Skip to content
2000
Volume 21, Issue 6
  • ISSN: 1573-4072
  • E-ISSN: 1875-6646

Abstract

Introduction

The natural triterpenoid molecule betulinic acid (BA) has many biological and therapeutic uses, one of which is the relief from asthma symptoms. The purpose of this study was to assess BA effectiveness in treating bronchial asthma and to perform a molecular docking study to find the binding energy of BA with β-adrenoceptor.

Methods

leaf extraction was performed in a soxhlet apparatus using ethanol as a solvent. Budesenoid was used as a standard drug. AutoDock vina in PyRx 0.8 was used for the molecular docking investigation. An acute toxicity study was conducted according to OECD guideline 425. A guinea pig model of asthma called anaphylactic microshock was used to ascertain the antiasthmatic efficacy of the test drug. Antiasthmatic activity was determined by grouping the animals into four groups, each containing six animals. Group 1 was the control group that received only vehicles. Group 2 was the standard group that received budesenoid. Group 3 was the test group that received extract. Group 4 was the test group received BA.

Results

In terms of binding affinity, BA had a value of -7.45 kcal/mol, showing binding with β-adrenoceptor. A molecular docking study showed that BA was bound to the hydrophobic cavity of LOX-5, and the formation of hydrogen bonds altered the micro-environment and structure of LOX-5. This resulted in a reduction in enzyme activity. The mean pre-convulsion time for the test drug was 506.66 in comparison to the control group, as observed in the guinea pig model of asthma.

Conclusion

BA was found to be effective in reducing anaphylaxis in animal models. Thus, it may be used as an alternative drug in treating asthma after clinical trials. However, a molecular docking study verified that BA had a prospective target on the desired receptor for further therapeutic development.

Loading

Article metrics loading...

/content/journals/cbc/10.2174/0115734072304279240610075608
2024-06-28
2025-10-30
Loading full text...

Full text loading...

References

  1. BezerraJ.J.L. PinheiroA.A.V. BarretoE.O. Medicinal plants used in the treatment of asthma in different regions of Brazil: A comprehensive review of ethnomedicinal evidence, preclinical pharmacology and clinical trials.Phytomedicine Plus20222410037610.1016/j.phyplu.2022.100376
    [Google Scholar]
  2. LambrechtB.N. HammadH. FahyJ.V. The cytokines of asthma.Immunity201950497599110.1016/j.immuni.2019.03.018 30995510
    [Google Scholar]
  3. DharmageS.C. PerretJ.L. CustovicA. Epidemiology of asthma in children and adults.Front Pediatr.2019724610.3389/fped.2019.00246 31275909
    [Google Scholar]
  4. NetworkG.A. The Global Asthma Report.Auckland, New Zealand2018
    [Google Scholar]
  5. JindalS.K. AggarwalA.N. GuptaD. AgarwalR. KumarR. KaurT. ChaudhryK. ShahB. Indian study on epidemiology of asthma, respiratory symptoms and chronic bronchitis in adults (INSEARCH).Int. J. Tuberc. Lung Dis.20121691270127710.5588/ijtld.12.0005 22871327
    [Google Scholar]
  6. G.D.B.Compare Viz Hub.2021Available From:https://vizhub.healthdata.org/gbd-compare/Google (Accessed on June 30, 2021)
    [Google Scholar]
  7. QuirceS. Phillips-AnglesE. Domínguez-OrtegaJ. BarrancoP. Biologics in the treatment of severe asthma.Allergol. Immunopathol. (Madr.)201745Suppl. 1454910.1016/j.aller.2017.09.012 29108767
    [Google Scholar]
  8. Amaral-MachadoL. OliveiraW.N. Moreira-OliveiraS.S. PereiraD.T. AlencarÉ.N. TsapisN. EgitoE.S.T. Use of natural products in asthma treatment.Evid. Based Complement. Alternat. Med.2020202013510.1155/2020/1021258 32104188
    [Google Scholar]
  9. JafariniaM. Sadat HosseiniM. kasiri, N.; Fazel, N.; Fathi, F.; Ganjalikhani Hakemi, M.; Eskandari, N. Quercetin with the potential effect on allergic diseases.Allergy Asthma Clin. Immunol.20201613610.1186/s13223‑020‑00434‑0 32467711
    [Google Scholar]
  10. ZhaoJ. DangZ. MuddassirM. RazaS. ZhongA. WangX. JinJ. A new Cd(II)-based coordination polymer for efficient photocatalytic removal of organic dyes.Molecules20232819684810.3390/molecules28196848 37836691
    [Google Scholar]
  11. RazaS. GhasaliE. RazaM. ChenC. LiB. OroojiY. LinH. KaramanC. Karimi MalehH. ErkN. Advances in technology and utilization of natural resources for achieving carbon neutrality and a sustainable solution to neutral environment.Environ. Res.202322011513510.1016/j.envres.2022.115135 36566962
    [Google Scholar]
  12. RazaS. GhasaliE. OroojiY. LinH. KaramanC. DragoiE.N. ErkN. Two dimensional (2D) materials and biomaterials for water desalination; Structure, properties, and recent advances.Environ. Res.202321911499810.1016/j.envres.2022.114998 36481367
    [Google Scholar]
  13. ZhangP. RazaS. ChengY. ClaudineU. HayatA. BashirT. AliT. GhasaliE. OroojiY. Fabrication of maleic anhydride-acrylamide copolymer based sodium alginate hydrogel for elimination of metals ions and dyes contaminants from polluted water.Int. J. Biol. Macromol.2024261Pt 112914610.1016/j.ijbiomac.2023.129146 38176489
    [Google Scholar]
  14. RazaS. GhasaliE. HayatA. ZhangP. OroojiY. LinH. Sodium alginate hydrogel-encapsulated trans-anethole based polymer: Synthesis and applications as an eradicator of metals and dyes from wastewater.Int. J. Biol. Macromol.2024254Pt 212715310.1016/j.ijbiomac.2023.127153 37778574
    [Google Scholar]
  15. Oliveira-CostaJ.F. MeiraC.S. Anti-inflammatory activities of betulinic acid.Front. Pharmacol.202213883857
    [Google Scholar]
  16. LouH. LiH. ZhangS. LuH. ChenQ. A review on preparation of betulinic acid and its biological activities.Molecules20212618558310.3390/molecules26185583 34577056
    [Google Scholar]
  17. LiebscherG. VanchangiriK. MuellerT. FeigeK. CavalleriJ.M.V. PaschkeR. In vitro anticancer activity of Betulinic acid and derivatives thereof on equine melanoma cell lines from grey horses and in vivo safety assessment of the compound NVX-207 in two horses.Chem. Biol. Interact.2016246202910.1016/j.cbi.2016.01.002 26772157
    [Google Scholar]
  18. AguP.C. AfiukwaC.A. OrjiO.U. EzehE.M. OfokeI.H. OgbuC.O. UgwujaE.I. AjaP.M. Molecular docking as a tool for the discovery of molecular targets of nutraceuticals in diseases management.Sci. Rep.20231311339810.1038/s41598‑023‑40160‑2 37592012
    [Google Scholar]
  19. TappelA.L. Methods in Enzymology.New YorkAcademic Press1962Vol. 5539
    [Google Scholar]
  20. SinghV. PraveenV. TripathiD. HaqueS. SomvanshiP. KattiS.B. TripathiC.K.M. Isolation, characterization and antifungal docking studies of wortmannin isolated from Penicillium radicum.Sci. Rep.2015511194810.1038/srep11948 26159770
    [Google Scholar]
  21. OECD. Guidance document on Acute Oral Toxicity. Environmental Health and safety monograph series on safety and assessment No. 24.2001Available From: https://www.oecd-ilibrary.org/environment/guidance-document-on-acute-oral-toxicity-testing_9789264078413-en
    [Google Scholar]
  22. ArmitageP. HerxheimerH. RosaL. The protective action of antihistamines in the anaphylactic microshock of the guinea-pig.Br. J. Pharmacol. Chemother.19527462563610.1111/j.1476‑5381.1952.tb00730.x 13019031
    [Google Scholar]
  23. GrivennikovS.I. GretenF.R. KarinM. Immunity, inflammation, and cancer.Cell2010140688389910.1016/j.cell.2010.01.025 20303878
    [Google Scholar]
  24. ArulselvanP. FardM.T. TanW.S. GothaiS. FakuraziS. NorhaizanM.E. KumarS.S. Role of antioxidants and natural products in inflammation.Oxid. Med. Cell. Longev.2016201611510.1155/2016/5276130 27803762
    [Google Scholar]
  25. NewmanD.J. CraggG.M. Natural products as sources of new drugs from 1981 to 2014.J. Nat. Prod.201679362966110.1021/acs.jnatprod.5b01055 26852623
    [Google Scholar]
  26. Oliveira CostaJ.F. Barbosa-FilhoJ.M. de Azevedo MaiaG.L. GuimarãesE.T. MeiraC.S. Ribeiro-dos-SantosR. Pontes de CarvalhoL.C. SoaresM.B.P. Potent anti-inflammatory activity of betulinic acid treatment in a model of lethal endotoxemia.Int. Immunopharmacol.201423246947410.1016/j.intimp.2014.09.021 25281393
    [Google Scholar]
  27. DingH. WuX. PanJ. HuX. GongD. ZhangG. New insights into the inhibition mechanism of betulinic acid on α-glucosidase.J. Agric. Food Chem.201866277065707510.1021/acs.jafc.8b02992 29902001
    [Google Scholar]
  28. WuY. HeC. GaoY. HeS. LiuY. LaiL. Dynamic modeling of human 5-lipoxygenase-inhibitor interactions helps to discover novel inhibitors.J. Med. Chem.20125562597260510.1021/jm201497k 22380511
    [Google Scholar]
  29. TarayreJ.P. AliacaM. BarbaraM. TisseyreN. VieuS. Tisne-VersaillesJ. Model of bronchial hyperreactivity after active anaphylactic shock in conscious guinea pigs.J. Pharmacol. Methods1990231131910.1016/0160‑5402(90)90004‑5 2304348
    [Google Scholar]
  30. DaiY. ButP.P.H. ChuL.M. ChanY.P. Inhibitory effects of Selaginella tamariscina on immediate allergic reactions.Am. J. Chin. Med.200533695796610.1142/S0192415X05003442 16355452
    [Google Scholar]
  31. KanekoM. SchimmingA. GleichG.J. KitaH. Ligation of IgE receptors causes an anaphylactic response and neutrophil infiltration but does not induce eosinophilic inflammation in mice.J. Allergy Clin. Immunol.200010561202121010.1067/mai.2000.106731 10856156
    [Google Scholar]
  32. NialsA.T. UddinS. Mouse models of allergic asthma: Acute and chronic allergen challenge.Dis. Model. Mech.200814-521322010.1242/dmm.000323 19093027
    [Google Scholar]
  33. VasconcelosL.H.C. SilvaM.C.C. CostaA.C. OliveiraG.A. SouzaI.L.L. QueirogaF.R. AraujoL.C.C. CardosoG.A. RighettiR.F. SilvaA.S. da SilvaP.M. CarvalhoC.R.O. VieiraG.C. TibérioI.F.L.C. CavalcanteF.A. SilvaB.A. A guinea pig model of airway smooth muscle hyperreactivity induced by chronic allergic lung inflammation: Contribution of epithelium and oxidative stress.Front. Pharmacol.20199154710.3389/fphar.2018.01547 30814952
    [Google Scholar]
  34. KruegerG.R.F. WagnerM. OldhamS.A.A. Pathology of the respiratory tract.Atlas Anat. Pathol. Imaging201227105189
    [Google Scholar]
  35. GurumurthyC.B. LloydK.C.K. Generating mouse models for biomedical research: Technological advances.Dis. Model. Mech.2019121dmm02946210.1242/dmm.029462 30626588
    [Google Scholar]
  36. BeckettE.L. StevensR.L. JarnickiA.G. KimR.Y. HanishI. HansbroN.G. DeaneA. KeelyS. HorvatJ.C. YangM. OliverB.G. van RooijenN. InmanM.D. AdachiR. SobermanR.J. HamadiS. WarkP.A. FosterP.S. HansbroP.M. A new short-term mouse model of chronic obstructive pulmonary disease identifies a role for mast cell tryptase in pathogenesis.J. Allergy Clin. Immunol.20131313752762.e710.1016/j.jaci.2012.11.053 23380220
    [Google Scholar]
  37. RaoS.P. JainP. RathoreP. SinghV.K. Larvicidal and knockdown activity of Citrus limetta Risso oil against dengue virus vector.Indian J. Nat. Prod. Resour.201673256260
    [Google Scholar]
  38. JainP. SatapathyT. PandeyR.K. First report on ticks (Acari: Ixodidae) controlling activity of cottonseed oil (Gossypium sp.).Int. J. Acarol.202046426326710.1080/01647954.2020.1767203
    [Google Scholar]
  39. JainP. PandeyR. ShuklaS.S. Natural Sources of Anti-inflammation. Inflammation: Natural Resources and Its Applications; Jain, P.; Pandey, R. ShuklaS.S. New Delhi, IndiaSpringer20152513310.1007/978‑81‑322‑2163‑0_4
    [Google Scholar]
  40. JainP. SatapathyT. PandeyR.K. Acaricidal activity and clinical safety of arecoline hydrobromide on calves infested with cattle tick Rhipicephalus microplus (Acari: Ixodidae).Vet. Parasitol.2021298May10949010.1016/j.vetpar.2021.109490 34271319
    [Google Scholar]
  41. JainP. SatapathyT. PandeyR.K. A mini review of methods to control ticks population infesting cattle in Chhattisgarh with special emphasis on herbal acaricides.Indian J. Nat. Prod. Resour.20201112217223
    [Google Scholar]
  42. RathoreP. RaoS.P. RoyA. SatapathyT. SinghV. JainP. Hepatoprotective activity of isolated herbal compounds.Res. J. Pharm. Technol.201472
    [Google Scholar]
  43. JainP. SatapathyT. PandeyR.K. Acaricidal activity and biochemical analysis of Citrus limetta seed oil for controlling Ixodid Tick Rhipicephalus microplus infesting cattle.Syst. Appl. Acarol.202126710.11158/saa.26.7.13
    [Google Scholar]
  44. JainP. SatapathyT. PandeyR.K. Rhipicephalus microplus (acari: Ixodidae): Clinical safety and potential control by topical application of cottonseed oil (Gossypium sp.) on cattle.Exp. Parasitol.2020219108017
    [Google Scholar]
  45. KumarV. JainP. RathoreK. AhmedZ. Biological Evaluation of Pupalia lappacea for antidiabetic, antiadipogenic, and hypolipidemic activity both in vitro and in vivo.Scientifica201620161910.1155/2016/1062430 26942038
    [Google Scholar]
  46. PoyilM.M. Karrar AlsharifM.H. SeshadriV.D. Anti-asthmatic activity of Saudi herbal composites from plants Bacopa monnieri and Euphorbia hirta on guinea pigs.Green Process. Synth.202211151252510.1515/gps‑2022‑0039
    [Google Scholar]
/content/journals/cbc/10.2174/0115734072304279240610075608
Loading
/content/journals/cbc/10.2174/0115734072304279240610075608
Loading

Data & Media loading...

Supplements

Supplementary material is available on the publisher’s website along with the published article.


  • Article Type:
    Research Article
Keyword(s): adrenoceptor; anaphylaxis; Asthma; betulinic acid; budesonide; molecular docking
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test