Skip to content
2000
Volume 21, Issue 7
  • ISSN: 1573-4072
  • E-ISSN: 1875-6646

Abstract

Background

Hepatotoxicity is a major complication of antitubercular therapy (ATT). Herbal remedies might alleviate ATT-induced hepatotoxicity owing to a wide range of bioactive phytoconstituents.

Objectives

The present study evaluated the hepatoprotective effects of (L.) leaves against ATT.

Methods

The ethanolic extract of (L.) leaves (EECL) was prepared, and rutin was analyzed in the extract using HPTLC. ATT (Isoniazid, Rifampicin, Pyrazinamide, Ethambutol) was administered in Wistar rats to induce hepatotoxicity, and EECL (200 and 400 mg/kg) or silymarin (100 mg/kg) was given orally for 35 days.

Results

EECL ameliorated ( < 0.05) different blood biomarkers (aminotransferases, alkaline phosphatase, serum protein, -glutamyl transpeptidase, lactate dehydrogenase, and total bilirubin) of liver injury against ATT. EECL enhanced ( < 0.05) hepatic sulfhydryl (-SH) group antioxidants along with a substantial upsurge in antioxidant enzymes and Nrf-2 levels and decreased hepatic lipid peroxidation. A decrease ( < 0.05) in ATT-induced hepatic pro-inflammatory cytokines, NF-B, and liver lysosomal (cathepsin D and -galactosidase) and cytochrome P450 enzymes (CYP2E1 and CYP3A4) was observed in EECL-treated rats. Histopathological studies showed improved hepatocellular structure against oxidative- and inflammation-induced necrosis and other tissue modifications by EECL. The HPTLC analysis showed the presence of rutin in the crude extract.

Conclusion

Evidence suggests that protects against ATT-induced hepatic injury, and rutin might be responsible for the beneficial effects. leaves have therapeutic potential in mitigating drug-induced (ATT) hepatotoxic effects.

Loading

Article metrics loading...

/content/journals/cbc/10.2174/0115734072310935241014044043
2024-10-23
2025-09-25
Loading full text...

Full text loading...

References

  1. SulisG. RoggiA. MatteelliA. RaviglioneM.C. Tuberculosis: Epidemiology and control.Mediterr. J. Hematol. Infect. Dis.201461e201407010.4084/mjhid.2014.07025408856
    [Google Scholar]
  2. TostmannA. BoereeM.J. AarnoutseR.E. De LangeW.C.M. Van Der VenA.J.A.M. DekhuijzenR. Antituberculosis drug‐induced hepatotoxicity: Concise up‐to‐date review.J. Gastroenterol. Hepatol.200823219220210.1111/j.1440‑1746.2007.05207.x17995946
    [Google Scholar]
  3. DartoisV.A. RubinE.J. Anti-tuberculosis treatment strategies and drug development: Challenges and priorities.Nat. Rev. Microbiol.2022201168570110.1038/s41579‑022‑00731‑y35478222
    [Google Scholar]
  4. HussainZ. ZhuJ. MaX. Metabolism and hepatotoxicity of pyrazinamide, an antituberculosis drug.Drug Metab. Dispos.202149867968210.1124/dmd.121.00038934074731
    [Google Scholar]
  5. ZhuangX. LiL. LiuT. ZhangR. YangP. WangX. DaiL. Mechanisms of isoniazid and rifampicin-induced liver injury and the effects of natural medicinal ingredients: A review.Front. Pharmacol.202213103781410.3389/fphar.2022.103781436299895
    [Google Scholar]
  6. RamappaV. AithalG.P. Hepatotoxicity Related to Anti-tuberculosis Drugs: Mechanisms and Management.J. Clin. Exp. Hepatol.201331374910.1016/j.jceh.2012.12.00125755470
    [Google Scholar]
  7. MetushiI. UetrechtJ. PhillipsE. Mechanism of isoniazid‐induced hepatotoxicity: Then and now.Br. J. Clin. Pharmacol.20168161030103610.1111/bcp.1288526773235
    [Google Scholar]
  8. HouW. NsengimanaB. YanC. NashanB. HanS. Involvement of endoplasmic reticulum stress in rifampicin-induced liver injury.Front. Pharmacol.202213102280910.3389/fphar.2022.102280936339603
    [Google Scholar]
  9. TuY. SunL. GuoM. ChenW. The medicinal uses of Callicarpa L. in traditional chinese medicine: An ethnopharmacological, phytochemical and pharmacological review.J. Ethnopharmacol.2013146246548110.1016/j.jep.2012.12.05123313870
    [Google Scholar]
  10. JonesW. KinghornA. Biologically active natural products of the genus Callicarpa.Curr. Bioact. Compd.200841153210.2174/15734070878453339319830264
    [Google Scholar]
  11. QadrieZ.L. BalasubramaniumR. RehmanS.U. Screening of liver protective effect of ethanolic leaf extract of Callicarpa lanata (EECL) in ethanol induced hepatotoxicity in wister rats.Int. J. Basic Clin. Pharmacol.20198359560010.18203/2319‑2003.ijbcp20190671
    [Google Scholar]
  12. HimajaN. Comparative study of hepatoprotective activity of Acanthospermum hispidum plant extract and herbal niosomal suspension against anti-tubercular drug induced hepatotoxicity in rats.Asian J. Pharm. Clin. Res.201585256259
    [Google Scholar]
  13. OhkawaH. OhishiN. YagiK. Assay for lipid peroxides in animal tissues by thiobarbituric acid reaction.Anal. Biochem.197995235135810.1016/0003‑2697(79)90738‑336810
    [Google Scholar]
  14. EllmanG.L. Tissue sulfhydryl groups.Arch. Biochem. Biophys.1959821707710.1016/0003‑9861(59)90090‑613650640
    [Google Scholar]
  15. SuzukiK. Measurement of Mn-SOD and Cu, Zn- SOD.Experimental Protocols for Reactive Oxygen and Nitrogen SpeciesOxford University PressEngland, U.K. TaniguchiN. GutteridgeM.C.J. 2000919510.1093/oso/9780198506683.003.0025
    [Google Scholar]
  16. ClaiborneA. Catalase activity.CRC Methods for Oxygen Radical ResearchCRC PressBoca Raton GreenwaldR.A. 1985283284
    [Google Scholar]
  17. HabigW.H. PabstM.J. JakobyW.B. Glutathione S-transferases. The first enzymatic step in mercapturic acid formation.J. Biol. Chem.1974249227130713910.1016/S0021‑9258(19)42083‑84436300
    [Google Scholar]
  18. RotruckJ.T. PopeA.L. GantherH.E. SwansonA.B. HafemanD.G. HoekstraW.G. Selenium: Biochemical role as a component of glutathione peroxidase.Science1973179407358859010.1126/science.179.4073.5884686466
    [Google Scholar]
  19. ShawP. ChattopadhyayA. Nrf2–ARE signaling in cellular protection: Mechanism of action and the regulatory mechanisms.J. Cell. Physiol.202023543119313010.1002/jcp.2921931549397
    [Google Scholar]
  20. SankarM. RajkumarJ. SridharD. Hepatoprotective activity of heptoplus on isoniazid and rifampicin induced liver damage in rats.Indian J. Pharm. Sci.201577555656210.4103/0250‑474X.16902826798170
    [Google Scholar]
  21. NajiK.M. Al-KhatibB.Y. Al-HajN.S. D’souzaM.R. Hepatoprotective activity of melittin on isoniazid- and rifampicin-induced liver injuries in male albino rats.BMC Pharmacol. Toxicol.20212213910.1186/s40360‑021‑00507‑934217369
    [Google Scholar]
  22. JenaA.B. SamalR.R. BholN.K. DuttaroyA.K. Cellular Red-Ox system in health and disease: The latest update.Biomed. Pharmacother.202316211460610.1016/j.biopha.2023.11460636989716
    [Google Scholar]
  23. DunningS. ur RehmanA. TieboschM.H. HannivoortR.A. HaijerF.W. WoudenbergJ. van den HeuvelF.A.J. Buist-HomanM. FaberK.N. MoshageH. Glutathione and antioxidant enzymes serve complementary roles in protecting activated hepatic stellate cells against hydrogen peroxide-induced cell death.Biochim. Biophys. Acta Mol. Basis Dis.20131832122027203410.1016/j.bbadis.2013.07.00823871839
    [Google Scholar]
  24. BiswasA. SantraS. BishnuD. DhaliG.K. ChowdhuryA. SantraA. Isoniazid and rifampicin produce hepatic fibrosis through an oxidative stress-dependent mechanism.Int. J. Hepatol.2020202011210.1155/2020/698729532373368
    [Google Scholar]
  25. EminzadeS. UrasF. IzzettinF.V. Silymarin protects liver against toxic effects of anti-tuberculosis drugs in experimental animals.Nutr. Metab. (Lond.)2008511810.1186/1743‑7075‑5‑1818601745
    [Google Scholar]
  26. SanjayS. GirishC. ToiP.C. BobbyZ. Gallic acid attenuates isoniazid and rifampicin-induced liver injury by improving hepatic redox homeostasis through influence on Nrf2 and NF-κB signalling cascades in Wistar Rats.J. Pharm. Pharmacol.202173447348610.1093/jpp/rgaa04833793834
    [Google Scholar]
  27. LiuX. ZhaoM. MiJ. ChenH. ShengL. LiY. Protective effect of bicyclol on anti-tuberculosis drug induced liver injury in rats.Molecules201722452410.3390/molecules2204052428387740
    [Google Scholar]
  28. LiG. YangY. YangJ. SuoY. XuH. LiuP. WangJ. DengG. FengT. Hepatoprotective effects of Malus hupehensis tea against isoniazid- and rifampicin-induced liver injury by regulating cytochrome P450 in mice.J. Funct. Foods20218410458010.1016/j.jff.2021.104580
    [Google Scholar]
  29. RamadoriG. MoriconiF. MalikI. DudasJ. Physiology and pathophysiology of liver inflammation, damage and repair.J. Physiol. Pharmacol.200859Suppl 110711718802219
    [Google Scholar]
  30. YangJ. LiG. BaoX. SuoY. XuH. DengY. FengT. DengG. Hepatoprotective effects of phloridzin against isoniazid-rifampicin induced liver injury by regulating CYP450 and Nrf2/HO-1 pathway in mice.Chem. Pharm. Bull. (Tokyo)2022701180581110.1248/cpb.c22‑0046636070932
    [Google Scholar]
  31. LueddeT. SchwabeR.F. NF-κB in the liver—linking injury, fibrosis and hepatocellular carcinoma.Nat. Rev. Gastroenterol. Hepatol.20118210811810.1038/nrgastro.2010.21321293511
    [Google Scholar]
  32. MittalM. SiddiquiM.R. TranK. ReddyS.P. MalikA.B. Reactive oxygen species in inflammation and tissue injury.Antioxid. Redox Signal.20142071126116710.1089/ars.2012.514923991888
    [Google Scholar]
  33. MujahidM. HussainT. SiddiquiH.H. HussainA. Evaluation of hepatoprotective potential of Erythrina indica leaves against antitubercular drugs induced hepatotoxicity in experimental rats.J. Ayurveda Integr. Med.20178171210.1016/j.jaim.2016.10.00527916487
    [Google Scholar]
  34. Al-DhabiN.A. ArasuM.V. ParkC.H. ParkS.U. An up-to-date review of rutin and its biological and pharmacological activities.EXCLI J.201514596310.17179/excli2014‑66326535031
    [Google Scholar]
  35. Koval’skiiI.V. KrasnyukI.I. KrasnyukI.I. NikulinaO.I. BelyatskayaA.V.. KharitonovY.Y. FeldmanN.B. LutsenkoS.V. Mechanisms of rutin pharmacological action (review).Pharm. Chem. J.2014482737610.1007/s11094‑014‑1050‑6
    [Google Scholar]
  36. EnogieruA.B. HaylettW. HissD.C. BardienS. EkpoO.E. Rutin as a potent antioxidant: Implications for neurodegenerative disorders.Oxid. Med. Cell. Longev.201820181624101710.1155/2018/624101730050657
    [Google Scholar]
  37. GaneshpurkarA. SalujaA.K. The pharmacological potential of rutin.Saudi Pharm. J.201725214916410.1016/j.jsps.2016.04.02528344465
    [Google Scholar]
  38. ChopraH. DeyP.S. DasD. BhattacharyaT. ShahM. MubinS. MaishuS.P. AkterR. RahmanM.H. KarthikaC. MuradW. QustyN. QustiS. AlshammariE.M. BatihaG.E.S. AltalbawyF.M.A. AlbooqM.I.M. AlamriB.M. Curcumin nanoparticles as promising therapeutic agents for drug targets.Molecules20212616499810.3390/molecules2616499834443593
    [Google Scholar]
  39. BehlT. BungauS. KumarK. ZenginG. KhanF. KumarA. KaurR. VenkatachalamT. TitD.M. VesaC.M. BarsanG. MosteanuD.E. Pleotropic effects of polyphenols in cardiovascular system.Biomed. Pharmacother.202013011071410.1016/j.biopha.2020.11071434321158
    [Google Scholar]
/content/journals/cbc/10.2174/0115734072310935241014044043
Loading
/content/journals/cbc/10.2174/0115734072310935241014044043
Loading

Data & Media loading...

Supplements

Supplementary material is available on the publisher’s website along with the published article.


  • Article Type:
    Research Article
Keyword(s): cytochrome P450; HPTLC; liver injury; NF-κB; Nrf-2; Rutin
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test