Current Alzheimer Research - Volume 21, Issue 9, 2024
Volume 21, Issue 9, 2024
-
-
Mitochondrial Fragmentation as a Key Driver of Neurodegenerative Disease
More LessAuthors: Alina Chaplygina and Daria ZhdanovaMitochondrial form and function are intricately linked through dynamic processes of fusion and fission, and disruptions in these processes are key drivers of neurodegenerative diseases, like Alzheimer’s. The inability of mitochondria to transition between their dynamic forms is a critical factor in the development of pathological states. In this paper, we focus on the importance of different types of mitochondrial phenotypes in nervous tissue, discussing how mitochondria in Alzheimer's disease are “stuck” in certain patterns and how this pattern maintains itself. Understanding the specific roles and transitions between mitochondrial forms, including tiny, networked, and hyperfused, is crucial in developing new therapies aimed at restoring mitochondrial homeostasis. By targeting these dynamics, we may be able to intervene early in the disease process, offering novel avenues for preventing or treating neurodegeneration.
-
-
-
Extracellular Vesicles: A Promising Therapeutic Approach to Alzheimer's Disease
More LessExtracellular vesicles (EVs) are nano-sized membranous particles that are secreted by various cell types and play a critical role in intercellular communication. Their unique properties and remarkable ability to deliver bioactive cargo to target cells have made them promising tools in the treatment of various diseases, including Alzheimer's disease (AD). AD is a devastating neurodegenerative disease characterized by progressive cognitive decline and neuropathological hallmarks, such as amyloid-beta plaques and neurofibrillary tangles. Despite extensive research, no disease-modifying therapy for AD is currently available. However, EVs have emerged as a potential therapeutic agent in AD due to their ability to cross the blood-brain barrier, deliver bioactive cargo, and modulate neuroinflammation. This review provides a comprehensive overview of the current knowledge on the role of EVs in AD and discusses their potential as a therapeutic approach. It covers the mechanisms of action, potential therapeutic targets, and challenges and limitations of EV-based therapies for AD.
-
-
-
Comprehensive Insights into Pathophysiology of Alzheimer's Disease: Herbal Approaches for Mitigating Neurodegeneration
More LessAuthors: Debasis Sen, Sunny Rathee, Vishal Pandey, Sanjay K. Jain and Umesh K. PatilAlzheimer's disease (AD) is a progressive neurodegenerative disorder characterized by cognitive decline, memory loss, and functional impairment. Despite extensive research, the exact etiology remains elusive. This review explores the multifaceted pathophysiology of AD, focusing on key hypotheses such as the cholinergic hypothesis, hyperphosphorylated Tau Protein and Amyloid β hypothesis, oxidative stress hypothesis, and the metal ion hypothesis. Understanding these mechanisms is crucial for developing effective therapeutic strategies. Current treatment options for AD have limitations, prompting the exploration of alternative approaches, including herbal interventions. Cholinesterase inhibitors, targeting the cholinergic hypothesis, have shown modest efficacy in managing symptoms. Blocking Amyloid β (Aβ) and targeting hyperphosphorylated tau protein are under investigation, with limited success in clinical trials. Oxidative stress, implicated in AD pathology, has led to the investigation of antioxidants. Natural products, such as Punica granatum Linn, Radix Scutellariae, and Curcuma longa have demonstrated antioxidant properties, along with anti-inflammatory effects, offering potential neuroprotective benefits. Several herbal extracts, including Ginkgo biloba, Bacopa monnieri, and Withania somnifera, have shown promise in preclinical studies. Compounds like Huperzine A, Melatonin, and Bryostatin exhibit neuroprotective effects through various mechanisms, including cholinergic modulation and anti-inflammatory properties. However, the use of herbal drugs for AD management faces limitations, including standardization issues, variable bioavailability, and potential interactions with conventional medications. Additionally, the efficacy and safety of many herbal products remain to be established through rigorous clinical trials. This review also highlights promising natural products currently in clinical trials, such as Resveratrol and Homotaurine, and their potential impact on AD progression. DHA, an omega-3 fatty acid, has shown cognitive benefits, while Nicotine is being explored for its neuroprotective effects. In conclusion, a comprehensive understanding of the complex pathophysiology of AD and the exploration of herbal interventions offer a holistic approach for managing this devastating disease. Future research should address the limitations associated with herbal drugs and further evaluate the efficacy of promising natural products in clinical settings.
-
-
-
Visualization Analysis of Tau Protein in the Brain of Alzheimer’s Disease: A Scoping Literature Review
More LessAuthors: Dan-qi Zhang, Xu Yang, Han-bin Niu, Xu-chen Sun, Dan-na Cao, Ang Li, Jin-huan Yue, Xiao-ling Li and Qin-hong ZhangIntroductionThis study analyzed the current status, hotspots, and development trends of tau protein research in Alzheimer’s disease (AD) and to provide a reference for future research in this field. CiteSpace software was used to scientifically measure and visualize the relevant articles in the field of tau protein in AD brain from the Web of Science Core Collection database from 1991 to 2022.
MethodsA total of 568 articles were included, with an exponential growth in the number of articles published from 1991 to 2022, with an average of 17.8 articles per year. The United States is the most productive country in this field, accounting for 46.83% of the total literature. The New York State Institute for Basic Research is the most productive organization, followed by MRC Laboratory Molecular Biology in the UK. The most influential are Kings College London, University of California, San Francisco, and others. Iqbal K is the most productive author.
ResultsThe most productive journal is the Journal of Biological Chemistry, and the journal with the highest impact factor is Acta Neuropathologica. The journal with the highest cumulative impact factor is Nature. The research hotspots mainly focus on the formation and degradation mechanisms of tau protein paired helical filaments and abnormal phosphorylation, AD neurofibrillary tangles and degenerative changes, and model research, mainly involving tau protein abnormal phosphorylation, phosphorylation sites, dephosphorylation, aggregate helical filaments, neurofibrillary tangles mouse models.
ConclusionThe research frontier trends mainly focus on the study of pathological changes in tau protein, intervention mechanisms, and the development and practice of clinical therapeutic drugs.
-
-
-
Comprehensive Investigation of Natural Ligands as Inhibitors of β Secretase to Identify Alzheimer’s Disease Therapeutics
More LessAuthors: Shikha Kushwah and Ashutosh ManiIntroductionAlzheimer's disease (AD) is an alarmingly prevalent worldwide neurological disorder that affects millions of people and has severe effects on cognitive functions. The amyloid hypothesis, which links AD to Aβ (amyloid beta) plaque aggregation, is a well-acknowledged theory. The β-secretase (BACE1) is the main cause of Aβ production, which makes it a possible target for therapy. FDA-approved therapies for AD do exist, but none of them explicitly target BACE1, and their effectiveness is constrained and accompanied by adverse effects.
Materials and MethodsWe determined the essential chemical components of medicinal herbs by conducting a thorough literature research for BACE1. Computational methods like molecular docking, ADMET (Absorption, distribution, metabolism, excretion, toxicity) screening, molecular dynamic simulations, and MMPBSA analysis were performed in order to identify the most promising ligands for β-secretase.
ResultsThe results suggested that withasomniferol, tinosporide, and curcumin had better binding affinity with BACE1, suggesting their potential as therapeutic candidates against Alzheimer’s disease.
ConclusionHerbal therapeutics have immense applications in the treatment of chronic diseases like Alzheimer’s disease, and there is an urgent need to assess their efficacy as therapeutics.
-
-
-
Associations Between Metabolomics Findings and Brain Hypometabolism in Mild Cognitive Impairment and Alzheimer’s Disease#
More LessBackgroundAlzheimer's disease (AD) is a progressive neurodegenerative disease with rising prevalence due to the aging global population. Existing methods for diagnosing AD are struggling to detect the condition in its earliest and most treatable stages. One early indicator of AD is a substantial decrease in the brain’s glucose metabolism. Metabolomics can detect disturbances in biofluids, which may be advantageous for early detection of some AD-related changes. The study aims to predict brain hypometabolism in Alzheimer's disease using metabolomics findings and develop a predictive model based on metabolomic data.
MethodsThe data used in this study were acquired from the Alzheimer’s Disease Neuroimaging Initiative (ADNI) project. We conducted a longitudinal study with three assessment time points to investigate the predictive power of baseline metabolomics for modeling longitudinal fluorodeoxyglucose-positron emission tomography (FDG-PET) trajectory changes in AD patients. A total of 44 participants with AD were included. The Alzheimer's Disease Assessment Scale (ADAS), the Mini-Mental State Examination (MMSE), and the Clinical Dementia Rating Scale-Sum of Boxes (CDR-SB) were used for cognitive assessments. A single global brain hypo-metabolism index was used as the outcome variable.
ResultsAcross models, we observed consistent positive relationships between specific cholesterol esters - CE (20:3) (p = 0.005) and CE (18:3) (p = 0.0039) - and FDG-PET metrics, indicating these baseline metabolites may be valuable indicators of future PET score changes. Selected triglycerides like DG-O (16:0-20:4) also showed time-specific positive associations (p = 0.017).
ConclusionThis research provides new insights into the disruptions in the metabolic network linked to AD pathology. These findings could pave the way for identifying novel biomarkers and potential treatment targets for AD.
#Data used in preparation of this article were obtained from the Alzheimer’s Disease Neuroimaging Initiative (ADNI) database (adni.loni.usc.edu). As such, the investigators within the ADNI contributed to the design and implementation of ADNI and/or provided data but did not participate in the analysis or writing of this report. A complete listing of ADNI investigators can be found at: http://adni.loni.usc.edu/wp-content/uploads/ how_to_apply/ADNI_Acknowledgement_List.pdf
-
Volumes & issues
-
Volume 22 (2025)
-
Volume 21 (2024)
-
Volume 20 (2023)
-
Volume 19 (2022)
-
Volume 18 (2021)
-
Volume 17 (2020)
-
Volume 16 (2019)
-
Volume 15 (2018)
-
Volume 14 (2017)
-
Volume 13 (2016)
-
Volume 12 (2015)
-
Volume 11 (2014)
-
Volume 10 (2013)
-
Volume 9 (2012)
-
Volume 8 (2011)
-
Volume 7 (2010)
-
Volume 6 (2009)
-
Volume 5 (2008)
-
Volume 4 (2007)
-
Volume 3 (2006)
-
Volume 2 (2005)
-
Volume 1 (2004)
Most Read This Month
Most Cited Most Cited RSS feed
-
-
Cognitive Reserve in Aging
Authors: A. M. Tucker and Y. Stern
-
- More Less