Skip to content
2000
Volume 21, Issue 5
  • ISSN: 1573-4072
  • E-ISSN: 1875-6646

Abstract

Introduction

Nature is full of surprises; it gives us problems along with solutions, but the only condition is that it needs to be explored. The ability of endophytes to tackle pathogens is one such example that falls within the context of the current work. In the current study, we have assessed the antifungal potential of endophytic bacterial metabolites of medicinal importance through and studies.

Materials and Methods

Bioactive metabolites from species, an endophytic bacterium, were extracted to assess their antifungal potential through disc diffusion assays and minimum inhibitory concentration determination. Gas chromatography-mass spectroscopy characterized the diverse composition of the endophytic extracts. The interactions between these metabolites and target proteins, such as CYP51B in , were revealed by studies, which included molecular docking and dynamics simulations. This provided a thorough understanding of the antifungal qualities inherent in endophytic bacterial metabolites.

Results

The research findings highlighted that the zone of inhibition (ZOI) exhibited by the crude extract from endophytes (23.6 ± 1.24 mm) is comparable to that of the control, Voriconazole (23 ± 0.82 mm). Additionally, the minimum inhibitory concentration of the crude extract (0.21 ± 0.06 mg/ml) is lower than the control (0.33 ± 0.11 mg/ml). Notably, among the 45 identified endophytic metabolites, Pyrrolo [1,2-a]pyrazine-1,4-dione, hexahydro-3-(phenylmethyl), demonstrated superior inhibition efficacy against CYP51B (PDB Id: 4UYM) of as compared to Voriconazole. These findings emphasized the potential of the identified metabolite as a promising antifungal agent.

Conclusion

The endophytic metabolite, Pyrrolo [1,2-a]pyrazine-1,4-dione, hexahydro-3-(phenylmethyl), showcased significant antifungal potential as a therapeutic agent against fungal infections.

Loading

Article metrics loading...

/content/journals/cbc/10.2174/0115734072305513240515095554
2024-06-25
2025-09-28
Loading full text...

Full text loading...

References

  1. PhukanH. BrahmaR. MitraP.K. An endophytic fungus associated with Kayea assamica (King & Prain): A study on its molecular phylogenetics and natural products.S. Afr. J. Bot.202013431432110.1016/j.sajb.2020.03.006
    [Google Scholar]
  2. ClayK. Fungal endophytes of grasses: A defensive mutualism between plants and fungi.Ecology1988691101610.2307/1943155
    [Google Scholar]
  3. ChhillarA.K. KumariS. GuliaP. SharmaN. DahiyaS. ChoudharyP. Antimicrobial activity of bioactive compounds isolated from plant endophytes.Curr. Bioact. Compd.2023193e24052220517510.2174/1573407218666220524120648
    [Google Scholar]
  4. GeorgeT.K. JoyA. DivyaK. JishaM.S. In vitro and in silico docking studies of antibacterial compounds derived from endophytic Penicillium setosum.Microb. Pathog.2019131879710.1016/j.micpath.2019.03.033 30951817
    [Google Scholar]
  5. HamayunM. KhanN. Nauman KhanM. QadirM. HussainA. IqbalA. Afzal KhanS. Ur RehmanK. LeeI.J. Antimicrobial and plant growth-promoting activities of bacterial endophytes isolated from Calotropis procera (Ait.).W.T. Aiton. Biocell202145236336910.32604/biocell.2021.013907
    [Google Scholar]
  6. BrownG.D. DenningD.W. GowN.A.R. LevitzS.M. NeteaM.G. WhiteT.C. Hidden killers: Human fungal infections.Sci. Transl. Med.20124165165rv13
    [Google Scholar]
  7. BenedictK. MolinariN.A.M. JacksonB.R. Public awareness of invasive fungal diseases — United States, 2019.MMWR Morb. Mortal. Wkly. Rep.202069381343134610.15585/mmwr.mm6938a2 32970658
    [Google Scholar]
  8. MazuT.K. BrickerB.A. Flores-RozasH. AblordeppeyS.Y. The mechanistic targets of antifungal agents: An overview.Mini Rev. Med. Chem.201616755557810.2174/1389557516666160118112103 26776224
    [Google Scholar]
  9. GuptaS. WhiteJ.F.Jr KulkarniM.G. An outlook on current and future directions in endophyte research.S. Afr. J. Bot.20201341210.1016/j.sajb.2020.04.024
    [Google Scholar]
  10. BarkodiaM. JoshiU. WatiL. RamiN.V. Endophytes: A hidden treasure inside plant.Int. J. Chem. Stud.20186516601665
    [Google Scholar]
  11. SegaranG. SathiaveluM. Fungal endophytes: A potent biocontrol agent and a bioactive metabolites reservoir.Biocatal. Agric. Biotechnol.201921May10128410.1016/j.bcab.2019.101284
    [Google Scholar]
  12. PeiD.F. WuQ.Q. LuoH. PaulN.C. DengJ.X. ZhouY. Diversity and antifungal activity of endophytes associated with Spiranthes sinensis (Orchidaceae, Magnoliophyta) in China.Int. J. Appl. Microbiol. Biotechnol. Res.20197717
    [Google Scholar]
  13. Martinez-KlimovaE. Rodríguez-PeñaK. SánchezS. Endophytes as sources of antibiotics.Biochem. Pharmacol.201713411710.1016/j.bcp.2016.10.010 27984002
    [Google Scholar]
  14. RadićN. ŠtrukeljB. Endophytic fungi—The treasure chest of antibacterial substances.Phytomedicine201219141270128410.1016/j.phymed.2012.09.007 23079233
    [Google Scholar]
  15. DuhanP. BansalP. RaniS. Isolation, identification and characterization of endophytic bacteria from medicinal plant Tinospora cordifolia.S. Afr. J. Bot.2020134434910.1016/j.sajb.2020.01.047
    [Google Scholar]
  16. ArivudainambiU.S.E. AnandT.D. ShanmugaiahV. KarunakaranC. RajendranA. Novel bioactive metabolites producing endophytic fungus Colletotrichum gloeosporioides against multidrug-resistant Staphylococcus aureus.FEMS Immunol. Med. Microbiol.201161334034510.1111/j.1574‑695X.2011.00780.x 21219448
    [Google Scholar]
  17. ChathurdeviG. GowrieS.U. Endophytic fungi isolated from medicinal plant-a source of potential bioactive metabolites.Int. J. Curr. Pharm. Res.201685056
    [Google Scholar]
  18. GuptaS. ChaturvediP. KulkarniM.G. Van StadenJ. A critical review on exploiting the pharmaceutical potential of plant endophytic fungi.Biotechnol. Adv.20203910746210.1016/j.biotechadv.2019.107462 31669137
    [Google Scholar]
  19. BashirS. IqbalA. HasnainS. Comparative analysis of endophytic bacterial diversity between two varieties of sunflower Helianthus annuus with their PGP evaluation.Saudi J. Biol. Sci.202027272072610.1016/j.sjbs.2019.12.010 32210694
    [Google Scholar]
  20. VyasD.N. SharmaS. SrivastavaA. ShrivastavaN. UpasaniV.N. Diversity of endophytic fungi from the medicinal plant mucuna pruriens. Int. J. basic.Appl. Res.20199511191128
    [Google Scholar]
  21. SerH.L. PalanisamyU.D. YinW.F. Abd MalekS.N. ChanK.G. GohB.H. LeeL.H. Presence of antioxidative agent, Pyrrolo[1,2-a]pyrazine-1,4-dione, hexahydro- in newly isolated Streptomyces mangrovisoli sp. nov.Front. Microbiol.20156AUG85410.3389/fmicb.2015.00854 26347733
    [Google Scholar]
  22. MangroliaU. OsborneW.J. Staphylococcus xylosus VITURAJ10: Pyrrolo [1,2α] pyrazine-1,4-dione, hexahydro-3-(2-methylpropyl) (PPDHMP) producing, potential probiotic strain with antibacterial and anticancer activity.Microb. Pathog.202014710425910.1016/j.micpath.2020.104259 32446871
    [Google Scholar]
  23. KiranG.S. PriyadharsiniS. SajayanA. RavindranA. SelvinJ. An antibiotic agent pyrrolo[1,2-a]pyrazine-1,4-dione,hexahydro isolated from a marine bacteria Bacillus tequilensis MSI45 effectively controls multi-drug resistant Staphylococcus aureus.RSC Advances2018832178371784610.1039/C8RA00820E 35542054
    [Google Scholar]
  24. SanjenbamP. KrishnanK. Bioactivity of pyrrolo[1,2-A] pyrazine-1,4-dione, hexahydro-3-(phenylmethyl)-extracted from streptomyces sp. VITPK9 isolated from the salt spring habitat of manipur, India.Asian J. Pharm.2016104265270
    [Google Scholar]
  25. A, M.M. Antimicrobial activity and production of bioactive compounds from endophytic bacteria of tropical cacti plant Euphorbia caducifolia.Int. Res. J. Eng. Technol.20207751885191
    [Google Scholar]
  26. KumarA. ShawlM. JainR. MathurA. Antimicrobial potential of endophytes isolated and characterized from aerial and non aerial parts of Murraya koenigii L.Adv. Appl. Sci. Res.20156102129
    [Google Scholar]
  27. ChhillarA.K. YadavV. KumarA. KumarM. ParmarV.S. PrasadA. SharmaG.L. Differential expression of Aspergillus fumigatus protein in response to treatment with a novel antifungal compound, diethyl 4‐(4‐methoxyphenyl)‐2,6‐dimethyl‐1,4‐dihydropyridin‐3,5‐dicarboxylate.Mycoses200952322322710.1111/j.1439‑0507.2008.01563.x 18793265
    [Google Scholar]
  28. EloffJ. A sensitive and quick microplate method to determine the minimal inhibitory concentration of plant extracts for bacteria.Planta Med.199864871171310.1055/s‑2006‑957563 9933989
    [Google Scholar]
  29. PinziL. RastelliG. Molecular docking: Shifting paradigms in drug discovery.Int. J. Mol. Sci.20192018433110.3390/ijms20184331 31487867
    [Google Scholar]
  30. AguP.C. AfiukwaC.A. OrjiO.U. EzehE.M. OfokeI.H. OgbuC.O. UgwujaE.I. AjaP.M. Molecular docking as a tool for the discovery of molecular targets of nutraceuticals in diseases management.Sci. Rep.20231311339810.1038/s41598‑023‑40160‑2 37592012
    [Google Scholar]
  31. MengX.Y. ZhangH.X. MezeiM. CuiM. Molecular docking: A powerful approach for structure-based drug discovery.Curr. Computeraided Drug Des.20117214615710.2174/157340911795677602 21534921
    [Google Scholar]
  32. DallakyanS. OlsonA.J. Small-molecule library screening by docking with PyRx.Methods Mol. Biol.2015126324325010.1007/978‑1‑4939‑2269‑7_19 25618350
    [Google Scholar]
  33. AdenijiS.E. UbaS. UzairuA. Multi-linear regression model, molecular binding interactions and ligand-based design of some prominent compounds against Mycobacterium tuberculosis.Netw. Model. Anal. Health Inform. Bioinform.202091810.1007/s13721‑019‑0212‑6
    [Google Scholar]
  34. AdenijiS.E. UbaS. UzairuA. Theoretical modeling and molecular docking simulation for investigating and evaluating some active compounds as potent anti-tubercular agents against MTB CYP121 receptor.Future J. Pharm. Sci.20184228429510.1016/j.fjps.2018.10.003
    [Google Scholar]
  35. BhattP. JoshiT. BhattK. ZhangW. HuangY. ChenS. Binding interaction of glyphosate with glyphosate oxidoreductase and C–P lyase: Molecular docking and molecular dynamics simulation studies.J. Hazard. Mater.202140912492710.1016/j.jhazmat.2020.124927 33450511
    [Google Scholar]
  36. ShivanikaC. KumarD. RagunathanV. TiwariP. SumithaA. Molecular docking, validation, dynamics simulations, and pharmacokinetic prediction of natural compounds against the SARS-CoV-2 main-protease.J. Biomol. Struct. Dyn.202240258561110.1080/07391102.2020.1815584 32897178
    [Google Scholar]
  37. GosuV. SasidharanS. SaudagarP. LeeH.K. ShinD. Computational insights into the structural dynamics of MDA5 variants associated with Aicardi–goutières syndrome and singleton–merten syndrome.Biomolecules2021118125110.3390/biom11081251 34439917
    [Google Scholar]
  38. RoyS. KumarA. BaigM.H. MasaříkM. ProvazníkI. Virtual screening, ADMET profiling, molecular docking and dynamics approaches to search for potent selective natural molecules based inhibitors against metallothionein-III to study Alzheimer’s disease.Methods20158310511010.1016/j.ymeth.2015.04.021 25920949
    [Google Scholar]
  39. TibbittsJ. CanterD. GraffR. SmithA. KhawliL.A. Key factors influencing ADME properties of therapeutic proteins: A need for ADME characterization in drug discovery and development.MAbs20168222924510.1080/19420862.2015.1115937 26636901
    [Google Scholar]
  40. GuanL. YangH. CaiY. SunL. DiP. LiW. LiuG. TangY. ADMET-score – A comprehensive scoring function for evaluation of chemical drug-likeness.MedChemComm201910114815710.1039/C8MD00472B 30774861
    [Google Scholar]
  41. BocciG. CarosatiE. VayerP. ArraultA. LozanoS. CrucianiG. ADME-Space: A new tool for medicinal chemists to explore ADME properties.Sci. Rep.201771635910.1038/s41598‑017‑06692‑0 28743970
    [Google Scholar]
  42. AshrafS.A. ElkhalifaA.E.O. MehmoodK. AdnanM. KhanM.A. EltoumN.E. KrishnanA. BaigM.S. Multi-targeted molecular docking, pharmacokinetics, and drug-likeness evaluation of okra-derived ligand abscisic acid targeting signaling proteins involved in the development of diabetes.Molecules20212619595710.3390/molecules26195957 34641501
    [Google Scholar]
  43. ZhangM.Q. WilkinsonB. Drug discovery beyond the ‘rule-of-five’.Curr. Opin. Biotechnol.200718647848810.1016/j.copbio.2007.10.005 18035532
    [Google Scholar]
  44. BenetL.Z. HoseyC.M. UrsuO. OpreaT.I. BDDCS, the Rule of 5 and drugability.Adv. Drug Deliv. Rev.2016101899810.1016/j.addr.2016.05.007 27182629
    [Google Scholar]
  45. Sama-aeI. PattaranggoonN.C. TedasenA. In silico prediction of Antifungal compounds from Natural sources towards Lanosterol 14-alpha demethylase (CYP51) using Molecular docking and Molecular dynamic simulation.J. Mol. Graph. Model.202312110843510.1016/j.jmgm.2023.108435 36848730
    [Google Scholar]
  46. BadarM.S. ShamsiS. AhmedJ. AlamM.A. Molecular Dynamics Simulations: Concept.Springer Nature, USAMethods, and Applications202210.1007/978‑3‑030‑94651‑7_7
    [Google Scholar]
  47. MirW.R. BhatB.A. RatherM.A. MuzamilS. AlmilaibaryA. AlkhananiM. MirM.A. Molecular docking analysis and evaluation of the antimicrobial properties of the constituents of Geranium wallichianum D. Don ex Sweet from Kashmir Himalaya.Sci. Rep.20221211254710.1038/s41598‑022‑16102‑9 35869098
    [Google Scholar]
  48. GelpiJ. HospitalA. GoñiR. OrozcoM. Molecular dynamics simulations: Advances and applications.Adv. Appl. Bioinform. Chem.201581374710.2147/AABC.S70333 26604800
    [Google Scholar]
  49. PrajapatiJ. PatelR. GoswamiD. SarafM. RawalR.M. Sterenin M as a potential inhibitor of SARS-CoV-2 main protease identified from MeFSAT database using molecular docking, molecular dynamics simulation and binding free energy calculation.Comput. Biol. Med.2021135May10456810.1016/j.compbiomed.2021.104568 34174757
    [Google Scholar]
  50. WilliamsM.A. Protein–ligand interactions: Fundamentals.Methods Mol. Biol.2013100833410.1007/978‑1‑62703‑398‑5_1 23729247
    [Google Scholar]
  51. FerenczyG.G. KellermayerM. Contribution of hydrophobic interactions to protein mechanical stability.Comput. Struct. Biotechnol. J.2022201946195610.1016/j.csbj.2022.04.025 35521554
    [Google Scholar]
  52. DuX. LiY. XiaY.L. AiS.M. LiangJ. SangP. JiX.L. LiuS.Q. Insights into protein–ligand interactions: Mechanisms, models, and methods.Int. J. Mol. Sci.201617214410.3390/ijms17020144 26821017
    [Google Scholar]
  53. ZhangJ. LiL. LvQ. YanL. WangY. JiangY. The fungal CYP51s: Their functions, structures, related drug resistance, and inhibitors.Front. Microbiol.20191069110.3389/fmicb.2019.00691 31068906
    [Google Scholar]
  54. RoundtreeM.T. JuvvadiP.R. ShwabE.K. ColeD.C. SteinbachW.J. Aspergillus fumigatus Cyp51A and Cyp51B proteins are compensatory in function and localize differentially in response to antifungals and cell wall inhibitors.Antimicrob. Agents Chemother.20206410e00735e2010.1128/AAC.00735‑20 32660997
    [Google Scholar]
  55. HargroveT.Y. KimK. de Nazaré Correia SoeiroM. da SilvaC.F. da Gama Jaen BatistaD. BatistaM.M. YazlovitskayaE.M. WatermanM.R. SulikowskiG.A. LepeshevaG.I. CYP51 structures and structure-based development of novel, pathogen-specific inhibitory scaffolds.Int. J. Parasitol. Drugs Drug Resist.2012217818610.1016/j.ijpddr.2012.06.001 23504044
    [Google Scholar]
  56. LepeshevaG.I. FriggeriL. WatermanM.R. CYP51 as drug targets for fungi and protozoan parasites: Past, present and future.Parasitology2018145141820183610.1017/S0031182018000562 29642960
    [Google Scholar]
  57. MengE.C. GoddardT.D. PettersenE.F. CouchG.S. PearsonZ.J. MorrisJ.H. FerrinT.E. UCSF CHIMERAX: Tools for structure building and analysis.Protein Sci.20233211e479210.1002/pro.4792 37774136
    [Google Scholar]
  58. PettersenE.F. GoddardT.D. HuangC.C. MengE.C. CouchG.S. CrollT.I. MorrisJ.H. FerrinT.E. UCSF CHIMERAX: Structure visualization for researchers, educators, and developers.Protein Sci.2021301708210.1002/pro.3943 32881101
    [Google Scholar]
  59. LipinskiC.A. LombardoF. DominyB.W. FeeneyP.J. Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings.Adv. Drug Deliv. Rev.2001461-332610.1016/S0169‑409X(00)00129‑0 11259830
    [Google Scholar]
  60. HodgsonJ. ADMET-turning chemicals into drugs.Nat. Biotechnol.200119872272610.1038/90761 11479558
    [Google Scholar]
  61. KhannaV. RanganathanS. Physicochemical property space distribution among human metabolites, drugs and toxins.BMC Bioinformatics200910S15Suppl. 15S1010.1186/1471‑2105‑10‑S15‑S10 19958509
    [Google Scholar]
  62. BadarM.S. ShamsiS. AhmedJ. AlamM.A. Molecular] Dynamics Simulations: Concept, Methods, and Applications] BT-Transdisciplinarity. RezaeiN. ChamSpringer International Publishing202210.1007/978‑3‑030‑94651‑7_7
    [Google Scholar]
  63. KumarH. MaitiP.K. Introduction to molecular dynamics simulation BT - Computational statistical physics: Lecture notes, guwahati SERC school;Hindustan Book Agency: Gurgaon,201110.1007/978‑93‑86279‑50‑7_6
    [Google Scholar]
  64. AfzalI. ShinwariZ.K. SikandarS. ShahzadS. Plant beneficial endophytic bacteria: Mechanisms, diversity, host range and genetic determinants.Microbiol. Res.2019221364910.1016/j.micres.2019.02.001 30825940
    [Google Scholar]
  65. StrobelG. DaisyB. Bioprospecting for microbial endophytes and their natural products.Microbiol. Mol. Biol. Rev.200367449150210.1128/MMBR.67.4.491‑502.2003 14665674
    [Google Scholar]
  66. SchulzB. BoyleC. The endophytic continuum.Mycol. Res.2005109666168610.1017/S095375620500273X 16080390
    [Google Scholar]
  67. Gonzalez-JimenezI. LucioJ. AmichJ. CuestaI. Sanchez ArroyoR. Alcazar-FuoliL. MelladoE.A. Cyp51B mutation contributes to azole resistance in Aspergillus fumigatus.J. Fungi20206431510.3390/jof6040315 33255951
    [Google Scholar]
  68. MonkB.C. SagatovaA.A. HosseiniP. RumaY.N. WilsonR.K. KeniyaM.V. Fungal lanosterol 14α-demethylase: A target for next-generation antifungal design.Biochim. Biophys. Acta. Proteins Proteomics20201868314020610.1016/j.bbapap.2019.02.008 30851431
    [Google Scholar]
  69. GowN.A.R. LatgeJ.P. MunroC.A. The fungal cell wall: Structure, biosynthesis, and function.Microbiol. Spectr.201753 5.3.0110.1128/microbiolspec.FUNK‑0035‑201628513415
    [Google Scholar]
  70. ParkerJ.E. WarrilowA.G.S. PriceC.L. MullinsJ.G.L. KellyD.E. KellyS.L. Resistance to antifungals that target CYP51.J. Chem. Biol.20147414316110.1007/s12154‑014‑0121‑1 25320648
    [Google Scholar]
  71. LepeshevaG.I. HargroveT.Y. KleshchenkoY. NesW.D. VillaltaF. WatermanM.R. CYP51: A major drug target in the cytochrome P450 superfamily.Lipids200843121117112510.1007/s11745‑008‑3225‑y 18769951
    [Google Scholar]
  72. LeeY. RobbinsN. CowenL.E. Molecular mechanisms governing antifungal drug resistance.NPJ Antimicrob. Resist.202311510.1038/s44259‑023‑00007‑2
    [Google Scholar]
  73. SekarV. RamasamyG. RavikumarC. In silico molecular docking for assessing anti-fungal competency of hydroxychavicol, a phenolic compound of betel leaf (Piper betle L.) against COVID-19 associated maiming mycotic infections.Drug Dev. Ind. Pharm.202248516918810.1080/03639045.2022.2048665 35311433
    [Google Scholar]
  74. MadanagopalP. RamprabhuN. JagadeesanR. In silico prediction and structure-based multitargeted molecular docking analysis of selected bioactive compounds against mucormycosis.Bull. Natl. Res. Cent.20224612410.1186/s42269‑022‑00704‑4 35125861
    [Google Scholar]
  75. CaldwellG. YanZ. TangW. DasguptaM. HastingB. ADME optimization and toxicity assessment in early- and late-phase drug discovery.Curr. Top. Med. Chem.200991196598010.2174/156802609789630929 19747120
    [Google Scholar]
  76. JakharR. KhichiA. KumarD. SuraK. Bhoomika; Dangi, M.; Chhillar, A.K. Development of pharmacophore model to identify potential DNA gyrase inhibitors.J. Biomol. Struct. Dyn.20234119101251013510.1080/07391102.2022.2153171 36473713
    [Google Scholar]
  77. AbdellaB. AbdellaM. ElSharifH.A. ElAhwanyA.M.D. El-SersyN.A. GhozlanH.A. SabryS.A. Identification of potent anti-Candida metabolites produced by the soft coral associated Streptomyces sp. HCl4 using chemoinformatics.Sci. Rep.20231311256410.1038/s41598‑023‑39568‑7 37532728
    [Google Scholar]
/content/journals/cbc/10.2174/0115734072305513240515095554
Loading
/content/journals/cbc/10.2174/0115734072305513240515095554
Loading

Data & Media loading...

Supplements

Supplementary material is available on the publisher’s website along with the published article.

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test