Skip to content
2000
Volume 21, Issue 10
  • ISSN: 1573-4072
  • E-ISSN: 1875-6646

Abstract

Introduction

Diabetic cardiomyopathy (DCM) is a critical complication involving oxidative stress and inflammation, that is not amenable to current therapeutic strategies. Herbal remedies are increasingly being used as an alternative to current treatment options.

Objectives

In this research, we evaluated the effects of (Buch.-Ham.) Th. G. G. Nees leaves the extract in DCM and its scope as an adjunct or alternative therapy along with existing standard treatment.

Methods

The ethanolic extract was prepared using the Soxhlet apparatus and rotary evaporator. Streptozotocin (1st day) and isoproterenol (12th and 13th day) were given to induce DCM in rats. Oral treatment with ethanolic extract of leaves (250 and 500 mg/kg) or glibenclamide (10 mg/kg) was given from the 3rd to the 14th day.

Results and Discussion

extract or glibenclamide attenuated streptozotocin-induced hyperglycemia in rats. extract or glibenclamide (10 mg/kg) inhibited serum dyslipidemia, lactate dehydrogenase, and creatine kinase MB activities. The body weight, total heart protein, and heart weight were ameliorated by extract or glibenclamide (10 mg/kg). Furthermore, DCM culminated in cardiac oxidative stress and inflammation, and these biochemical parameters were ameliorated by extract or glibenclamide (10 mg/kg) treatment. The combination of extract (500 mg/kg) and glibenclamide (5 mg/kg, low dose) significantly attenuated DCM relative to separate treatments.

Conclusion

can be a useful alternative or adjunct therapy in DCM therapeutics. The combinatorial treatment approach with might reduce the dose of therapeutic molecules used in the current clinical practice of DCM.

Loading

Article metrics loading...

/content/journals/cbc/10.2174/0115734072310341240927042137
2024-12-31
2026-01-01
Loading full text...

Full text loading...

References

  1. MurtazaG. VirkH.U.H. KhalidM. LavieC.J. VenturaH. MukherjeeD. RamuV. BhogalS. KumarG. ShanmugasundaramM. PaulT.K. Diabetic cardiomyopathy - A comprehensive updated review.Prog. Cardiovasc. Dis.201962431532610.1016/j.pcad.2019.03.003 30922976
    [Google Scholar]
  2. Falcão-PiresI. Leite-MoreiraA.F. Diabetic cardiomyopathy: understanding the molecular and cellular basis to progress in diagnosis and treatment.Heart Fail. Rev.201217332534410.1007/s10741‑011‑9257‑z 21626163
    [Google Scholar]
  3. JubaidiF.F. ZainalabidinS. TaibI.S. HamidZ.A. BudinS.B. The potential role of flavonoids in ameliorating diabetic cardiomyopathy via alleviation of cardiac oxidative stress, inflammation and apoptosis.Int. J. Mol. Sci.20212210509410.3390/ijms22105094 34065781
    [Google Scholar]
  4. FarhadnejadH. SaberN. Neshatbini TehraniA. Kazemi JahromiM. MokhtariE. NorouzzadehM. TeymooriF. AsghariG. MirmiranP. AziziF. Herbal products as complementary or alternative medicine for the management of hyperglycemia and dyslipidemia in patients with type 2 diabetes: current evidence based on findings of interventional studies.J. Nutr. Metab.202420241830042810.1155/2024/8300428 39021815
    [Google Scholar]
  5. McBenedictB. OrfaoA.L. GohK.S. YauR.C.C. AlphonseB. Machado LimaJ. AhmedH.A. IenacoG.P. Cristina de SouzaE. Lima PessôaB. HauwangaW.N. ValentimG. de Souza ChagasM. AbrahãoA. The role of alternative medicine in managing type 2 diabetes: a comprehensive review.Cureus2024166e6196510.7759/cureus.61965 38978922
    [Google Scholar]
  6. KubliD.A. GustafssonÅ.B. Unbreak my heart: targeting mitochondrial autophagy in diabetic cardiomyopathy.Antioxid. Redox Signal.201522171527154410.1089/ars.2015.6322 25808102
    [Google Scholar]
  7. Nikolajević StarčevićJ. JanićM. ŠabovičM. Molecular mechanisms responsible for diastolic dysfunction in diabetes mellitus patients.Int. J. Mol. Sci.2019205119710.3390/ijms20051197 30857271
    [Google Scholar]
  8. NajarI.A. BhatM.H. QadrieZ.L. AmaldossM.J.N. KushwahA.S. SinghT.G. KabraA. KhanN. KumarM. Cardioprotection by Citrus grandis (L.) peel ethanolic extract in alloxan-induced cardiotoxicity in diabetic rats.BioMed Res. Int.202220221910.1155/2022/2807337 35757467
    [Google Scholar]
  9. ManorenjithaM.S. ZairiJ. LingS.K. MailinaJ. NuziahH. Chemical constituents of the fruit peel from white flesh Citrus grandis (L.).Osbeck. Int. J. Pharm. Biol. Sci.201671267278
    [Google Scholar]
  10. TianJ. ZhaoY. LiuY. LiuY. ChenK. LyuS. Roles and mechanisms of herbal medicine for diabetic cardiomyopathy: current status and perspective.Oxid. Med. Cell. Longev.201720171821454110.1155/2017/8214541 29204251
    [Google Scholar]
  11. SharmaV. RaoL.J.M. An overview on chemical composition, bioactivity and processing of leaves of Cinnamomum tamala.Crit. Rev. Food Sci. Nutr.201454443344810.1080/10408398.2011.587615 24236996
    [Google Scholar]
  12. TiwariS. TalrejaS. Importance of Cinnamomum tamala in the treatment of various diseases.Pharmacogn. J.2020126s1792179610.5530/pj.2020.12.241
    [Google Scholar]
  13. MehtaS. PurohitV.K. AndolaH.C. Pharmacological activities of Cinnamomum tamala Nees & eberm. and medical implication: A Review.Med. Aromat. Plants20143416
    [Google Scholar]
  14. WangY. SunH. ZhangJ. XiaZ. ChenW. Streptozotocin-induced diabetic cardiomyopathy in rats: Ameliorative effect of piperine via Bcl2, Bax/Bcl2, and caspase-3 pathways.Biosci. Biotechnol. Biochem.202084122533254410.1080/09168451.2020.1815170 32892714
    [Google Scholar]
  15. BhandariU. AnsariM.N. Ameliorative effect of an ethanol extract of Embelia ribes fruits on isoproterenol-induced cardiotoxicity in diabetic rats.Pharm. Biol.200947866967410.1080/13880200902918378
    [Google Scholar]
  16. AlmulathanonA.A.Y. MohammadJ.A. FathiF.H. Comparative effects of metformin and glibenclamide on the redox balance in type 2 diabetic patients.Pharmacia202168232733210.3897/pharmacia.68.e63365
    [Google Scholar]
  17. SultanaB. AnwarF. AshrafM. Effect of extraction solvent/technique on the antioxidant activity of selected medicinal plant extracts.Molecules20091462167218010.3390/molecules14062167 19553890
    [Google Scholar]
  18. KumarA. P, N.; Kumar, M.; Jose, A.; Tomer, V.; Oz, E.; Proestos, C.; Zeng, M.; Elobeid, T.; K, S.; Oz, F. Major phytochemicals: Recent advances in health benefits and extraction method.Molecules202328288710.3390/molecules28020887 36677944
    [Google Scholar]
  19. RakshaR. RajeshK. PreetiS. Younis AhmadH. SeemaR. Phytochemical screening and free radical scavenging activity of Cinnamomum tamala leaf extract.Int. J. Zoolog. Investig.2021722454305510.33745/ijzi.2021.v07i02.008
    [Google Scholar]
  20. BarmanA.K. HossainA. RahmanS. ChakrobartiR. SahidM.I. AcharyyaR.N. Investigation of antioxidant and antihyperglycemic activities of ethanol leaves extract of Cinamomum tamala, a commonly used cooking ingredient.RPSU Res. J.202321112
    [Google Scholar]
  21. ArshadW. KhanH.M.S. AkhtarN. MohammadI.S. Polymeric emulgel carrying Cinnamomum tamala extract: promising delivery system for potential topical applications.Braz. J. Pharm. Sci.202056e1831810.1590/s2175‑97902019000418318
    [Google Scholar]
  22. BalamuruganV. FatimaS. VelurajanS. A Guide to Phytochemical Analysis.Int. J. Adv. Res. Innov. Ideas Educ.201951236245
    [Google Scholar]
  23. VelavanS. Phytochemical Techniques-A Review.World J. Sci. Res.2015128091
    [Google Scholar]
  24. FurmanB.L. Streptozotocin‐induced diabetic models in mice and rats.Curr. Protoc.202114e7810.1002/cpz1.78 33905609
    [Google Scholar]
  25. NagarajuB. ChS.V. KumarA. VikasS. Evaluation of cardioprotective activity of ethanolic extract of dried leaves of Cinnamomum tamala in rats.Int. J. Biomed. Adv. Res. Ch. A7418110.7439/ijbar.v7i4.3211
    [Google Scholar]
  26. PullaiahC.P. NelsonV.K. RayapuS. Gv NK KedamT Exploring cardioprotective potential of esculetin against isoproterenol induced myocardial toxicity in rats: in vivo and in vitro evidence.BMC Pharmacol. Toxicol.20212214310.1186/s40360‑021‑00510‑0 34266475
    [Google Scholar]
  27. VilvanathanS. Screening Methods for the Evaluation of Antianginal Agents.202228329610.1007/978‑981‑19‑5343‑9_21
    [Google Scholar]
  28. AnsariM.N. BhandariU. Effect of an Ethanol Extract of Embelia ribes Fruits on Isoproterenol-Induced Myocardial Infarction in Albino Rats.Pharm. Biol.2008461292893210.1080/13880200802367254
    [Google Scholar]
  29. HughesB.P. A method for the estimation of serum creatine kinase and its use in comparing creatine kinase and aldolase activity in normal and pathological sera.Clin. Chim. Acta19627559760310.1016/0009‑8981(62)90137‑7 13955534
    [Google Scholar]
  30. OhkawaH. OhishiN. YagiK. Assay for lipid peroxides in animal tissues by thiobarbituric acid reaction.Anal. Biochem.197995235135810.1016/0003‑2697(79)90738‑3 36810
    [Google Scholar]
  31. EllmanG.L. Tissue sulfhydryl groups.Arch. Biochem. Biophys.1959821707710.1016/0003‑9861(59)90090‑6 13650640
    [Google Scholar]
  32. MisraH.P. FridovichI. The role of superoxide anion in the autoxidation of epinephrine and a simple assay for superoxide dismutase.J. Biol. Chem.1972247103170317510.1016/S0021‑9258(19)45228‑9 4623845
    [Google Scholar]
  33. AebiH. Catalase.Methods of Enzymatic Analysis.2nd ed BergmeyerH.U. Academic Press197467368510.1016/B978‑0‑12‑091302‑2.50032‑3
    [Google Scholar]
  34. LowryO. RosebroughN. FarrA.L. RandallR. Protein measurement with the Folin phenol reagent.J. Biol. Chem.1951193126527510.1016/S0021‑9258(19)52451‑6 14907713
    [Google Scholar]
  35. ByrneN.J. RajasekaranN.S. AbelE.D. BuggerH. Therapeutic potential of targeting oxidative stress in diabetic cardiomyopathy.Free Radic. Biol. Med.202116931734210.1016/j.freeradbiomed.2021.03.046 33910093
    [Google Scholar]
  36. WarraichH.J. RanaJ.S. Dyslipidemia in diabetes mellitus and cardiovascular disease.Cardiovasc. Endocrinol.201761273210.1097/XCE.0000000000000120 31646116
    [Google Scholar]
  37. PeyaF.Y. NirzanaS.A. MimI.J. KhanT.R. MandalS.K. AlamM. HaqueR. MinhajN.S. RahmanT. TahsinR. An evaluation of anti-hyperlipidemic activity of ethanolic extract of cinnamomum tamala leaves in high fat induced rodent model.Asia J Food Res Nut.202324331339https://journalajfrn.com/index.php/AJFRN/article/view/56
    [Google Scholar]
  38. Varsha DhulasavantV.D. Shubhangi ShindeS.S. Mangesh PawarM.P. NaikwadeN.S. Antihyperlipidemic activity of Cinnamomum tamala Nees. on high cholesterol diet induced hyperlipidemia.IJPRIF20102425172521
    [Google Scholar]
  39. SchumacherS.M. Naga PrasadS.V. Tumor necrosis factor-α] in heart failure: An updated review.Curr. Cardiol. Rep.2018201111710.1007/s11886‑018‑1067‑7 30259192
    [Google Scholar]
  40. DinhW. FüthR. NicklW. KrahnT. EllinghausP. ScheffoldT. BansemirL. BufeA. BarrosoM.C. LankischM. Elevated plasma levels of TNF-alpha and Interleukin-6 in patients with diastolic dysfunction and glucose metabolism disorders.Cardiovasc. Diabetol.2009815810.1186/1475‑2840‑8‑58 19909503
    [Google Scholar]
  41. Torres-FuentesC. SuárezM. AragonèsG. MuleroM. Ávila-RománJ. Arola-ArnalA. SalvadóM.J. ArolaL. BravoF.I. MuguerzaB. Cardioprotective properties of phenolic compounds: A role for biological rhythms.Mol. Nutr. Food Res.20226621210099010.1002/mnfr.202100990 35279936
    [Google Scholar]
  42. AlkholifiF.K. DeviS. YusufogluH.S. AlamA. The cardioprotective effect of corosolic acid in the diabetic rats: A possible mechanism of the PPAR-γ pathway.Molecules202328392910.3390/molecules28030929 36770602
    [Google Scholar]
  43. BehlT. BungauS. KumarK. ZenginG. KhanF. KumarA. KaurR. VenkatachalamT. TitD.M. VesaC.M. BarsanG. MosteanuD.E. Pleotropic effects of polyphenols in cardiovascular system.Biomed. Pharmacother.202013011071410.1016/j.biopha.2020.110714 34321158
    [Google Scholar]
  44. PourmadadiM. OstovarS. Ruiz-PulidoG. HassanD. SouriM. ManicumA.L.E. BehzadmehrR. Fathi-karkanS. RahdarA. MedinaD.I. PandeyS. Novel epirubicin-loaded nanoformulations: Advancements in polymeric nanocarriers for efficient targeted cellular and subcellular anticancer drug delivery.Inorg. Chem. Commun.202315511099910.1016/j.inoche.2023.110999
    [Google Scholar]
  45. MustafaG. HassanD. ZeeshanM. Ruiz-PulidoG. EbrahimiN. MobasharA. PourmadadiM. RahdarA. SargaziS. Fathi-karkanS. MedinaD.I. Díez-PascualA.M. Advances in nanotechnology versus stem cell therapy for the theranostics of Huntington’s disease.J. Drug Deliv. Sci. Technol.20238710477410.1016/j.jddst.2023.104774
    [Google Scholar]
  46. Fathi-karkanS. ZeeshanM. QindeelM. Eshaghi MalekshahR. RahdarA. FerreiraL.F.R. NPs loaded with zoledronic acid as an advanced tool for cancer therapy.J. Drug Deliv. Sci. Technol.20238710480510.1016/j.jddst.2023.104805
    [Google Scholar]
/content/journals/cbc/10.2174/0115734072310341240927042137
Loading
/content/journals/cbc/10.2174/0115734072310341240927042137
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test