Skip to content
2000
Volume 21, Issue 7
  • ISSN: 1573-4072
  • E-ISSN: 1875-6646

Abstract

Aims

This present study aims to probe the interrelationships between phytochemical components and drug targets in

Background

Indian traditional medicine, often called Ayurveda, has a rich history of using medicinal plants for various health remedies and treatments. Network pharmacology plays a significant role in understanding the complex interactions between bioactive compounds in herbal medicinal plants and the human body.

Objective

Medicinal plants are abundant in bioactive compounds, each possessing unique biological activities. However, certain unexplored biological activities of medicinal plants remain underrepresented in therapeutic studies. This study seeks to explore the connections between phytochemical components and drug targets specifically within

Methods

Metabolites were associated with various targets, and network analysis was conducted to assess the gene-metabolite network using cytoHubba. Genes were clustered to understand their involvement in gene ontology, biological processes, and metabolic pathways. K-means clustering illustrated a network of genes related to breast cancer pathways. Molecular docking analysis was performed for common genes within multiple targets to assess docking scores and interactions.

Results

Network analysis revealed six key metabolites closely interacting with multiple targets. Antioxidant activity was assessed using the DPPH assay, demonstrating significant effects (inhibition 74.08 ± 0.67%). Cytotoxicity against MCF-7 and MDA-MBA 231 cell lines showed IC values of 110.7 µg/mL and 141.2 µg/ml, respectively, indicating potential cytotoxic effects.

Conclusion

This study highlights the importance of plant metabolites and their interactions with multiple targets through network pharmacology analysis. It suggests the synergistic potential of compounds with multiple targets, providing insights into their therapeutic value, particularly in breast cancer therapy.

Loading

Article metrics loading...

/content/journals/cbc/10.2174/0115734072309930240905141819
2024-09-13
2025-08-18
Loading full text...

Full text loading...

References

  1. PandeyM.M. RastogiS. RawatA.K.S. Indian herbal drug for general healthcare: An overview.Internet J. Alter. Med.2008613
    [Google Scholar]
  2. IslasJ.F. AcostaE. G-BuentelloZ. Delgado-GallegosJ.L. Moreno-TreviñoM.G. EscalanteB. Moreno-CuevasJ.E. An overview of Neem (Azadirachta indica) and its potential impact on health.J. Funct. Foods20207410417110.1016/j.jff.2020.104171
    [Google Scholar]
  3. ChattopadhyayI. BiswasK. BandyopadhyayU. BanerjeeR.K. Turmeric and curcumin: Biological actions and medicinal applications.Curr. Sci.20048714453
    [Google Scholar]
  4. PetersonC.T. DennistonK. ChopraD. Therapeutic uses of triphala in ayurvedic medicine.J. Altern. Complement. Med.201723860761410.1089/acm.2017.008328696777
    [Google Scholar]
  5. SubhoseV. SrinivasP. NarayanaA. Basic principles of pharmaceutical science in Ayurvĕda.Bull. Indian Inst. Hist. Med. Hyderabad2005352839217333665
    [Google Scholar]
  6. ZhaoY. WuY. WangM. Bioactive substances of plant origin.Handbook of Food Chemistry. CheungP. MehtaB. Springer201510.1007/978‑3‑642‑36605‑5_13
    [Google Scholar]
  7. MaghuS. DesaiV.D. SharmaR. Comparison of efficacy of alternative medicine with allopathy in treatment of oral fungal infection.J. Tradit. Complement. Med.201661626510.1016/j.jtcme.2014.11.02326870682
    [Google Scholar]
  8. ElangovanA. RamachandranJ. LakshmananD.K. RavichandranG. ThilagarS. Ethnomedical, phytochemical and pharmacological insights on an Indian medicinal plant: The balloon vine (Cardiospermum halicacabum Linn.).J. Ethnopharmacol.202229111514310.1016/j.jep.2022.11514335227784
    [Google Scholar]
  9. GildenhuysE. EllisA. CarrollS. Le RouxJ. The ecology, biogeography, history and future of two globally important weeds: Cardiospermum halicacabum Linn and C. grandiflorum Sw.NeoBiota201319456510.3897/neobiota.19.5279
    [Google Scholar]
  10. HuangM.H. HuangS.S. WangB.S. WuC.H. SheuM.J. HouW.C. LinS.S. HuangG.J. Antioxidant and anti-inflammatory properties of Cardiospermum halicacabum and its reference compounds ex vivo and in vivo.J. Ethnopharmacol.2011133274375010.1016/j.jep.2010.11.00521073940
    [Google Scholar]
  11. JeyadeviR. SivasudhaT. RameshkumarA. Dinesh KumarL. Anti-arthritic activity of the Indian leafy vegetable Cardiospermum halicacabum in Wistar rats and UPLC–QTOF–MS/MS identification of the putative active phenolic components.Inflamm. Res.201362111512610.1007/s00011‑012‑0558‑z23052184
    [Google Scholar]
  12. KumaranA. Joel KarunakaranR. Antioxidant activities of the methanol extract of Cardiospermum halicacabum. Pharm. Biol.200644214615110.1080/13880200600596302
    [Google Scholar]
  13. SheebaM.S. AshaV.V. Cardiospermum halicacabum ethanol extract inhibits LPS induced COX-2, TNF-α and iNOS expression, which is mediated by NF-κB regulation, in RAW264.7 cells.J. Ethnopharmacol.20091241394410.1016/j.jep.2009.04.020
    [Google Scholar]
  14. HopkinsA.L. Network pharmacology: the next paradigm in drug discovery.Nat. Chem. Biol.200841168269010.1038/nchembio.11818936753
    [Google Scholar]
  15. Ulrich-MerzenichG. PanekD. ZeitlerH. VetterH. WagnerH. Drug development from natural products: exploiting synergistic effects.Indian J. Exp. Biol.201048320821921046973
    [Google Scholar]
  16. ZhangH.P. PanJ.B. ZhangC. JiN. WangH. JiZ.L. Network understanding of herb medicine via rapid identification of ingredient-target interactions.Sci. Rep.201441371910.1038/srep0371924429698
    [Google Scholar]
  17. ChandranU. MehendaleN. PatilS. ChaguturuR. PatwardhanB. Network Pharmacology.Inno. Approach. Drug. Disc.20171276410.1016/B978‑0‑12‑801814‑9.00005‑2
    [Google Scholar]
  18. ZhuY. GuJ. ChenY. TongL. Network pharmacology to analyze the multi-target interactions of phytochemicals in cardiospermum halicacabum. Acta Pharm. Sin. B20211161379139910.1038/s41401‑020‑00555‑734221858
    [Google Scholar]
  19. López-BascónM.A. Luque de CastroM.D. Soxhlet Extraction.Handbooks in Separation Science, Liquid-Phase Extraction.Chapter 11 PooleC.F. Elsevier202032735410.1016/B978‑0‑12‑816911‑7.00011‑6
    [Google Scholar]
  20. ShimadaK. FujikawaK. YaharaK. NakamuraT. Antioxidative properties of xanthan on the autoxidation of soybean oil in cyclodextrin emulsion.J. Agric. Food Chem.199240694594810.1021/jf00018a005
    [Google Scholar]
  21. ThanujaB. ParimalavalliR. VijayanandS. AlharbiR.M. Abdel-RaoufN. IbraheemI.B.M. SholkamyE.N. DurairajK. Meansbo HadishK. Anticancer and cytotoxicity activity of native and modified black rice flour on colon cancer cell lines.Evid. Based Complement. Alternat. Med.202220221910.1155/2022/857502635237334
    [Google Scholar]
  22. PizzinoG. IrreraN. CucinottaM. PallioG. ManninoF. ArcoraciV. Oxidative stress: Harms and benefits for human health. Oxid. Med. Cell. Longev.201720178416763
    [Google Scholar]
  23. HalliwellB. GutteridgeJ.M.C. Free Radicals in Biology and Medicine.Clarendon Press2007
    [Google Scholar]
  24. AhmadR. AlamA. KhanM. AliT. ElhenawyA.A. AhmadM. Antioxidant activity, molecular docking and quantum studies of new bis-schiff bases based on benzyl phenyl ketone moietyChemistrySelect202383520230233810.1002/slct.202302338
    [Google Scholar]
  25. DowlathM.J.H. KaruppannanS.K. GiD.R. SbM.K. SubramanianS. ArunachalamK.D. Effect of solvents on phytochemical composition and antioxidant activity of Cardiospermum halicacabum (L.) extracts.Pharmacogn. J.20201261241125110.5530/pj.2020.12.173
    [Google Scholar]
  26. OthmanA.R. AbdullahN. AhmadS. IsmailI.S. ZakariaM.P. Elucidation of in-vitro anti-inflammatory bioactive compounds isolated from Jatropha curcas L. plant root.BMC Complement. Altern. Med.20151511110.1186/s12906‑015‑0528‑425652309
    [Google Scholar]
  27. GotoT. KimY. I. FuruzonoT. TakahashiN. YamakuniK. YangH. E. 10-oxo-12(Z)-octadecenoic acid, a linoleic acid metabolite produced by gut lactic acid bacteria, potently activates PPARγ and stimulates adipogenesis.FASEB20154954597603
    [Google Scholar]
  28. RamalingamA. SambandamS. MedimaghM. Al-DossaryO. IssaouiN. WojcikM.J. Study of a new piperidone as an anti-Alzheimer agent: Molecular docking, electronic and intermolecular interaction investigations by DFT method.J. King Saud Univ. Sci.202133810163210.1016/j.jksus.2021.101632
    [Google Scholar]
  29. OoiN. ChopraI. EadyA. CoveJ. BojarR. O’NeillA.J. Antibacterial activity and mode of action of tert-butylhydroquinone (TBHQ) and its oxidation product, tert-butylbenzoquinone (TBBQ).J. Antimicrob. Chemother.20136861297130410.1093/jac/dkt03023463211
    [Google Scholar]
  30. RamanB.V. SamuelL.A. SaradhiM.P. Antibacterial, antioxidant activity and GC-MS analysis of Eupatorium odoratum.Asian J. Pharm. Clin. Res.20125299106
    [Google Scholar]
  31. PejmanM. FirouzjaeiM.D. AktijS.A. DasP. ZolghadrE. JafarianH. ShamsabadiA.A. ElliottM. EsfahaniM.R. SangermanoM. SadrzadehM. WujcikE.K. RahimpourA. TiraferriA. Improved antifouling and antibacterial properties of forward osmosis membranes through surface modification with zwitterions and silver-based metal organic frameworks.J. Membr. Sci.202061111835210.1016/j.memsci.2020.118352
    [Google Scholar]
  32. CarrilloC. CaviaM. del M. Alonso-TorreS. Role of oleic acid in immune system; mechanism of action; a review.Nutr. Hosp.201227497899023165533
    [Google Scholar]
  33. TogashiN. ShiraishiA. NishizakaM. MatsuokaK. EndoK. HamashimaH. InoueY. Antibacterial activity of long-chain fatty alcohols against Staphylococcus aureus.Molecules200712213914810.3390/1202013917846563
    [Google Scholar]
  34. ChoeE. MinD.B. Mechanisms of antioxidants in the oxidation of foods.Compr. Rev. Food Sci. Food Saf.20098434535810.1111/j.1541‑4337.2009.00085.x
    [Google Scholar]
  35. KrishnanR. MuruganK. Comparison of GC-MS analysis of phytochemicals in the ethanolic extracts of Marchantia linearis Lehm & Lindenb. and Marchantia polymorpha L. (Bryophyta).Int. J. Pharm. Sci. Res.2014551981198710.13040/IJPSR.0975‑8232.5(5).1981‑87
    [Google Scholar]
  36. VanithaV. VijayakumarS. NilavukkarasiM. PunithaV.N. VidhyaE. PraseethaP.K. Heneicosane—A novel microbicidal bioactive alkane identified from Plumbago zeylanica L.Ind. Crops Prod.202015411274810.1016/j.indcrop.2020.112748
    [Google Scholar]
  37. BaskaranG. ShukorM.Y. SalvamaniS. AhmadS.A. ShaharuddinN.A. PattiramP.D. HMG-CoA reductase inhibitory activity and phytocomponent investigation of Basella alba leaf extract as a treatment for hypercholesterolemia.Drug Des. Devel. Ther.2015950951710.2147/DDDT.S7505625609924
    [Google Scholar]
  38. BalachandranA. ChoiS.B. BeataM.M. MałgorzataJ. FroemmingG.R.A. LavillaC.A.Jr BillacuraM.P. SiyumbwaS.N. OkechukwuP.N. Antioxidant, wound healing potential and in silico assessment of naringin, eicosane and octacosane.Molecules2023283104310.3390/molecules2803104336770709
    [Google Scholar]
  39. TundidorI. Seijo-VilaM. Blasco-BenitoS. Rubert-HernándezM. AdámezS. AndradasC. ManzanoS. Álvarez-LópezI. SarasquetaC. Villa-MoralesM. González-LoisC. Ramírez-MedinaE. AlmogueraB. Sánchez-LópezA.J. BindilaL. HamannS. ArnoldN. RöckenC. Heras-MurilloI. SanchoD. Moreno-BuenoG. CaffarelM.M. GuzmánM. SánchezC. Pérez-GómezE. Identification of fatty acid amide hydrolase as a metastasis suppressor in breast cancer.Nat. Commun.2023141313010.1038/s41467‑023‑38750‑937253733
    [Google Scholar]
  40. DalalH. DahlgrenM. GladchukS. BruefferC. Gruvberger-SaalS.K. SaalL.H. Clinical associations of ESR2 (estrogen receptor beta) expression across thousands of primary breast tumors.Sci. Rep.2022121469610.1038/s41598‑022‑08210‑335304506
    [Google Scholar]
  41. Vera-BadilloF.E. TempletonA.J. de GouveiaP. Diaz-PadillaI. BedardP.L. Al-MubarakM. SerugaB. TannockI.F. OcanaA. AmirE. Androgen receptor expression and outcomes in early breast cancer: a systematic review and meta-analysis.J. Natl. Cancer Inst.2014106131910.1093/jnci/djt31924273215
    [Google Scholar]
  42. ZimmermannG.R. LehárJ. KeithC.T. Multi-target therapeutics: when the whole is greater than the sum of the parts.Drug Discov. Today2007121-2344210.1016/j.drudis.2006.11.00817198971
    [Google Scholar]
  43. ZhengC.S. XuX.J. YeH.Z. WuG.W. LiX.H. XuH.F. LiuX.X. Network pharmacology-based prediction of the multi-target capabilities of the compounds in Taohong Siwu decoction, and their application in osteoarthritis.Exp. Ther. Med.20136112513210.3892/etm.2013.110623935733
    [Google Scholar]
/content/journals/cbc/10.2174/0115734072309930240905141819
Loading
/content/journals/cbc/10.2174/0115734072309930240905141819
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test