Skip to content
2000
Volume 21, Issue 5
  • ISSN: 1573-4072
  • E-ISSN: 1875-6646

Abstract

Introduction

Non-optimized extraction conditions can lead to loss, degradation, and modification of biomolecules. In this study, we investigated the influence of various factors on the extraction yield and antioxidant activity of total carotenoids from orange coral .

Materials and Methods

Total carotenoid yields were compared using eleven different solvent systems, with acetone demonstrating the highest extraction efficiency. Subsequently, we explored the impact of extraction time, temperature, acetone concentration, liquid-matter ratio, the addition of a synthetic antioxidant (butylated hydroxytoluene), and ultrasonic power on total carotenoids' yield and antioxidant capacities, employing experimental designs based on Plackett-Burman and Box-Behnken methodologies.

Results and Discussion

Under the different extraction conditions, total carotenoid yields exhibited a remarkable range from 2.43 mg/g to 28.12 mg/g. Additionally, the antioxidant activity saw significant enhancements from 30.68% to 57.76% for the ABTS assay and from 14.34% to 44.34% for the DPPH assay, respectively. Ultrasound extraction yielded higher carotenoid levels (25.90 mg/g . 10.65 mg/g in microwaves) and better antioxidant activity (IC values: 0.19 ± 0.002 mg/mL for ABTS, 0.35 ± 0.009 mg/mL for DPPH) compared to microwave extraction. The interplay between extraction time and temperature emerged as pivotal, with increased time initially boosting yields and optimal temperatures expediting extractions within shorter durations. Higher solvent concentrations and appropriate solvent-to-sample ratios also played a significant role in enhancing carotenoid migration.

Conclusion

By optimizing extraction conditions, researchers can enhance the efficiency and effectiveness of natural product isolation processes, thus facilitating further exploration and utilization of these valuable bioactive compounds.

Loading

Article metrics loading...

/content/journals/cbc/10.2174/0115734072308822240529101221
2024-06-11
2025-09-28
Loading full text...

Full text loading...

References

  1. CapecchiA. ReymondJ.L. Classifying natural products from plants, fungi or bacteria using the coconut database and machine learning.J. Cheminform.20211318210.1186/s13321‑021‑00559‑3 34663470
    [Google Scholar]
  2. TresinaP.S. SelvamM.S. RajeshA. DossA. MohanV.R. Natural products in drug discovery: Approaches and development.J. Pharm. Res. Int.2021339311010.9734/jpri/2021/v33i35A31879
    [Google Scholar]
  3. PawariyaV. DeS. DuttaJ. Chitosan-based Schiff bases: Promising materials for biomedical and industrial applications.Carbohydr. Polym.202432312139510.1016/j.carbpol.2023.121395 37940288
    [Google Scholar]
  4. DeS. DanA.K. SahuR. ParidaS. DasD. Total synthesis of natural products using gold catalysis.Chem. Asian J.20221724e20220089610.1002/asia.202200896 36256453
    [Google Scholar]
  5. DeS. Sunaydih AlsaeediM. DasD. Mechanistic insight into the synergistic role of the dual-surfactant system as a green solvent for deoximation reaction: An experimental and computational analysis.J. Mol. Liq.202440012455910.1016/j.molliq.2024.124559
    [Google Scholar]
  6. LiangX. LuoD. LueschH. Advances in exploring the therapeutic potential of marine natural products.Pharmacol. Res.201914710437310.1016/j.phrs.2019.104373 31351913
    [Google Scholar]
  7. RahmanM.H. BajgaiJ. FadriquelaA. SharmaS. TrinhT.T. AkterR. JeongY.J. GohS.H. KimC.S. LeeK.J. Therapeutic potential of natural products in treating neurodegenerative disorders and their future prospects and challenges.Molecules20212617532710.3390/molecules26175327 34500759
    [Google Scholar]
  8. Chunarkar-PatilP. KaleemM. MishraR. RayS. AhmadA. VermaD. BhayyeS. DubeyR. SinghH. KumarS. Anticancer drug discovery based on natural products: From computational approaches to clinical studies.Biomedicines202412120110.3390/biomedicines12010201 38255306
    [Google Scholar]
  9. SimmonsT.L. AndrianasoloE. McPhailK. FlattP. GerwickW.H. Marine natural products as anticancer drugs.Mol. Cancer Ther.20054233334210.1158/1535‑7163.333.4.2 15713904
    [Google Scholar]
  10. KornprobstJ-M. Substances Naturelles d’origine Marine: Chimiodiversité, Pharmacodiversité, Biotechnologies.FranceEditions Tec & Doc Paris2005Vol. 1
    [Google Scholar]
  11. von SchwarzenbergK. VollmarA.M. Targeting apoptosis pathways by natural compounds in cancer: Marine compounds as lead structures and chemical tools for cancer therapy.Cancer Lett.2013332229530310.1016/j.canlet.2010.07.004 20673697
    [Google Scholar]
  12. ReidC. MarshallJ. LoganD. KleineD. Coral reefs and climate change. The guide for education and awareness.2012
    [Google Scholar]
  13. MelladoG.G. ZubíaE. OrtegaM.J. López-GonzálezP.J. Steroids from the Antarctic octocoral Anthomastus bathyproctus.J. Nat. Prod.20056871111111510.1021/np050080q 16038562
    [Google Scholar]
  14. AlamN. BaeB.H. HongJ. LeeC.O. ImK.S. JungJ.H. Cytotoxic diacetylenes from the stony coral Montipora species.J. Nat. Prod.20016481059106310.1021/np010148b 11520227
    [Google Scholar]
  15. MarquisC.P. BairdA.H. de NysR. HolmströmC. KoziumiN. An evaluation of the antimicrobial properties of the eggs of 11 species of scleractinian corals.Coral Reefs200524224825310.1007/s00338‑005‑0473‑7
    [Google Scholar]
  16. LealM.C. PugaJ. SerôdioJ. GomesN.C.M. CaladoR. Trends in the discovery of new marine natural products from invertebrates over the last two decades-where and what are we bioprospecting?PLoS One201271e3058010.1371/journal.pone.0030580 22276216
    [Google Scholar]
  17. KeluturF.J. SaptariniN.M. MustarichieR. KurniaD. Bioactive compounds profile of gorgonian corals and their pharmacological activities: A review.Rasayan J. Chem.20211431773178910.31788/RJC.2021.1436406
    [Google Scholar]
  18. LedouxJ.B. GhanemR. HoraudM. López-SendinoP. Romero-SorianoV. AntunesA. BensoussanN. Gómez-GrasD. LinaresC. MachordomA. OcañaO. TempladoJ. LebloisR. Ben SouissiJ. GarrabouJ. Gradients of genetic diversity and differentiation across the distribution range of a Mediterranean coral: Patterns, processes and conservation implications.Divers. Distrib.202127112104212310.1111/ddi.13382
    [Google Scholar]
  19. CachetN. LoffredoL. VicenteO.O. ThomasO.P. Chemical diversity in the scleractinian coral Astroides calycularis.Phytochem. Lett.20136220520810.1016/j.phytol.2013.01.005
    [Google Scholar]
  20. FattorussoE. LanzottiV. MagnoS. NovellinoE. Tryptophan derivatives from a Mediterranean Anthozoan, Astroides calycularis.J. Nat. Prod.198548692492710.1021/np50042a006
    [Google Scholar]
  21. AielloA. FattorussoE. MagnoS. MisuracaG. NovellinoE. 2-Amino-6-[(1‘R,2’S)-1′,2′-dihydroxypropyl]-3-methyl-pterin-4-one, a biologically active metabolite from the anthozoanAstroides calycularis Pallas.Experientia198743895095210.1007/BF01951683
    [Google Scholar]
  22. GalassoC. CorinaldesiC. SansoneC. Carotenoids from marine organisms: Biological functions and industrial applications.Antioxidants2017649610.3390/antiox6040096 29168774
    [Google Scholar]
  23. SetiyonoE. AdhiwibawaM.A.S. IndrawatiR. PrihastyantiM.N.U. ShioiY. BrotosudarmoT.H.P. An Indonesian marine bacterium, Pseudoalteromonas rubra, produces antimicrobial prodiginine pigments.ACS Omega2020594626463510.1021/acsomega.9b04322 32175509
    [Google Scholar]
  24. CorinaldesiC. BaroneG. MarcelliniF. Dell’AnnoA. DanovaroR. Marine microbial-derived molecules and their potential use in cosmeceutical and cosmetic products.Mar. Drugs201715411810.3390/md15040118 28417932
    [Google Scholar]
  25. AasenI.M. ErtesvågH. HeggesetT.M.B. LiuB. BrautasetT. VadsteinO. EllingsenT.E. Thraustochytrids as production organisms for docosahexaenoic acid (DHA), squalene, and carotenoids.Appl. Microbiol. Biotechnol.2016100104309432110.1007/s00253‑016‑7498‑4 27041691
    [Google Scholar]
  26. AmbatiR. PhangS.M. RaviS. AswathanarayanaR. Astaxanthin: Sources, extraction, stability, biological activities and its commercial applications-a review.Mar. Drugs201412112815210.3390/md12010128 24402174
    [Google Scholar]
  27. SharmaM. BhatR. Extraction of carotenoids from pumpkin peel and pulp: Comparison between innovative green extraction technologies (ultrasonic and microwave-assisted extractions using corn oil).Foods202110478710.3390/foods10040787 33917570
    [Google Scholar]
  28. DashD.R. PathakS.S. PradhanR.C. Improvement in novel ultrasound‐assisted extraction technology of high value‐added components from fruit and vegetable peels.J. Food Process Eng.2021444e1365810.1111/jfpe.13658
    [Google Scholar]
  29. LiuY. LiuH.Y. XiaY. GuoH. HeX.Q. LiH. WuD.T. GengF. LinF.J. LiH.B. ZhuangQ-G. GanR-Y. Screening and process optimization of ultrasound-assisted extraction of main antioxidants from sweet tea (Lithocarpus litseifolius [Hance] Chun).Food Biosci.20214310127710.1016/j.fbio.2021.101277
    [Google Scholar]
  30. da Silva LimaR. NunesI.L. BlockJ.M. Ultrasound-assisted extraction for the recovery of carotenoids from guava’s pulp and waste powders.Plant Foods Hum. Nutr.2020751636910.1007/s11130‑019‑00784‑0 31838615
    [Google Scholar]
  31. GoulaA.M. VerveriM. AdamopoulouA. KaderidesK. Green ultrasound-assisted extraction of carotenoids from Pomegranate wastes using vegetable oils.Ultrason. Sonochem.20173482183010.1016/j.ultsonch.2016.07.022 27773309
    [Google Scholar]
  32. KhadhraouiB. TurkM. Fabiano-TixierA.S. PetitcolasE. RobinetP. ImbertR. MaâtaouiM.E. ChematF. Histo-cytochemistry and scanning electron microscopy for studying spatial and temporal extraction of metabolites induced by ultrasound. Towards chain detexturation mechanism.Ultrason. Sonochem.20184248249210.1016/j.ultsonch.2017.11.029 29429695
    [Google Scholar]
  33. LiY. Fabiano-TixierA.S. TomaoV. CravottoG. ChematF. Green ultrasound-assisted extraction of carotenoids based on the bio-refinery concept using sunflower oil as an alternative solvent.Ultrason. Sonochem.2013201121810.1016/j.ultsonch.2012.07.005 22884112
    [Google Scholar]
  34. ChematF. Abert VianM. Fabiano-TixierA.S. NutrizioM. Režek JambrakA. MunekataP.E.S. LorenzoJ.M. BarbaF.J. BinelloA. CravottoG. A review of sustainable and intensified techniques for extraction of food and natural products.Green Chem.20202282325235310.1039/C9GC03878G
    [Google Scholar]
  35. Pais-ChanfrauJ.M. Núñez-PérezJ. del Carmen Espin-ValladaresR. Lara-FiallosM.V. Trujillo-ToledoL.E. Uses of the Response Surface Methodology for the Optimization of Agro-Industrial Processes. Response Surface Methodology in Engineering Science.LondonIntechOpen202110.5772/intechopen.98283
    [Google Scholar]
  36. GuZ. DemingC. YongbinH. ZhigangC. FeirongG. Optimization of carotenoids extraction from Rhodobacter sphaeroides.Lebensm. Wiss. Technol.20084161082108810.1016/j.lwt.2007.07.005
    [Google Scholar]
  37. UmairM. JabbarS. NasiruM.M. LuZ. ZhangJ. AbidM. MurtazaM.A. KieliszekM. ZhaoL. Ultrasound-assisted extraction of carotenoids from carrot pomace and their optimization through response surface methodology.Molecules20212622676310.3390/molecules26226763 34833855
    [Google Scholar]
  38. ChuyenH.V. NguyenM.H. RoachP.D. GoldingJ.B. ParksS.E. Microwave‐assisted extraction and ultrasound‐assisted extraction for recovering carotenoids from Gac peel and their effects on antioxidant capacity of the extracts.Food Sci. Nutr.20186118919610.1002/fsn3.546 29387378
    [Google Scholar]
  39. ElikA. YanıkD.K. GöğüşF. Microwave-assisted extraction of carotenoids from carrot juice processing waste using flaxseed oil as a solvent.Lebensm. Wiss. Technol.202012310910010.1016/j.lwt.2020.109100
    [Google Scholar]
  40. ChenD. HanY. GuZ. Application of statistical methodology to the optimization of fermentative medium for carotenoids production by Rhodobacter sphaeroides.Process Biochem.20064181773177810.1016/j.procbio.2006.03.023
    [Google Scholar]
  41. Torres-MartínezR. García-RodríguezY.M. Ríos-ChávezP. Saavedra-MolinaA. López-MezaJ.E. Ochoa-ZarzosaA. GarcigliaR.S. Antioxidant activity of the essential oil and its major terpenes of Satureja macrostema (Moc. and Sessé ex Benth.).Briq. Pharmacogn. Mag.201813Suppl. 4S875S880 29491647
    [Google Scholar]
  42. TalbiH. BoumazaA. El-MostafaK. TalbiJ. HilaliA. Evaluation de l’activité Antioxydante et La Composition Physico-Chimique Des Extraits Méthanolique et Aqueux de La Nigella Sativa L.J. Mater. Environ. Sci.2015611111117
    [Google Scholar]
  43. FangM. YuZ. ZhangW. CaoJ. LiuW. Friction coefficient calibration of corn stalk particle mixtures using Plackett-Burman design and response surface methodology.Powder Technol.202239673174210.1016/j.powtec.2021.10.040
    [Google Scholar]
  44. YangH. WangY. JiangM. OhJ.H. HerringJ. ZhouP. 2-step optimization of the extraction and subsequent physical properties of channel catfish (Ictalurus punctatus) skin gelatin.J. Food Sci.2007724C188C19510.1111/j.1750‑3841.2007.00319.x 17995759
    [Google Scholar]
  45. BezerraM.A. SantelliR.E. OliveiraE.P. VillarL.S. EscaleiraL.A. Response surface methodology (RSM) as a tool for optimization in analytical chemistry.Talanta200876596597710.1016/j.talanta.2008.05.019 18761143
    [Google Scholar]
  46. NekkaaA. BenaissaA. LalaounaA.E.D. MuteletF. Canabady-RochelleL. Optimization of the extraction process of bioactive compounds from Rhamnus alaternus leaves using Box-Behnken experimental design.J. Appl. Res. Med. Aromat. Plants20212510034510.1016/j.jarmap.2021.100345
    [Google Scholar]
  47. TianF. LiB. JiB. YangJ. ZhangG. ChenY. LuoY. Antioxidant and antimicrobial activities of consecutive extracts from Galla chinensis: The polarity affects the bioactivities.Food Chem.2009113117317910.1016/j.foodchem.2008.07.062
    [Google Scholar]
  48. ZhaoY. LiuW. ZhuJ. ZhangH. PeiX. Solvent affinity and its applications in the prediction of mutual solubility.J. Mol. Liq.202134311770010.1016/j.molliq.2021.117700
    [Google Scholar]
  49. PérezR.A. AlberoB. Ultrasound-assisted extraction methods for the determination of organic contaminants in solid and liquid samples.Trends Analyt. Chem.202316611720410.1016/j.trac.2023.117204
    [Google Scholar]
  50. WenL. ZhangZ. SunD.W. SivagnanamS.P. TiwariB.K. Combination of emerging technologies for the extraction of bioactive compounds.Crit. Rev. Food Sci. Nutr.202060111826184110.1080/10408398.2019.1602823 30990060
    [Google Scholar]
  51. JhaA.K. SitN. Extraction of bioactive compounds from plant materials using combination of various novel methods: A review.Trends Food Sci. Technol.202211957959110.1016/j.tifs.2021.11.019
    [Google Scholar]
  52. TiwariB.K. Ultrasound: A clean, green extraction technology.Trends Analyt. Chem.20157110010910.1016/j.trac.2015.04.013
    [Google Scholar]
  53. ChematF. RombautN. SicaireA.G. MeullemiestreA. Fabiano-TixierA.S. Abert-VianM. Ultrasound assisted extraction of food and natural products. Mechanisms, techniques, combinations, protocols and applications. A review.Ultrason. Sonochem.20173454056010.1016/j.ultsonch.2016.06.035 27773280
    [Google Scholar]
  54. Carreira-CasaisA. OteroP. Garcia-PerezP. Garcia-OliveiraP. PereiraA.G. CarpenaM. Soria-LopezA. Simal-GandaraJ. PrietoM.A. Benefits and drawbacks of ultrasound-assisted extraction for the recovery of bioactive compounds from marine algae.Int. J. Environ. Res. Public Health20211817915310.3390/ijerph18179153 34501743
    [Google Scholar]
  55. EntezariM.H. KruusP. Effect of frequency on sonochemical reactions II. Temperature and intensity effects.Ultrason. Sonochem.199631192410.1016/1350‑4177(95)00037‑2
    [Google Scholar]
  56. LouZ. WangH. ZhangM. WangZ. Improved extraction of oil from chickpea under ultrasound in a dynamic system.J. Food Eng.2010981131810.1016/j.jfoodeng.2009.11.015
    [Google Scholar]
  57. XuY. PanS. Effects of various factors of ultrasonic treatment on the extraction yield of all-trans-lycopene from red grapefruit (Citrus paradise Macf.).Ultrason. Sonochem.20132041026103210.1016/j.ultsonch.2013.01.006 23414834
    [Google Scholar]
  58. AmeerK. ShahbazH.M. KwonJ.H. Green extraction methods for polyphenols from plant matrices and their byproducts: A review.Compr. Rev. Food Sci. Food Saf.201716229531510.1111/1541‑4337.12253 33371540
    [Google Scholar]
  59. WangL. WellerC.L. Recent advances in extraction of nutraceuticals from plants.Trends Food Sci. Technol.200617630031210.1016/j.tifs.2005.12.004
    [Google Scholar]
  60. Savic GajicI.M. SavicI.M. GajicD.G. DosicA. Ultrasound-assisted extraction of carotenoids from orange peel using olive oil and its encapsulation in Ca-Alginate beads.Biomolecules202111222510.3390/biom11020225 33562827
    [Google Scholar]
  61. DongJ. LiuY. LiangZ. WangW. Investigation on ultrasound-assisted extraction of salvianolic acid B from Salvia miltiorrhiza root.Ultrason. Sonochem.2010171616510.1016/j.ultsonch.2009.05.006 19497776
    [Google Scholar]
  62. HossainM.B. BruntonN.P. PatrasA. TiwariB. O’DonnellC.P. Martin-DianaA.B. Barry-RyanC. Optimization of ultrasound assisted extraction of antioxidant compounds from marjoram (Origanum majorana L.) using response surface methodology.Ultrason. Sonochem.201219358259010.1016/j.ultsonch.2011.11.001 22172467
    [Google Scholar]
  63. CarrióE. VallèsJ. Ethnobotany of medicinal plants used in Eastern Mallorca (Balearic Islands, Mediterranean Sea).J. Ethnopharmacol.201214131021104010.1016/j.jep.2012.03.049 22783553
    [Google Scholar]
  64. MezzomoN. MaestriB. dos SantosR.L. MaraschinM. FerreiraS.R.S. Pink shrimp (P. brasiliensis and P. paulensis) residue: Influence of extraction method on carotenoid concentration.Talanta20118531383139110.1016/j.talanta.2011.06.018 21807199
    [Google Scholar]
  65. LiX. ChenS. ZhangJ. YuL. ChenW. ZhangY. Optimization of ultrasonic-assisted extraction of active components and antioxidant activity from Polygala tenuifolia: A comparative study of the response surface methodology and least squares support vector machine.Molecules20222710306910.3390/molecules27103069 35630542
    [Google Scholar]
  66. Prakash MaranJ. SivakumarV. ThirugnanasambandhamK. SridharR. Optimization of microwave assisted extraction of pectin from orange peel.Carbohydr. Polym.201397270370910.1016/j.carbpol.2013.05.052 23911504
    [Google Scholar]
  67. WangX. WangC. ZhaX. MeiY. XiaJ. JiaoZ. Supercritical carbon dioxide extraction of β-carotene and α-tocopherol from pumpkin: A Box–Behnken design for extraction variables.Anal. Methods20179229430310.1039/C6AY02862D
    [Google Scholar]
  68. ZhaoZ. XuX. YeQ. DongL. Ultrasound extraction optimization of Acanthopanax senticosus polysaccharides and its antioxidant activity.Int. J. Biol. Macromol.20135929029410.1016/j.ijbiomac.2013.04.067 23628583
    [Google Scholar]
  69. ChenM. ZhaoY. YuS. Optimisation of ultrasonic-assisted extraction of phenolic compounds, antioxidants, and anthocyanins from sugar beet molasses.Food Chem.201517254355010.1016/j.foodchem.2014.09.110 25442590
    [Google Scholar]
  70. CostacheM.A. CampeanuG. NeataG. Studies concerning the extraction of chlorophyll and total carotenoids from vegetables.Rom. Biotechnol. Lett.20121777027708
    [Google Scholar]
  71. Delgado-VargasF. JiménezA.R. Paredes-LópezO. Natural pigments: Carotenoids, anthocyanins, and betalains-characteristics, biosynthesis, processing, and stability.Crit. Rev. Food Sci. Nutr.200040317328910.1080/10408690091189257 10850526
    [Google Scholar]
  72. MussagyC.U. Santos-EbinumaV.C. KurniaK.A. DiasA.C.R.V. CarvalhoP. CoutinhoJ.A.P. PereiraJ.F.B. Integrative platform for the selective recovery of intracellular carotenoids and lipids from Rhodotorula glutinis CCT-2186 yeast using mixtures of bio-based solvents.Green Chem.202022238478849410.1039/D0GC02992K
    [Google Scholar]
  73. EtzbachL. MeinertM. FaberT. KleinC. SchieberA. WeberF. Effects of carrier agents on powder properties, stability of carotenoids, and encapsulation efficiency of goldenberry (Physalis peruviana L.) powder produced by co-current spray drying.Curr. Res. Food Sci.20203738110.1016/j.crfs.2020.03.002 32914123
    [Google Scholar]
  74. Gómez-PrietoM.S. CajaM.M. HerraizM. Santa-MaríaG. Supercritical fluid extraction of all-trans-lycopene from tomato.J. Agric. Food Chem.20035113710.1021/jf0202842 12502377
    [Google Scholar]
  75. SachindraN. MahendrakarN. Extractability of carotenoids from shrimp waste in vegetable oils and process optimization.Bioresour. Technol.2005961195120010.1016/j.biortech.2004.09.018 15683912
    [Google Scholar]
  76. CastroI.A. Moraes BarrosS.B. Lanfer MarquezU.M. MotizukiM. Higashi SawadaT.C. Optimization of the antioxidant capacity of a mixture of carotenoids and α-tocopherol in the development of a nutritional supplement.Food Res. Int.2005388-986186610.1016/j.foodres.2005.02.010
    [Google Scholar]
  77. ShiX. WuH. ShiJ. XueS.J. WangD. WangW. ChengA. GongZ. ChenX. WangC. Effect of modifier on the composition and antioxidant activity of carotenoid extracts from pumpkin (Cucurbita maxima) by supercritical CO2.Lebensm. Wiss. Technol.201351243344010.1016/j.lwt.2012.11.003
    [Google Scholar]
  78. Castañeda-ValbuenaD. Ayora-TalaveraT. Luján-HidalgoC. Álvarez-GutiérrezP. Martínez-GaleroN. Meza-GordilloR. Ultrasound extraction conditions effect on antioxidant capacity of mango by-product extracts.Food Bioprod. Process.202112721222410.1016/j.fbp.2021.03.002
    [Google Scholar]
  79. Pérez-JiménezJ. ArranzS. TaberneroM. Díaz- Rubio, M.E.; Serrano, J.; Goñi, I.; Saura-Calixto, F. Updated methodology to determine antioxidant capacity in plant foods, oils and beverages: Extraction, measurement and expression of results.Food Res. Int.200841327428510.1016/j.foodres.2007.12.004
    [Google Scholar]
  80. KaderidesK. PapaoikonomouL. SerafimM. GoulaA.M. Microwave-assisted extraction of phenolics from pomegranate peels: Optimization, kinetics, and comparison with ultrasounds extraction.Chem. Eng. Process.201913711110.1016/j.cep.2019.01.006
    [Google Scholar]
  81. VermaD.K. MahantiN.K. ThakurM. ChakrabortyS.K. SrivastavP.P. Microwave heating: Alternative thermal process technology for food application. Emerging thermal and nonthermal technologies in food processing.New JerseyApple Academic Press2020256710.1201/9780429297335‑2
    [Google Scholar]
  82. DestandauE. MichelT. Microwave-assisted extraction.Natural Product Extraction: Principles and ApplicationsThe royal society of chemistry: Piccadilly, London202214420110.1039/9781839165894‑00144
    [Google Scholar]
  83. ShenL. PangS. ZhongM. SunY. QayumA. LiuY. RashidA. XuB. LiangQ. MaH. RenX. A comprehensive review of ultrasonic assisted extraction (UAE) for bioactive components: Principles, advantages, equipment, and combined technologies.Ultrason. Sonochem.202310110664610.1016/j.ultsonch.2023.106646 37862945
    [Google Scholar]
  84. MacíassánchezM. MantellC. RodríguezM. MartínezdelaossaE. LubiánL. MonteroO. Comparison of supercritical fluid and ultrasound-assisted extraction of carotenoids and chlorophyll a from Dunaliella salina.Talanta200977394895210.1016/j.talanta.2008.07.032 19064074
    [Google Scholar]
  85. LiuB.H. LeeY.K. Secondary carotenoids formation by the green alga Chlorococcum sp.J. Appl. Phycol.2000123/530130710.1023/A:1008185212724
    [Google Scholar]
  86. AksuZ. ErenA.T. Carotenoids production by the yeast Rhodotorula mucilaginosa: Use of agricultural wastes as a carbon source.Process Biochem.20054092985299110.1016/j.procbio.2005.01.011
    [Google Scholar]
  87. NdayishimiyeJ. ChunB.S. Optimization of carotenoids and antioxidant activity of oils obtained from a co-extraction of citrus (Yuzu ichandrin) by-products using supercritical carbon dioxide.Biomass Bioenergy20171061710.1016/j.biombioe.2017.08.014
    [Google Scholar]
/content/journals/cbc/10.2174/0115734072308822240529101221
Loading
/content/journals/cbc/10.2174/0115734072308822240529101221
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test