclinical mechanisms to anti-cancer therapy.Biochim. Biophys. Acta Rev. Cancer20201874118839110.1016/j.bbcan.2020.18839132659252
    [Google Scholar]
  88. CasakS.J. DonoghueM. Fashoyin-AjeL. JiangX. RodriguezL. ShenY.L. XuY. JiangX. LiuJ. ZhaoH. PierceW.F. MehtaS. GoldbergK.B. TheoretM.R. KluetzP.G. PazdurR. LemeryS.J. FDA approval summary: Atezolizumab plus bevacizumab for the treatment of patients with advanced unresectable or metastatic hepatocellular carcinoma.Clin. Cancer Res.20212771836184110.1158/1078‑0432.CCR‑20‑340733139264
    [Google Scholar]
  89. LiuX. LuY. QinS. Atezolizumab and bevacizumab for hepatocellular carcinoma: Mechanism, pharmacokinetics and future treatment strategies.Future Oncol.202117172243225610.2217/fon‑2020‑129033663220
    [Google Scholar]
  90. El-KhoueiryA.B. SangroB. YauT. CrocenziT.S. KudoM. HsuC. KimT.Y. ChooS.P. TrojanJ. WellingT.H.III MeyerT. KangY.K. YeoW. ChopraA. AndersonJ. dela CruzC. LangL. NeelyJ. TangH. DastaniH.B. MeleroI. Nivolumab in patients with advanced hepatocellular carcinoma (CheckMate 040): An open-label, non-comparative, phase 1/2 dose escalation and expansion trial.Lancet2017389100882492250210.1016/S0140‑6736(17)31046‑228434648
    [Google Scholar]
  91. FinnR.S. QinS. IkedaM. GalleP.R. DucreuxM. KimT.Y. KudoM. BrederV. MerleP. KasebA.O. LiD. VerretW. XuD.Z. HernandezS. LiuJ. HuangC. MullaS. WangY. LimH.Y. ZhuA.X. ChengA.L. IMbrave150 Investigators Atezolizumab plus bevacizumab in unresectable Hepatocellular Carcinoma.N. Engl. J. Med.2020382201894190510.1056/NEJMoa191574532402160
    [Google Scholar]
  92. SkubitzK.M. D’AdamoD.R. Sarcoma.Mayo Clin. Proc.200782111409143210.4065/82.11.1409
    [Google Scholar]
  93. FletcherC.D.M. BridgeJ.A. LeeJ.C. Extrapleural Solitary Fibrous Tumor.WHO Classification of Tumours of Soft Tissue and Bone201328082
    [Google Scholar]
  94. IsakoffM.S. BielackS.S. MeltzerP. GorlickR. Osteosarcoma: Current treatment and a collaborative pathway to success.J. Clin. Oncol.201533273029303510.1200/JCO.2014.59.489526304877
    [Google Scholar]
  95. DasariS. Bernard TchounwouP. Cisplatin in cancer therapy: Molecular mechanisms of action.Eur. J. Pharmacol.201474036437810.1016/j.ejphar.2014.07.02525058905
    [Google Scholar]
  96. MeredithA.M. DassC.R. Increasing role of the cancer chemotherapeutic doxorubicin in cellular metabolism.J. Pharm. Pharmacol.201668672974110.1111/jphp.1253926989862
    [Google Scholar]
  97. JaffeN. PuriA. GelderblomH. Osteosarcoma: Evolution of treatment paradigms.Sarcoma20132013
    [Google Scholar]
  98. HeisteinJ.B. AcharyaU. MukkamallaS.K.R. Malignant Melanoma.Treasure IslandStatPearls2022
    [Google Scholar]
  99. KozarI. MargueC. RothengatterS. HaanC. KreisS. Many ways to resistance: How melanoma cells evade targeted therapies.Biochim. Biophys. Acta Rev. Cancer20191871231332210.1016/j.bbcan.2019.02.00230776401
    [Google Scholar]
  100. OstrowskiS.M. FisherD.E. Biology of Melanoma.Hematol. Oncol. Clin.2021352956
    [Google Scholar]
  101. JonesC.L. InguvaA. JordanC.T. Targeting energy metabolism in cancer stem cells: Progress and challenges in leukemia and solid tumors.Cell Stem Cell202128337839310.1016/j.stem.2021.02.01333667359
    [Google Scholar]
  102. HussainA. BrahmbhattK. PriyaniA. AhmedM. RizviT.A. SharmaC. Eugenol enhances the chemotherapeutic potential of gemcitabine and induces anticarcinogenic and anti-inflammatory activity in human cervical cancer cells.Cancer Biother. Radiopharm.201126551952710.1089/cbr.2010.092521939359
    [Google Scholar]
  103. DuttaA. ChakrabortyA. Cinnamon in anticancer armamentarium: A molecular approach.J. Toxicol.2018201810.1155/2018/8978731
    [Google Scholar]
  104. KwonH.K. HwangJ.S. SoJ.S. LeeC.G. SahooA. RyuJ.H. JeonW.K. KoB.S. ImC-R. LeeS.H. ParkZ.Y. ImS-H. Cinnamon extract induces tumor cell death through inhibition of NFκB and AP1.BMC Cancer201010139210.1186/1471‑2407‑10‑392
    [Google Scholar]
  105. AlyS.M. FetaihH.A. HassaninA.A.I. AbomughaidM.M. IsmailA.A. Protective effects of garlic and cinnamon oils on hepatocellular carcinoma in albino rats.Anal. Cell. Pathol.2019201910.1155/2019/9895485
    [Google Scholar]
  106. TawfikN.G. MohamedW.R. MahmoudH.S. AlqarniM.A. NaguibI.A. FahmyA.M. AhmedO.M. Isatin counteracts diethylnitrosamine/2-acetylaminofluorene-induced hepatocarcinogenesis in male wistar rats by upregulating anti-inflammatory, antioxidant, and detoxification pathways.Antioxidants202211469910.3390/antiox1104069935453384
    [Google Scholar]
  107. HuangY. ChenJ. YangS. TanT. WangN. WangY. ZhangL. YangC. HuangH. LuoJ. LuoX. Cinnamaldehyde inhibits the function of osteosarcoma by suppressing the Wnt/β-Catenin and PI3K/Akt signaling pathways.Drug Des. Devel. Ther.2020144625463710.2147/DDDT.S27716033154629
    [Google Scholar]
  108. Abd El SalamA.S.G. SamraY.A. El-ShishtawyM.M. Cinnamaldehyde relieves induced hepatocellular carcinoma in rat model via targeting Wnt/β-catenin pathway.Sci. Pharm.20229022210.3390/scipharm90020022
    [Google Scholar]
  109. ChenR. WuJ. LuC. YanT. QianY. ShenH. ZhaoY. WangJ. KongP. ZhangX. Systematic transcriptome analysis reveals the inhibitory function of cinnamaldehyde in non-small cell lung cancer.Front. Pharmacol.20211161106010.3389/fphar.2020.61106033633568
    [Google Scholar]
  110. ShenX. GaoC. LiH. LiuC. WangL. LiY. LiuR. SunC. ZhuangJ. Natural compounds: Wnt pathway inhibitors with therapeutic potential in lung cancer.Front. Pharmacol.202314125089310.3389/fphar.2023.125089337841927
    [Google Scholar]
  111. ZhengJ. ZhouY. LiY. XuD.P. LiS. LiH.B. Spices for prevention and treatment of cancers.Nutrients20168849510.3390/nu808049527529277
    [Google Scholar]
  112. ZhangW. LeiW. ShenF. WangM. LiL. ChangJ. Cinnamaldehyde induces apoptosis and enhances anti‐colorectal cancer activity via covalent binding to HSPD1.Phytother. Res.2023ptr.784010.1002/ptr.784037086182
    [Google Scholar]
  113. DevarajanN. NathanJ. MathangiR. MahendraJ. GanesanS.K. Pharmacotherapeutic values of berberine: A Chinese herbal medicine for the human cancer management.J. Biochem. Mol. Toxicol.2023373e2327810.1002/jbt.2327836588295
    [Google Scholar]
  114. JoshyM.R. Lakshmi ThangaveluM.J.R. PerumalE. In vitro anti-proliferative and pro-apoptotic activities of cinnamomum cassia bark extract on osteosarcoma cells.J Surv Fish Sci.202310233242
    [Google Scholar]
  115. Astrain-RedinN. SanmartinC. SharmaA.K. PlanoD. From natural sources to synthetic derivatives: The allyl motif as a powerful tool for fragment-based design in cancer treatment.J. Med. Chem.20236663703373110.1021/acs.jmedchem.2c0140636858050
    [Google Scholar]
  116. JiaJ. XiaJ. LiuW. TaoF. XiaoJ. Cinnamtannin B-1 inhibits the progression of osteosarcoma by regulating the miR-1281/PPIF axis.Biol. Pharm. Bull.2023461677310.1248/bpb.b22‑0060036273900
    [Google Scholar]
  117. Dehghani NazhvaniA. SarafrazN. AskariF. HeidariF. RazmkhahM. Anti-cancer effects of traditional medicinal herbs on oral squamous cell carcinoma.Asian Pac. J. Cancer Prev.202021247948410.31557/APJCP.2020.21.2.47932102527
    [Google Scholar]
  118. JiangA.J. JiangG. LiL.T. ZhengJ.N. Curcumin induces apoptosis through mitochondrial pathway and caspases activation in human melanoma cells.Mol. Biol. Rep.201542126727510.1007/s11033‑014‑3769‑225262359
    [Google Scholar]
  119. CabelloC.M. BairW.B.III LamoreS.D. LeyS. BauseA.S. AzimianS. WondrakG.T. The cinnamon-derived Michael acceptor cinnamic aldehyde impairs melanoma cell proliferation, invasiveness, and tumor growth.Free Radic. Biol. Med.200946222023110.1016/j.freeradbiomed.2008.10.02519000754
    [Google Scholar]
  120. WondrakG.T. CabelloC.M. VilleneuveN.F. ZhangS. LeyS. LiY. SunZ. ZhangD.D. Cinnamoyl-based Nrf2-activators targeting human skin cell photo-oxidative stress.Free Radic. Biol. Med.200845438539510.1016/j.freeradbiomed.2008.04.02318482591
    [Google Scholar]
  121. PyoJ.H. JeongY.K. YeoS. LeeJ.H. JeongM.Y. KimS.H. ChoiY.G. LimS. Neuroprotective effect of trans-cinnamaldehyde on the 6-hydroxydopamine-induced dopaminergic injury.Biol. Pharm. Bull.201336121928193510.1248/bpb.b13‑0053724292051
    [Google Scholar]
  122. SunQ. ShangB. WangL. LuZ. LiuY. Cinnamaldehyde inhibits fungal growth and aflatoxin B1 biosynthesis by modulating the oxidative stress response of Aspergillus flavus.Appl. Microbiol. Biotechnol.201610031355136410.1007/s00253‑015‑7159‑z26585445
    [Google Scholar]
  123. ShreazS. BhatiaR. KhanN. MauryaI.K. AhmadS.I. MuralidharS. ManzoorN. KhanL.A. Cinnamic aldehydes affect hydrolytic enzyme secretion and morphogenesis in oral Candida isolates.Microb. Pathog.201252525125810.1016/j.micpath.2011.11.00522227461
    [Google Scholar]
  124. HuaH. XingF. SelvarajJ.N. WangY. ZhaoY. ZhouL. LiuX. LiuY. Inhibitory effect of essential oils on Aspergillus ochraceus growth and ochratoxin A production.PLoS One201499e10828510.1371/journal.pone.010828525255251
    [Google Scholar]
  125. Roca-CousoR. Flores-FélixJ.D. RivasR. Mechanisms of action of microbial biocontrol agents against Botrytis cinerea. J. Fungi2021712104510.3390/jof712104534947027
    [Google Scholar]
  126. BikaR. Baysal-GurelF. JenningsC. Botrytis cinerea management in ornamental production: A continuous battle.Can. J. Plant Pathol.202143334536510.1080/07060661.2020.1807409
    [Google Scholar]
  127. KowalskaJ. TyburskiJ. KrzymińskaJ. JakubowskaM. Cinnamon powder: An in vitro and in vivo evaluation of antifungal and plant growth promoting activity.Eur. J. Plant Pathol.2020156123724310.1007/s10658‑019‑01882‑0
    [Google Scholar]
  128. WangC. ZhangJ. ChenH. FanY. ShiZ. Antifungal activity of eugenol against Botrytis cinerea.Trop. Plant Pathol.201035313714310.1590/S1982‑56762010000300001
    [Google Scholar]
  129. DelgadoY. CasséC. Ferrer-AcostaY. Suárez-ArroyoI.J. Rodríguez-ZayasJ. TorresA. Torres-MartínezZ. PérezD. GonzálezM.J. Velázquez-AponteR.A. AndinoJ. Correa-RodríguezC. FrancoJ.C. MilánW. RosarioG. VelázquezE. VegaJ. ColónJ. BatistaC. Biomedical effects of the phytonutrients turmeric, garlic, cinnamon, graviola, and oregano: A comprehensive review.Appl. Sci.20211118847710.3390/app11188477
    [Google Scholar]
  130. CiureaC.N. KosovskiI.B. MareA.D. TomaF. Pintea-SimonI.A. ManA. Candida and candidiasis—opportunism versus pathogenicity: A lts.Microorganisms20208685710.3390/microorganisms806085732517179
    [Google Scholar]
  131. IbeC. MunroC.A. Fungal cell wall proteins and signaling pathways form a cytoprotective network to combat stresses.J. Fungi20217973910.3390/jof709073934575777
    [Google Scholar]
  132. PadderS.A. RamzanA. TahirI. RehmanR. ShahA.H. Metabolic flexibility and extensive adaptability governing multiple drug resistance and enhanced virulence in Candida albicans.Crit. Rev. Microbiol.202248112010.1080/1040841X.2021.193544734213983
    [Google Scholar]
  133. ShahinaZ. MolaeitabariA. SultanaT. DahmsT.E.S. Cinnamon leaf and clove essential oils are potent inhibitors of Candida albicans virulence traits.Microorganisms20221010198910.3390/microorganisms1010198936296264
    [Google Scholar]
  134. GuptaP. GuptaS. SharmaM. KumarN. PruthiV. PoluriK.M. Effectiveness of phytoactive molecules on transcriptional expression, biofilm matrix, and cell wall components of Candida glabrata and its clinical isolates.ACS Omega201839122011221410.1021/acsomega.8b0185631459295
    [Google Scholar]
  135. PootongA. NorrapongB. CowawintaweewatS. Antifungal activity of cinnamaldehyde against candida albicans.Southeast Asian J. Trop. Med. Public Health201748115015829644831
    [Google Scholar]
  136. LvQ. YanL. JiangY. The synthesis, regulation, and functions of sterols in Candida albicans : Well-known but still lots to learn.Virulence20167664965910.1080/21505594.2016.118823627221657
    [Google Scholar]
  137. Borecká-MelkusováS. MoranG.P. SullivanD.J. KucharíkováS. ChorvátD.Jr BujdákováH. The expression of genes involved in the ergosterol biosynthesis pathway in Candida albicans and Candida dubliniensis biofilms exposed to fluconazole.Mycoses200952211812810.1111/j.1439‑0507.2008.01550.x18627475
    [Google Scholar]
  138. CzajkaK.M. VenkataramanK. Brabant-KirwanD. SantiS.A. VerschoorC. AppannaV.D. SinghR. SaundersD.P. TharmalingamS. Molecular mechanisms associated with antifungal resistance in pathogenic Candida species.Cells20231222265510.3390/cells1222265537998390
    [Google Scholar]
  139. RajputS.B. KaruppayilS.M. Small molecules inhibit growth, viability and ergosterol biosynthesis in Candida albicans.Springerplus2013212610.1186/2193‑1801‑2‑2623449869
    [Google Scholar]
  140. ShreazS. BhatiaR. KhanN. MuralidharS. BasirS.F. ManzoorN. KhanL.A. Spice oil cinnamaldehyde exhibits potent anticandidal activity against fluconazole resistant clinical isolates.Fitoterapia20118271012102010.1016/j.fitote.2011.06.00421708228
    [Google Scholar]
  141. KumarS. BajwaB.S. KuldeepS. KaliaA.N. Anti-inflammatory activity of herbal plants: A review.Int J Adv Pharm Biol Chem.20132272281
    [Google Scholar]
  142. LavetiD. KumarM. HemalathaR. SistlaR. Gm NaiduV. TallaV. VermaV. KaurN. NagpalR. Anti-inflammatory treatments for chronic diseases: A review.Inflamm. Allergy-Drug Targets201312349361
    [Google Scholar]
  143. GhlichlooI. GerrietsV. Nonsteroidal Anti-Inflammatory Drugs (NSAIDs).StatPearlsStatPearls PublishingTreasure Island (FL)2024
    [Google Scholar]
  144. PhillipsW.J. CurrierB.L. Analgesic pharmacology: II. Specific analgesics.J. Am. Acad. Orthop. Surg.200412422123310.5435/00124635‑200407000‑0000315473674
    [Google Scholar]
  145. LuL. LiJ. JiangX. BaiR. CXCR4/CXCL12 axis: “Old” pathway as “novel” target for anti‐inflammatory drug discovery.Med. Res. Rev.20244431189122010.1002/med.2201138178560
    [Google Scholar]
  146. BuraykS. Oh-hashiK. KandeelM. Drug discovery of new anti-inflammatory compounds by targeting cyclooxygenases.Pharmaceuticals202215328210.3390/ph1503028235337080
    [Google Scholar]
  147. YeungY.T. AzizF. Guerrero-CastillaA. ArguellesS. Signaling pathways in inflammation and anti-inflammatory therapies.Curr. Pharm. Des.201824141449148410.2174/138161282466618032716560429589535
    [Google Scholar]
  148. SzollosiD.E. ManzoorM.K. AquilatoA. JacksonP. GhoneimO.M. EdafioghoI.O. Current and novel anti-inflammatory drug targets for inhibition of cytokines and leucocyte recruitment in rheumatic diseases.J. Pharm. Pharmacol.2017701182610.1111/jphp.1281128872680
    [Google Scholar]
  149. GuoH. CallawayJ.B. TingJ.P.Y. Inflammasomes: Mechanism of action, role in disease, and therapeutics.Nat. Med.201521767768710.1038/nm.389326121197
    [Google Scholar]
  150. TsutsuiH. ImamuraM. FujimotoJ. NakanishiK. The TLR4/TRIF-mediated activation of NLRP3 inflammasome underlies endotoxin-induced liver injury in mice.Gastroenterol. Res. Pract.20102010641865
    [Google Scholar]
  151. SriutthaP. SirichanchuenB. PermsuwanU. Hepatotoxicity of nonsteroidal anti-inflammatory drugs: A systematic review of randomized controlled trials.Int. J. Hepatol.2018201810.1155/2018/5253623
    [Google Scholar]
  152. SostresC. GargalloC.J. ArroyoM.T. LanasA. Adverse effects of non-steroidal anti-inflammatory drugs (NSAIDs, aspirin and coxibs) on upper gastrointestinal tract.Best Pract. Res. Clin. Gastroenterol.201024212113210.1016/j.bpg.2009.11.00520227026
    [Google Scholar]
  153. HarirforooshS. AsgharW. JamaliF. Adverse effects of nonsteroidal antiinflammatory drugs: An update of gastrointestinal, cardiovascular and renal complications.J. Pharm. Pharm. Sci.201416582184710.18433/J3VW2F24393558
    [Google Scholar]
  154. LeeS-C. WangS-Y. LiC-C. LiuC-T. Anti-inflammatory effect of cinnamaldehyde and linalool from the leaf essential oil of Cinnamomum osmophloeum Kanehira in endotoxin-induced mice.Yao Wu Shi Pin Fen Xi201826121122029389558
    [Google Scholar]
  155. MeiJ. MaJ. XuY. WangY. HuM. MaF. QinZ. XueR. TaoN. Cinnamaldehyde treatment of prostate cancer-associated fibroblasts prevents their inhibitory effect on T cells through toll-like receptor 4.Drug Des. Devel. Ther.2020143363337210.2147/DDDT.S24141032884240
    [Google Scholar]
  156. MateenS. RehmanM.T. ShahzadS. NaeemS.S. FaizyA.F. KhanA.Q. KhanM.S. HusainF.M. MoinS. Anti-oxidant and anti-inflammatory effects of cinnamaldehyde and eugenol on mononuclear cells of rheumatoid arthritis patients.Eur. J. Pharmacol.2019852142410.1016/j.ejphar.2019.02.03130796902
    [Google Scholar]
  157. LiaoJ.C. DengJ.S. ChiuC.S. HouW.C. HuangS.S. ShieP.H. HuangG.J. Anti-inflammatory activities of Cinnamomum cassia constituents in vitro and in vivo.Evid. Based Complement. Alternat. Med.2012201211210.1155/2012/42932022536283
    [Google Scholar]
  158. MuhammadJ.S. ZaidiS.F. ShaharyarS. RefaatA. UsmanghaniK. SaikiI. SugiyamaT. Anti-inflammatory effect of cinnamaldehyde in Helicobacter pylori induced gastric inflammation.Biol. Pharm. Bull.201538110911510.1248/bpb.b14‑0060925744466
    [Google Scholar]
  159. ChenP. ZhouJ. RuanA. ZengL. LiuJ. WangQ. Cinnamic Aldehyde, the main monomer component of Cinnamon, exhibits anti‐inflammatory property in OA synovial fibroblasts via TLR4/MyD88 pathway.J. Cell. Mol. Med.202226391392410.1111/jcmm.1714834964259
    [Google Scholar]
  160. HanX. ParkerT.L. Antiinflammatory activity of cinnamon (Cinnamomum zeylanicum) bark essential oil in a human skin disease model.Phytother. Res.20173171034103810.1002/ptr.582228444928
    [Google Scholar]
  161. HongJ.W. YangG.E. KimY.B. EomS.H. LewJ.H. KangH. Anti-inflammatory activity of cinnamon water extract in vivo and in vitro LPS-induced models.BMC Complement. Altern. Med.201212123710.1186/1472‑6882‑12‑23723190501
    [Google Scholar]
  162. VasconcelosN.G. CrodaJ. SimionattoS. Antibacterial mechanisms of cinnamon and its constituents: A review.Microb. Pathog.201812019820310.1016/j.micpath.2018.04.03629702210
    [Google Scholar]
  163. Rauf Abdur AbdurR. Abdallah Emad Mohamed Sadeek Alaa MM Cinnamon bark as antibacterial agent: A mini-review.GSCBPS202010110310810.30574/gscbps.2020.10.1.0012
    [Google Scholar]
  164. WangY. ZhangY. ShiY. PanX. LuY. CaoP. Antibacterial effects of cinnamon (Cinnamomum zeylanicum) bark essential oil on Porphyromonas gingivalis.Microb. Pathog.2018116263210.1016/j.micpath.2018.01.00929325862
    [Google Scholar]
  165. YossaN. PatelJ. MillnerP. RavishankarS. LoY.M. Antimicrobial activity of plant essential oils against Escherichia coli O157:H7 and Salmonella on lettuce.Foodborne Pathog. Dis.2013101879610.1089/fpd.2012.130123256843
    [Google Scholar]
  166. Zainal-AbidinZ. Mohd-SaidS. AdibahF. MajidA. MustaphaW.A.W. JantanI. Anti-bacterial activity of cinnamon oil on oral pathogens.The Open Conf. Proc. J.20134Suppl-2, M4121610.2174/2210289201304020012
    [Google Scholar]
  167. LiX. MaS. Advances in the discovery of novel antimicrobials targeting the assembly of bacterial cell division protein FtsZ.Eur. J. Med. Chem.20159511510.1016/j.ejmech.2015.03.02625791674
    [Google Scholar]
  168. PandaD. BhattacharyaD. GaoQ.H. OzaP.M. LinH.Y.J. HawkinsB. HibbsD.E. GroundwaterP.W. Identification of agents targeting FtsZ assembly.Future Med. Chem.20168101111113210.4155/fmc‑2016‑004127284850
    [Google Scholar]
  169. HaranahalliK. TongS. OjimaI. Recent advances in the discovery and development of antibacterial agents targeting the cell-division protein FtsZ.Bioorg. Med. Chem.201624246354636910.1016/j.bmc.2016.05.00327189886
    [Google Scholar]
  170. MaS. MaS. The development of FtsZ inhibitors as potential antibacterial agents.ChemMedChem2012771161117210.1002/cmdc.20120015622639193
    [Google Scholar]
  171. DomadiaP. SwarupS. BhuniaA. SivaramanJ. DasguptaD. Inhibition of bacterial cell division protein FtsZ by cinnamaldehyde.Biochem. Pharmacol.200774683184010.1016/j.bcp.2007.06.02917662960
    [Google Scholar]
  172. EllermannM. SperandioV. Bacterial signaling as an antimicrobial target.Curr. Opin. Microbiol.202057788610.1016/j.mib.2020.08.00132916624
    [Google Scholar]
  173. LiY. FengT. WangY. The role of bacterial signaling networks in antibiotics response and resistance regulation.Mar. Life Sci. Technol.20224216317810.1007/s42995‑022‑00126‑137073223
    [Google Scholar]
  174. HossainP. KawarB. El NahasM. Obesity and diabetes in the developing world--a growing challenge.N. Engl. J. Med.2007356321321510.1056/NEJMp06817717229948
    [Google Scholar]
  175. FlegalK.M. CarrollM.D. OgdenC.L. CurtinL.R. Prevalence and trends in obesity among US adults, 1999-2008.JAMA2010303323524110.1001/jama.2009.201420071471
    [Google Scholar]
  176. ReavenG.M. Insulin resistance, the insulin resistance syndrome, and cardiovascular disease.Panminerva Med.200547420121016489319
    [Google Scholar]
  177. SunH. SaeediP. KarurangaS. PinkepankM. OgurtsovaK. DuncanB.B. SteinC. BasitA. ChanJ.C.N. MbanyaJ.C. PavkovM.E. RamachandaranA. WildS.H. JamesS. HermanW.H. ZhangP. BommerC. KuoS. BoykoE.J. MaglianoD.J. IDF diabetes atlas: Global, regional and country-level diabetes prevalence estimates for 2021 and projections for 2045.Diabetes Res. Clin. Pract.202218310911910.1016/j.diabres.2021.10911934879977
    [Google Scholar]
  178. MohanV. PradeepaR. Epidemiology of type 2 diabetes in India.Indian J. Ophthalmol.202169112932293810.4103/ijo.IJO_1627_2134708726
    [Google Scholar]
  179. TaoZ. ShiA. ZhaoJ. Epidemiological perspectives of diabetes.Cell Biochem. Biophys.201573118118510.1007/s12013‑015‑0598‑425711186
    [Google Scholar]
  180. NasriH. Rafieian-KopaeiM. Metformin: Current knowledge.J. Res. Med. Sci.201419765866425364368
    [Google Scholar]
  181. ScheenA.J. Sulphonylureas in the management of type 2 diabetes: To be or not to be?Diabetes Epidemiology and Management2021110000210.1016/j.deman.2021.100002
    [Google Scholar]
  182. DeFronzoR.A. TripathyD. SchwenkeD.C. BanerjiM. BrayG.A. BuchananT.A. ClementS.C. HenryR.R. HodisH.N. KitabchiA.E. MackW.J. MudaliarS. RatnerR.E. WilliamsK. StentzF.B. MusiN. ReavenP.D. ACT NOW Study Pioglitazone for diabetes prevention in impaired glucose tolerance.N. Engl. J. Med.2011364121104111510.1056/NEJMoa101094921428766
    [Google Scholar]
  183. SilvaM.L. BernardoM.A. SinghJ. de MesquitaM.F. Cinnamon as a complementary therapeutic approach for dysglycemia and dyslipidemia control in type 2 diabetes mellitus and its molecular mechanism of action: A review.Nutrients20221413277310.3390/nu1413277335807953
    [Google Scholar]
  184. ZhuR. LiuH. LiuC. WangL. MaR. ChenB. LiL. NiuJ. FuM. ZhangD. GaoS. Cinnamaldehyde in diabetes: A review of pharmacology, pharmacokinetics and safety.Pharmacol. Res.2017122788910.1016/j.phrs.2017.05.01928559210
    [Google Scholar]
  185. KhanA. SafdarM. Ali KhanM.M. KhattakK.N. AndersonR.A. Cinnamon improves glucose and lipids of people with type 2 diabetes.Diabetes Care200326123215321810.2337/diacare.26.12.321514633804
    [Google Scholar]
  186. Kalantar-ZadehK. JafarT.H. NitschD. NeuenB.L. PerkovicV. Chronic kidney disease.Lancet20213981030278680210.1016/S0140‑6736(21)00519‑534175022
    [Google Scholar]
  187. WebsterA.C. NaglerE.V. MortonR.L. MassonP. Chronic Kidney Disease.Lancet2017389100751238125210.1016/S0140‑6736(16)32064‑527887750
    [Google Scholar]
  188. EvansP.D. TaalM.W. Epidemiology and causes of chronic kidney disease.Medicine (Abingdon)201543845045310.1016/j.mpmed.2015.05.005
    [Google Scholar]
  189. LeveyA.S. CoreshJ. Chronic kidney disease.Lancet2012379981116518010.1016/S0140‑6736(11)60178‑521840587
    [Google Scholar]
  190. ChaoL.K. ChangW.T. ShihY.W. HuangJ.S. Cinnamaldehyde impairs high glucose-induced hypertrophy in renal interstitial fibroblasts.Toxicol. Appl. Pharmacol.2010244217418010.1016/j.taap.2009.12.03020060012
    [Google Scholar]
  191. ChericoniS. PrietoJ.M. IacopiniP. CioniP. MorelliI. In vitro activity of the essential oil of Cinnamomum zeylanicum and eugenol in peroxynitrite-induced oxidative processes.J. Agric. Food Chem.200553124762476510.1021/jf050183e15941312
    [Google Scholar]
  192. GlassC.K. SaijoK. WinnerB. MarchettoM.C. GageF.H. Mechanisms underlying inflammation in neurodegeneration.Cell2010140691893410.1016/j.cell.2010.02.01620303880
    [Google Scholar]
  193. MuzioL. ViottiA. MartinoG. Microglia in neuroinflammation and neurodegeneration: From understanding to therapy.Front. Neurosci.20211574206510.3389/fnins.2021.74206534630027
    [Google Scholar]
  194. HampelH. CaraciF. CuelloA.C. CarusoG. NisticòR. CorboM. BaldacciF. ToschiN. GaraciF. ChiesaP.A. VerdoonerS.R. Akman-AndersonL. HernándezF. ÁvilaJ. EmanueleE. ValenzuelaP.L. LucíaA. WatlingM. ImbimboB.P. VergalloA. ListaS. A path toward precision medicine for neuroinflammatory mechanisms in alzheimer’s disease.Front. Immunol.20201145610.3389/fimmu.2020.0045632296418
    [Google Scholar]
  195. FrautschyS.A. CifoneM.G. Cano-AbadM.F. HampelH. HampelH. CaraciF. CuelloA.C. CarusoG. NisticòR. CorboM. A path toward precision medicine for neuroinflammatory mechanisms in alzheimer's disease.Front. Immunol.202011456
    [Google Scholar]
  196. KannappanR. GuptaS.C. KimJ.H. ReuterS. AggarwalB.B. Neuroprotection by spice-derived nutraceuticals: You are what you eat!Mol. Neurobiol.201144214215910.1007/s12035‑011‑8168‑221360003
    [Google Scholar]
  197. GuanF. ZhouX. LiP. WangY. LiuM. LiF. CuiY. HuangT. YaoM. ZhangY. MaJ. MaS. MG53 attenuates lipopolysaccharide-induced neurotoxicity and neuroinflammation via inhibiting TLR4/NF-κB pathway in vitro and in vivo.Prog. Neuropsychopharmacol. Biol. Psychiatry20199510968410.1016/j.pnpbp.2019.10968431260721
    [Google Scholar]
  198. HenekaM.T. KummerM.P. LatzE. Innate immune activation in neurodegenerative disease.Nat. Rev. Immunol.201414746347710.1038/nri370524962261
    [Google Scholar]
  199. ChenY.F. WangY.W. HuangW.S. LeeM.M. WoodW.G. LeungY.M. TsaiH.Y. Trans-cinnamaldehyde, an essential oil in cinnamon powder, ameliorates cerebral ischemia-induced brain injury via inhibition of neuroinflammation through attenuation of inos, cox-2 expression and nfκ-b signaling pathway.Neuromolecular Med.201618332233310.1007/s12017‑016‑8395‑927087648
    [Google Scholar]
  200. ZhaoJ. ZhangX. DongL. WenY. ZhengX. ZhangC. ChenR. ZhangY. LiY. HeT. ZhuX. LiL. Cinnamaldehyde inhibits inflammation and brain damage in a mouse model of permanent cerebral ischaemia.Br. J. Pharmacol.2015172205009502310.1111/bph.1327026234631
    [Google Scholar]
  201. HoS.C. ChangK.S. ChangP.W. Inhibition of neuroinflammation by cinnamon and its main components.Food Chem.201313842275228210.1016/j.foodchem.2012.12.02023497886
    [Google Scholar]
  202. BloemB.R. OkunM.S. KleinC. Parkinson’s disease.Lancet2021397102912284230310.1016/S0140‑6736(21)00218‑X33848468
    [Google Scholar]
  203. FerreiraM. MassanoJ. An updated review of Parkinson’s disease genetics and clinicopathological correlations.Acta Neurol. Scand.2017135327328410.1111/ane.1261627273099
    [Google Scholar]
  204. ShahpiriZ. BahramsoltaniR. Hosein FarzaeiM. FarzaeiF. RahimiR. Phytochemicals as future drugs for Parkinson’s disease: A comprehensive review.Rev. Neurosci.201627665166810.1515/revneuro‑2016‑000427124673
    [Google Scholar]
  205. FoxS.H. KatzenschlagerR. LimS.Y. BartonB. de BieR.M.A. SeppiK. CoelhoM. SampaioC. CommitteeM.D.S.E.M. Movement Disorder Society Evidence-Based Medicine Committee International Parkinson and movement disorder society evidence‐based medicine review: Update on treatments for the motor symptoms of Parkinson’s disease.Mov. Disord.20183381248126610.1002/mds.2737229570866
    [Google Scholar]
  206. EspayA.J. LangA.E. Common myths in the use of levodopa in parkinson disease.JAMA Neurol.201774663363410.1001/jamaneurol.2017.034828459962
    [Google Scholar]
  207. LewittM.S. BoydG.W. The role of insulin-like growth factors and insulin-like growth factor–binding proteins in the nervous system.Biochem. Insights20191210.1177/117862641984217631024217
    [Google Scholar]
  208. PessoaR.R. MoroA. MunhozR.P. TeiveH.A.G. LeesA.J. Apomorphine in the treatment of Parkinson’s disease: A review.Arq. Neuropsiquiatr.2018761284084810.1590/0004‑282x2018014030698208
    [Google Scholar]
  209. GrayR. IvesN. RickC. PatelS. GrayA. JenkinsonC. McIntoshE. WheatleyK. WilliamsA. ClarkeC.E. PD MED Collaborative Group Long-term effectiveness of dopamine agonists and monoamine oxidase B inhibitors compared with levodopa as initial treatment for Parkinson’s disease (PD MED): A large, open-label, pragmatic randomised trial.Lancet201438499491196120510.1016/S0140‑6736(14)60683‑824928805
    [Google Scholar]
  210. MüllerT. Catechol-O-methyltransferase inhibitors in Parkinson’s disease.Drugs201575215717410.1007/s40265‑014‑0343‑025559423
    [Google Scholar]
  211. KissG. TakácsA.B. SztahóD. VicsiK. Detection possibilities of depression and parkinson’s disease based on the ratio of transient parts of the speech.Proceedings of the 2018 9th IEEE International Conference on Cognitive Infocommunications (CogInfoCom), Budapest, Hungary, 22-24 August 2018, pp. 000165-000168.10.1109/CogInfoCom.2018.8639901
    [Google Scholar]
  212. RamazaniE. YazdFazeliM. EmamiS.A. MohtashamiL. JavadiB. AsiliJ. Tayarani-NajaranZ. Protective effects of Cinnamomum verum, Cinnamomum cassia and cinnamaldehyde against 6-OHDA-induced apoptosis in PC12 cells.Mol. Biol. Rep.20204742437244510.1007/s11033‑020‑05284‑y32166553
    [Google Scholar]
  213. KaliaL.V. LangA.E. Parkinson’s disease.Lancet2015386999689691210.1016/S0140‑6736(14)61393‑325904081
    [Google Scholar]
  214. SchmidtN. FergerB. Neurochemical findings in the MPTP model of Parkinson’s disease.J. Neural Transm.2001108111263128210.1007/s00702010000411768626
    [Google Scholar]
  215. AnL. LiuS. DongY. TangB. DongW. Protective effect of effective part of Acanthopanacis senticosus on damage of PC12 cells induced by MPP+.Zhongguo Zhongyao Zazhi201035152021202620931860
    [Google Scholar]
  216. HungK.C. HuangH.J. LinM.W. LeiY.P. LinA.M. Roles of autophagy in MPP+-induced neurotoxicity in vivo: the involvement of mitochondria and α-synuclein aggregation.PLoS One201493e9107410.1371/journal.pone.009107424646838
    [Google Scholar]
  217. BangH.B. LeeK. LeeY.J. JeongK.J. High-level production of trans-cinnamic acid by fed-batch cultivation of Escherichia coli.Process Biochem.201868303610.1016/j.procbio.2018.01.026
    [Google Scholar]
  218. AngelopoulouE. PaudelY.N. PiperiC. MishraA. Neuroprotective potential of cinnamon and its metabolites in Parkinson’s disease: Mechanistic insights, limitations, and novel therapeutic opportunities.J. Biochem. Mol. Toxicol.2021354e2272010.1002/jbt.2272033491302
    [Google Scholar]
  219. HaassC. SelkoeD.J. Soluble protein oligomers in neurodegeneration: Lessons from the Alzheimer’s amyloid β-peptide.Nat. Rev. Mol. Cell Biol.20078210111210.1038/nrm210117245412
    [Google Scholar]
  220. QuerfurthH.W. LaFerlaF.M. Alzheimer’s disease.N. Engl. J. Med.2010362432934410.1056/NEJMra090914220107219
    [Google Scholar]
  221. ScheltensP. De StrooperB. KivipeltoM. HolstegeH. ChételatG. TeunissenC.E. CummingsJ. van der FlierW.M. Alzheimer’s disease.Lancet2021397102841577159010.1016/S0140‑6736(20)32205‑433667416
    [Google Scholar]
  222. A ArmstrongR. Risk factors for Alzheimer’s disease.Folia Neuropathol.20195728710510.5114/fn.2019.8592931556570
    [Google Scholar]
  223. AnandP. SinghB. A review on cholinesterase inhibitors for Alzheimer’s disease.Arch. Pharm. Res.201336437539910.1007/s12272‑013‑0036‑323435942
    [Google Scholar]
  224. BreijyehZ. KaramanR. Comprehensive review on alzheimer’s disease: Causes and treatment.Molecules20202524578910.3390/molecules2524578933302541
    [Google Scholar]
  225. Fernández-BachillerM.I. PérezC. CampilloN.E. PáezJ.A. González-MuñozG.C. UsánP. García-PalomeroE. LópezM.G. VillarroyaM. GarcíaA.G. MartínezA. Rodríguez-FrancoM.I. Tacrine-melatonin hybrids as multifunctional agents for Alzheimer’s disease, with cholinergic, antioxidant, and neuroprotective properties.ChemMedChem20094582884110.1002/cmdc.20080041419308922
    [Google Scholar]
  226. Wyss-CorayT. Inflammation in Alzheimer disease: Driving force, bystander or beneficial response?Nat. Med.20061291005101516960575
    [Google Scholar]
  227. Tabatabaei-MalazyO. LarijaniB. AbdollahiM. Targeting metabolic disorders by natural products.J. Diabetes Metab. Disord.20151415710.1186/s40200‑015‑0184‑826157708
    [Google Scholar]
  228. BellenguezC. CharbonnierC. Grenier-BoleyB. QuenezO. Le GuennecK. NicolasG. ChauhanG. WallonD. RousseauS. RichardA.C. BolandA. BourqueG. MunterH.M. OlasoR. MeyerV. Rollin-SillaireA. PasquierF. LetenneurL. RedonR. DartiguesJ.F. TzourioC. FrebourgT. LathropM. DeleuzeJ.F. HannequinD. GeninE. AmouyelP. DebetteS. LambertJ.C. CampionD. HannequinD. CampionD. WallonD. MartinaudO. ZareaA. NicolasG. Rollin-SillaireA. BomboisS. MackowiakM-A. DeramecourtV. PasquierF. MichonA. Le BerI. DuboisB. GodefroyO. Etcharry-BouyxF. ChauviréV. ChamardL. BergerE. MagninE. DartiguesJ-F. AuriacombeS. TisonF. SayetteV. CastanD. DionetE. SellalF. RouaudO. ThauvinC. MoreaudO. SauvéeM. FormaglioM. MollionH. Roullet-SolignacI. VighettoA. CroisileB. DidicM. FélicianO. KoricL. CeccaldiM. GabelleA. MarelliC. LabaugeP. JonveauxT. VercellettoM. Boutoleau-BretonnièreC. CastelnovoG. PaquetC. DumurgierJ. HugonJ. De BoisgueheneucF. BelliardS. BakchineS. SarazinM. BarrellonM-O. LaurentB. BlancF. ParienteJ. JuriciS. CNR MAJ collaborators Contribution to Alzheimer’s disease risk of rare variants in TREM2, SORL1, and ABCA7 in 1779 cases and 1273 controls.Neurobiol. Aging201759220.e1220.e910.1016/j.neurobiolaging.2017.07.00128789839
    [Google Scholar]
  229. RidgeP.G. MukherjeeS. CraneP.K. KauweJ.S.K. ConsortiumA.D.G. Alzheimer’s Disease Genetics Consortium Alzheimer’s disease: Analyzing the missing heritability.PLoS One2013811e7977110.1371/journal.pone.007977124244562
    [Google Scholar]
  230. MomtazS. HassaniS. KhanF. ZiaeeM. AbdollahiM. Cinnamon, a promising prospect towards Alzheimer’s disease.Pharmacol. Res.201813024125810.1016/j.phrs.2017.12.01129258915
    [Google Scholar]
  231. ChauhanN.B. Effect of aged garlic extract on APP processing and tau phosphorylation in Alzheimer’s transgenic model Tg2576.J. Ethnopharmacol.2006108338539410.1016/j.jep.2006.05.03016842945
    [Google Scholar]
  232. HoieE. Alzheimer’s Disease: Current Treatments and Potential New Agents.US Pharm.2019442023
    [Google Scholar]
  233. LiD.D. ZhangY.H. ZhangW. ZhaoP. Meta-Analysis of Randomized Controlled Trials on the Efficacy and Safety of Donepezil, Galantamine, Rivastigmine, and Memantine for the Treatment of Alzheimer’s Disease.Front. Neurosci.20191347210.3389/fnins.2019.0047231156366
    [Google Scholar]
  234. Di SantoS.G. PrinelliF. AdorniF. CaltagironeC. MusiccoM. A meta-analysis of the efficacy of donepezil, rivastigmine, galantamine, and memantine in relation to severity of Alzheimer’s disease.J. Alzheimers Dis.201335234936110.3233/JAD‑12214023411693
    [Google Scholar]
  235. Frydman-MaromA. LevinA. FarfaraD. BenromanoT. Scherzer-AttaliR. PeledS. VassarR. SegalD. GazitE. FrenkelD. OvadiaM. Orally administrated cinnamon extract reduces β-amyloid oligomerization and corrects cognitive impairment in Alzheimer’s disease animal models.PLoS One201161e1656410.1371/journal.pone.001656421305046
    [Google Scholar]
  236. EmamghoreishiM. FarrokhiM.R. AmiriA. KeshavarzM. The neuroprotective mechanism of cinnamaldehyde against amyloid-β in neuronal SHSY5Y cell line: The role of N-methyl-D-aspartate, ryanodine, and adenosine receptors and glycogen synthase kinase-3β.Avicenna J. Phytomed.20199327128031143694
    [Google Scholar]
  237. MoselhyS.S. AliH.K.H. Hepatoprotective effect of Cinnamon extracts against carbon tetrachloride induced oxidative stress and liver injury in rats.Biol. Res.2009421939810.4067/S0716‑9760200900010000919621136
    [Google Scholar]
  238. RousselA.M. HiningerI. BenarabaR. ZiegenfussT.N. AndersonR.A. Antioxidant effects of a cinnamon extract in people with impaired fasting glucose that are overweight or obese.J. Am. Coll. Nutr.2009281162110.1080/07315724.2009.1071975619571155
    [Google Scholar]
  239. JuJ. Santana de OliveiraM. QiaoY. Effect of Cinnamon on the Treatment of Alzheimer’s Disease.Cinnamon: A Medicinal Plant and A Functional Food Systems.Springer202316117710.1007/978‑3‑031‑33505‑1_12
    [Google Scholar]
  240. AndersonR.A. QinB. CaniniF. PouletL. RousselA.M. Cinnamon counteracts the negative effects of a high fat/high fructose diet on behavior, brain insulin signaling and Alzheimer-associated changes.PLoS One2013812e8324310.1371/journal.pone.008324324349472
    [Google Scholar]
  241. ChoiW.S. PalmiterR.D. XiaZ. Loss of mitochondrial complex I activity potentiates dopamine neuron death induced by microtubule dysfunction in a Parkinson’s disease model.J. Cell Biol.2011192587388210.1083/jcb.20100913221383081
    [Google Scholar]
  242. PhillipsD.H. ArltV.M. Genotoxicity: Damage to DNA and Its Consequences.Molecular, Clinical and Environmental Toxicology: Mol. Toxicol.2009187110
    [Google Scholar]
  243. KingA.A. ShaughnessyD.T. MureK. LeszczynskaJ. WardW.O. UmbachD.M. XuZ. DucharmeD. TaylorJ.A. DeMariniD.M. KleinC.B. Antimutagenicity of cinnamaldehyde and vanillin in human cells: Global gene expression and possible role of DNA damage and repair.Mutat. Res.20076161-2606910.1016/j.mrfmmm.2006.11.02217178418
    [Google Scholar]
  244. J T GowderS. Safety assessment of food flavor - Cinnamaldehyde.Biosafety201431110.4172/2167‑0331.1000e147
    [Google Scholar]
  245. PutraR.B.D.S. HertikaA. FadjarM. WicaksonoS. HakimG.A. SaputraF. Acute toxicity of cinnamaldehyde in profile hematology and gill histology of zebrafish.Egypt. J. Aquat. Biol. Fish2022264623635
    [Google Scholar]
  246. BickersD. CalowP. GreimH. HanifinJ.M. RogersA.E. SauratJ.H. SipesI.G. SmithR.L. TagamiH. RIFM expert panel A toxicologic and dermatologic assessment of cinnamyl alcohol, cinnamaldehyde and cinnamic acid when used as fragrance ingredients.Food Chem. Toxicol.200543679983610.1016/j.fct.2004.09.01315811570
    [Google Scholar]
  247. LuL. ShuC. ChenL. YangY. MaS. ZhuK. ShiB. Insecticidal activity and mechanism of cinnamaldehyde in C. elegans.Fitoterapia202014610468710.1016/j.fitote.2020.10468732681860
    [Google Scholar]
  248. AlvesD.N. MartinsR.X. FerreiraE.S. AlvesA.F. AndradeJ.C. BatistaT.M. LazariniJ.G. AmorimL.S. RosalenP.L. FariasD.F. CastroR.D. Toxicological parameters of a formulation containing cinnamaldehyde for use in treatment of oral fungal infections: An in vivo study.BioMed Res. Int.2021202111310.1155/2021/230569534722758
    [Google Scholar]
  249. EderE. DeiningerC. NeudeckerT. DeiningerD. Mutagenicity of β‐alkyl substituted acrolein congeners in the Salmonella typhimurium strain TA100 and genotoxicity testing in the SOS chromotest.Environ. Mol. Mutagen.199219433834510.1002/em.28501904131600962
    [Google Scholar]
  250. ProgramN.T. National Toxicology Program NTP toxicology and carcinogenesis studies of trans-cinnamaldehyde (CAS No. 14371-10-9) in F344/N rats and B6C3F1 mice (feed studies).Natl. Toxicol. Program Tech. Rep. Ser.2004514128115146216
    [Google Scholar]
  251. SUZIS.A. Could cinnamaldehyde be harmful? Histological, cytogenetical, and biochemical studies on its effect on some organs of mice.Egypt. J. Histol.2007302447464
    [Google Scholar]
  252. KemanD. SoyerF. Antibiotic-resistant staphylococcus aureus does not develop resistance to vanillic acid and 2-hydroxycinnamic acid after continuous exposure in vitro.ACS Omega2019413153931540010.1021/acsomega.9b0133631572838
    [Google Scholar]
  253. LiederB. HoiJ. BurianN. HansJ. HolikA.K. Beltran MarquezL.R. LeyJ.P. HattH. SomozaV. Structure-dependent effects of cinnamaldehyde derivatives on TRPA1-induced serotonin release in human intestinal cell models.J. Agric. Food Chem.202068133924393210.1021/acs.jafc.9b0816332162915
    [Google Scholar]
  254. DoyleA.A. StephensJ.C. A review of cinnamaldehyde and its derivatives as antibacterial agents.Fitoterapia201913910440510.1016/j.fitote.2019.10440531707126
    [Google Scholar]
  255. LeeM.J. SeoH.J. HwangG.S. ChoiS. ParkS.J. HwangS.J. KangK.S. Molecular mechanism of cinnamomum cassia against gastric damage and identification of active compounds.Biomolecules202212452510.3390/biom1204052535454114
    [Google Scholar]
  256. ShreazS. SheikhR.A. BhatiaR. NeelofarK. ImranS. HashmiA.A. ManzoorN. BasirS.F. KhanL.A. Antifungal activity of α-methyl trans cinnamaldehyde, its ligand and metal complexes: Promising growth and ergosterol inhibitors.Biometals201124592393310.1007/s10534‑011‑9447‑021476019
    [Google Scholar]
  257. AhmedB. JailaniA. LeeJ.H. LeeJ. Inhibition of growth, biofilm formation, virulence, and surface attachment of Agrobacterium tumefaciens by cinnamaldehyde derivatives.Front. Microbiol.202213100186510.3389/fmicb.2022.100186536304952
    [Google Scholar]
  258. TeixeiraB.A. SouzaH.D.S. FissG.F. De Athayde-FilhoP.F. NogueiraP.L. AlvesD.N. De CastroR.D. De Andrade JúniorF.P. FariasB.K.S. LimaE.O. Fungicidal and antibiofilm activities of 2-Bromo-N-Phenylacetamide Against Fluconazole-Resistant Candida spp.: A promising antifungal agent.Observatório de la economía latinoamericana20232112240802410110.55905/oelv21n12‑035
    [Google Scholar]
  259. BaekS.H. ParkT. KangM.G. ParkD. Anti-inflammatory activity and ROS regulation effect of sinapaldehyde in LPS-stimulated RAW 264.7 macrophages.Molecules20202518408910.3390/molecules2518408932906766
    [Google Scholar]
  260. MaitraS. BhadraP. ShankarT. Medicinal and Aroma-Therapeutic Use of Plants. Aromatherapy and its Benefits.New DelhiRenu Publishers20211529
    [Google Scholar]
  261. RuwizhiN. MasekoR.B. AderibigbeB.A. Recent advances in the therapeutic efficacy of artesunate.Pharmaceutics202214350410.3390/pharmaceutics1403050435335880
    [Google Scholar]
  262. PeperidouA. PontikiE. Hadjipavlou-LitinaD. VoulgariE. AvgoustakisK. Multifunctional cinnamic acid derivatives.Molecules2017228124710.3390/molecules2208124728757554
    [Google Scholar]
  263. MuniyanR. GurunathanJ. Antimycobacterial activity of potential plant metabolites with emphasis on management of drug resistant Mycobacterium tuberculosis strains.Res. J. Biotechnol.20171212
    [Google Scholar]
  264. KumarS. KumariR. MishraS. Pharmacological properties and their medicinal uses of Cinnamomum : A review.J. Pharm. Pharmacol.201971121735176110.1111/jphp.1317331646653
    [Google Scholar]
  265. SalesA. FelipeL.O. BicasJ.L. Production, properties, and applications of α-terpineol.Food Bioprocess Technol.20201381261127910.1007/s11947‑020‑02461‑6
    [Google Scholar]
  266. AkmanF. DemirpolatA. KazachenkoA.S. KazachenkoA.S. IssaouiN. Al-DossaryO. Molecular structure, electronic properties, reactivity (ELF, LOL, and Fukui), and NCI-RDG studies of the binary mixture of water and essential oil of phlomis bruguieri. Molecules2023286268410.3390/molecules2806268436985656
    [Google Scholar]
  267. MenezesI.O. ScherfJ.R. MartinsA.O.B.P.B. RamosA.G.B. QuintansJ.S.S. CoutinhoH.D.M. Ribeiro-FilhoJ. de MenezesI.R.A. Biological properties of terpinolene evidenced by in silico, in vitro and in vivo studies: A systematic review.Phytomedicine20219315376810.1016/j.phymed.2021.15376834634744
    [Google Scholar]
  268. BouhaouiA. EddahmiM. DibM. KhouiliM. AiresA. CattoM. BouissaneL. Synthesis and biological properties of coumarin derivatives. A review.ChemistrySelect20216245848587010.1002/slct.202101346
    [Google Scholar]
  269. MaR. LuD. WangJ. XieQ. GuoJ. Comparison of pharmacological activity and safety of different stereochemical configurations of borneol: L-borneol, D-borneol, and synthetic borneol.Biomed. Pharmacother.202316411466810.1016/j.biopha.2023.11466837321057
    [Google Scholar]
  270. AnjaneyuluB. Sangeeta SainiN. A study on camphor derivatives and its applications: A review.Curr. Org. Chem.202125121404142810.2174/1385272825666210608115750
    [Google Scholar]
  271. Navarro-RochaJ. AndrésM.F. DíazC.E. BurilloJ. González-ColomaA. Composition and biocidal properties of essential oil from pre-domesticated Spanish Satureja Montana.Ind. Crops Prod.202014511195810.1016/j.indcrop.2019.111958
    [Google Scholar]
  272. AnQ. RenJ.N. LiX. FanG. QuS.S. SongY. LiY. PanS.Y. Recent updates on bioactive properties of linalool.Food Funct.20211221103701038910.1039/D1FO02120F34611674
    [Google Scholar]
  273. FitzgeraldD.J. StratfordM. GassonM.J. NarbadA. Structure-function analysis of the vanillin molecule and its antifungal properties.J. Agric. Food Chem.20055351769177510.1021/jf048575t15740072
    [Google Scholar]
  274. ZhangZ.H. HanZ. ZengX.A. XiongX.Y. LiuY.J. Enhancing mechanical properties of chitosan films via modification with vanillin.Int. J. Biol. Macromol.20158163864310.1016/j.ijbiomac.2015.08.04226314906
    [Google Scholar]
  275. ChanW.K. TanL. ChanK.G. LeeL.H. GohB.H. Nerolidol: A sesquiterpene alcohol with multi-faceted pharmacological and biological activities.Molecules201621552910.3390/molecules2105052927136520
    [Google Scholar]
  276. AggarwalS. BhadanaK. SinghB. RawatM. MohammadT. Al-KeridisL.A. AlshammariN. HassanM.I. DasS.N. Cinnamomum zeylanicum extract and its bioactive component cinnamaldehyde show anti-tumor effects via inhibition of multiple cellular pathways.Front. Pharmacol.20221391847910.3389/fphar.2022.91847935774603
    [Google Scholar]
  277. ChuangL.Y. GuhJ.Y. ChaoL.K. LuY.C. HwangJ.Y. YangY.L. ChengT.H. YangW.Y. ChienY.J. HuangJ.S. Anti-proliferative effects of cinnamaldehyde on human hepatoma cell lines.Food Chem.201213341603161010.1016/j.foodchem.2012.02.059
    [Google Scholar]
  278. FuY. YangP. ZhaoY. ZhangL. ZhangZ. DongX. WuZ. XuY. ChenY. Trans-cinnamaldehyde inhibits microglial activation and improves neuronal survival against neuroinflammation in bv2 microglial cells with lipopolysaccharide stimulation.Evidence-Based Complementary Altern. Med.2017201710.1155/2017/4730878
    [Google Scholar]
  279. HoS.C. ChangY.H. ChangK.S. Structural moieties required for cinnamaldehyde-related compounds to inhibit canonical IL-1β secretion.Molecules20182312324110.3390/molecules2312324130544610
    [Google Scholar]
  280. HussainZ. KhanJ.A. ArshadA. AsifP. RashidH. ArshadM.I. Protective effects of Cinnamomum zeylanicum L. (Darchini) in acetaminophen-induced oxidative stress, hepatotoxicity and nephrotoxicity in mouse model.Biomed. Pharmacother.20191092285229210.1016/j.biopha.2018.11.12330551486
    [Google Scholar]
  281. NiazmandS. MirzaeiM. HosseinianS. KhazdairM.R. Gowhari ShabgahA. BaghcheghiY. Hedayati-MoghadamM. The effect of Cinnamomum cassia extract on oxidative stress in the liver and kidney of STZ-induced diabetic rats.J. Complement. Integr. Med.202219231132110.1515/jcim‑2021‑014234506695
    [Google Scholar]
  282. WondrakG. VilleneuveN.F. LamoreS.D. BauseA.S. JiangT. ZhangD.D. GT The cinnamon-derived dietary factor cinnamic aldehyde activates the Nrf2-dependent antioxidant response in human epithelial colon cells.Molecules20101553338335510.3390/molecules1505333820657484
    [Google Scholar]
  283. AlshahraniS. AshafaqM. HussainS. MohammedM. SultanM. JaliA.M. SiddiquiR. IslamF. Renoprotective effects of cinnamon oil against APAP-Induced nephrotoxicity by ameliorating oxidative stress, apoptosis and inflammation in rats.Saudi Pharm. J.202129219420010.1016/j.jsps.2021.01.00233679180
    [Google Scholar]
  284. AtsamoA.D. Lontsie SongmeneA. Metchi DonfackM.F. NgouateuO.B. NguelefackT.B. DimoT. Aqueous extract from cinnamomum zeylanicum (lauraceae) stem bark ameliorates gentamicin-induced nephrotoxicity in rats by modulating oxidative stress and inflammatory markers.Evid. Based Complement. Alternat. Med.2021202111210.1155/2021/554388934335818
    [Google Scholar]
  285. ElshopakeyG.E. ElazabS.T. Cinnamon aqueous extract attenuates diclofenac sodium and oxytetracycline mediated hepato-renal toxicity and modulates oxidative stress, cell apoptosis, and inflammation in male albino rats.Vet. Sci.202181910.3390/vetsci801000933418920
    [Google Scholar]
  286. GaoJ. ZhangM. NiuR. GuX. HaoE. HouX. DengJ. BaiG. The combination of cinnamaldehyde and kaempferol ameliorates glucose and lipid metabolism disorders by enhancing lipid metabolism via AMPK activation.J. Funct. Foods20218310455610.1016/j.jff.2021.104556
    [Google Scholar]
  287. XiaoQ. Cinnamaldehyde attenuates kidney senescence and injury through PI3K/Akt pathway-mediated autophagy via downregulating miR-155.Ren. Fail.202244160161410.1080/0886022X.2022.205648535361048
    [Google Scholar]
  288. El-BassossyH.M. FahmyA. BadawyD. Cinnamaldehyde protects from the hypertension associated with diabetes.Food Chem. Toxicol.201149113007301210.1016/j.fct.2011.07.06021840367
    [Google Scholar]
  289. HafizurR.M. HameedA. ShukranaM. RazaS.A. ChishtiS. KabirN. SiddiquiR.A. Cinnamic acid exerts anti-diabetic activity by improving glucose tolerance in vivo and by stimulating insulin secretion in vitro.Phytomedicine201522229730010.1016/j.phymed.2015.01.00325765836
    [Google Scholar]
  290. HosniA.A. Abdel-MoneimA.A. Abdel-ReheimE.S. MohamedS.M. HelmyH. Cinnamaldehyde potentially attenuates gestational hyperglycemia in rats through modulation of PPARγ, proinflammatory cytokines and oxidative stress.Biomed. Pharmacother.201788526010.1016/j.biopha.2017.01.05428092845
    [Google Scholar]
  291. NangleM. GibsonT. CotterM. CameronN. Effects of eugenol on nerve and vascular dysfunction in streptozotocin-diabetic rats.Planta Med.200672649450010.1055/s‑2005‑91626216773532
    [Google Scholar]
  292. SuiF. LinN. GuoJ.Y. ZhangC.B. DuX.L. ZhaoB.S. LiuH.B. YangN. LiL.F. GuoS.Y. HuoH.R. JiangT.L. Cinnamaldehyde up-regulates the mRNA expression level of TRPV1 receptor potential ion channel protein and its function in primary rat DRG neurons in vitro.J. Asian Nat. Prod. Res.2010121768710.1080/1028602090345173220390747
    [Google Scholar]
  293. DingY. DaiX. JiangY. ZhangZ. BaoL. LiY. ZhangF. MaX. CaiX. JingL. GuJ. LiY. Grape seed proanthocyanidin extracts alleviate oxidative stress and ER stress in skeletal muscle of low‐dose streptozotocin‐ and high‐carbohydrate/high‐fat diet‐induced diabetic rats.Mol. Nutr. Food Res.201357236536910.1002/mnfr.20120046323161660
    [Google Scholar]
  294. YangL. XianD. XiongX. LaiR. SongJ. ZhongJ. Proanthocyanidins against oxidative stress: From molecular mechanisms to clinical applications.Biomed. Res. Int.20182018
    [Google Scholar]
  295. SinghN. RaoA.S. NandalA. KumarS. YadavS.S. GanaieS.A. NarasimhanB. Phytochemical and pharmacological review of Cinnamomum verum J. Presl-a versatile spice used in food and nutrition.Food Chem.202133812777310.1016/j.foodchem.2020.12777332829297
    [Google Scholar]
/content/journals/cbc/10.2174/0115734072322707240902074426
Loading
/content/journals/cbc/10.2174/0115734072322707240902074426
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test