Skip to content
2000
Volume 21, Issue 9
  • ISSN: 1567-2050
  • E-ISSN: 1875-5828

Abstract

Background

Alzheimer's disease (AD) is a progressive neurodegenerative disease with rising prevalence due to the aging global population. Existing methods for diagnosing AD are struggling to detect the condition in its earliest and most treatable stages. One early indicator of AD is a substantial decrease in the brain’s glucose metabolism. Metabolomics can detect disturbances in biofluids, which may be advantageous for early detection of some AD-related changes. The study aims to predict brain hypometabolism in Alzheimer's disease using metabolomics findings and develop a predictive model based on metabolomic data.

Methods

The data used in this study were acquired from the Alzheimer’s Disease Neuroimaging Initiative (ADNI) project. We conducted a longitudinal study with three assessment time points to investigate the predictive power of baseline metabolomics for modeling longitudinal fluorodeoxyglucose-positron emission tomography (FDG-PET) trajectory changes in AD patients. A total of 44 participants with AD were included. The Alzheimer's Disease Assessment Scale (ADAS), the Mini-Mental State Examination (MMSE), and the Clinical Dementia Rating Scale-Sum of Boxes (CDR-SB) were used for cognitive assessments. A single global brain hypo-metabolism index was used as the outcome variable.

Results

Across models, we observed consistent positive relationships between specific cholesterol esters - CE (20:3) ( = 0.005) and CE (18:3) ( = 0.0039) - and FDG-PET metrics, indicating these baseline metabolites may be valuable indicators of future PET score changes. Selected triglycerides like DG-O (16:0-20:4) also showed time-specific positive associations ( = 0.017).

Conclusion

This research provides new insights into the disruptions in the metabolic network linked to AD pathology. These findings could pave the way for identifying novel biomarkers and potential treatment targets for AD.

#Data used in preparation of this article were obtained from the Alzheimer’s Disease Neuroimaging Initiative (ADNI) database (adni.loni.usc.edu). As such, the investigators within the ADNI contributed to the design and implementation of ADNI and/or provided data but did not participate in the analysis or writing of this report. A complete listing of ADNI investigators can be found at: http://adni.loni.usc.edu/wp-content/uploads/ how_to_apply/ADNI_Acknowledgement_List.pdf

Loading

Article metrics loading...

/content/journals/car/10.2174/0115672050350196250110092338
2025-01-28
2025-12-10
Loading full text...

Full text loading...

References

  1. KumarA. SidhuJ. LuiF. TsaoJ.W. Alzheimer Disease.StatPearls.Treasure Island, FLStatPearls Publishing2024Available from: http://www.ncbi.nlm.nih.gov/books/NBK499922/
    [Google Scholar]
  2. 2023 Alzheimer’s disease facts and figures.Alzheimers Dement.20231941598169510.1002/alz.1301636918389
    [Google Scholar]
  3. ChenJ. ChenG. ShuH. ChenG. WardB.D. WangZ. LiuD. AntuonoP.G. LiS.J. ZhangZ. Alzheimer’s Disease Neuroimaging Initiative Predicting progression from mild cognitive impairment to Alzheimer’s disease on an individual subject basis by applying the CARE index across different independent cohorts.Aging (Albany NY)20191182185220110.18632/aging.10188331078129
    [Google Scholar]
  4. YoungP.N.E. EstarellasM. CoomansE. SrikrishnaM. BeaumontH. MaassA. VenkataramanA.V. LissamanR. JiménezD. BettsM.J. McGlincheyE. BerronD. O’ConnorA. FoxN.C. PereiraJ.B. JagustW. CarterS.F. PatersonR.W. SchöllM. Imaging biomarkers in neurodegeneration: Current and future practices.Alzheimers Res. Ther.20201214910.1186/s13195‑020‑00612‑732340618
    [Google Scholar]
  5. ForlenzaO.V. RadanovicM. TalibL.L. AprahamianI. DinizB.S. ZetterbergH. GattazW.F. Cerebrospinal fluid biomarkers in Alzheimer’s disease: Diagnostic accuracy and prediction of dementia.Alzheimers Dement. (Amst.)20151445546310.1016/j.dadm.2015.09.00327239524
    [Google Scholar]
  6. ZarzarT.G. LeeB. CoughlinR. KimD. ShenL. HallM.A. Sex differences in the metabolome of Alzheimer’s disease progression.Front Radiol.2022278286410.3389/fradi.2022.78286435445209
    [Google Scholar]
  7. RinschenM.M. IvanisevicJ. GieraM. SiuzdakG. Identification of bioactive metabolites using activity metabolomics.Nat. Rev. Mol. Cell Biol.201920635336710.1038/s41580‑019‑0108‑430814649
    [Google Scholar]
  8. NasabA.S. NooraniF. PaeiziZ. KhaniL. BanaeiS. SadeghiM. Shafeghat M. ShafieM. MayeliM. A comprehensive investigation of the potential role of lipoproteins and metabolite profile as biomarkers of Alzheimer’s disease compared to the known CSF biomarkers.Int. J. Alzheimers Dis.20232023354002010.1155/2023/354002036936136
    [Google Scholar]
  9. WengJ. MutiI.H. ZhongA.B. KivisäkkP. HymanB.T. ArnoldS.E. ChengL.L. A nuclear magnetic resonance spectroscopy method in characterization of blood metabolomics for Alzheimer’s disease.Metabolites202212218110.3390/metabo1202018135208255
    [Google Scholar]
  10. LiangQ. LiuH. ZhangT. JiangY. XingH. ZhangA. Discovery of serum metabolites for diagnosis of progression of mild cognitive impairment to Alzheimer’s disease using an optimized metabolomics method.RSC Advances2016653586359110.1039/C5RA19349D
    [Google Scholar]
  11. RevegliaP. PaolilloC. FerrettiG. De CarloA. AngiolilloA. NassoR. CaputoM. MatroneC. Di CostanzoA. CorsoG. Challenges in LC–MS-based metabolomics for Alzheimer’s disease early detection: Targeted approaches versus untargeted approaches.Metabolomics20211797810.1007/s11306‑021‑01828‑w34453619
    [Google Scholar]
  12. ZilberterY. ZilberterM. The vicious circle of hypometabolism in neurodegenerative diseases: Ways and mechanisms of metabolic correction.J. Neurosci. Res.201795112217223510.1002/jnr.2406428463438
    [Google Scholar]
  13. FesselJ. Does synaptic hypometabolism or synaptic dysfunction, originate cognitive loss? Analysis of the evidence.Alzheimers Dement (N Y)202171e1217710.1002/trc2.1217734027027
    [Google Scholar]
  14. NgK.P. PascoalT.A. MathotaarachchiS. ChungC.O. BenedetA.L. ShinM. KangM.S. LiX. BaM. KandiahN. Rosa-NetoP. GauthierS. WeinerM.W. AisenP. PetersenR. JackC. JagustW. MorrisJ.C. SaykinA.J. TrojanowskiJ.Q. TogaA.W. BeckettL. Alzheimer’s Disease Neuroimaging Initiative Neuropsychiatric symptoms predict hypometabolism in preclinical Alzheimer disease.Neurology201788191814182110.1212/WNL.000000000000391628404803
    [Google Scholar]
  15. KatoT. InuiY. NakamuraA. ItoK. Brain fluorodeoxyglucose (FDG) PET in dementia.Ageing Res. Rev.201630738410.1016/j.arr.2016.02.00326876244
    [Google Scholar]
  16. RiceL. BisdasS. The diagnostic value of FDG and amyloid PET in Alzheimer’s disease—A systematic review.Eur. J. Radiol.201794162410.1016/j.ejrad.2017.07.01428941755
    [Google Scholar]
  17. PhelpsM.E. MazziottaJ.C. Positron emission tomography: Human brain function and biochemistry.Science1985228470179980910.1126/science.28607232860723
    [Google Scholar]
  18. SilvermanD.H.S. SmallG.W. ChangC.Y. LuC.S. de AburtoM.A.K. ChenW. CzerninJ. RapoportS.I. PietriniP. AlexanderG.E. SchapiroM.B. JagustW.J. HoffmanJ.M. Welsh-BohmerK.A. AlaviA. ClarkC.M. SalmonE. de LeonM.J. MielkeR. CummingsJ.L. KowellA.P. GambhirS.S. HohC.K. PhelpsM.E. Positron emission tomography in evaluation of dementia: Regional brain metabolism and long-term outcome.JAMA2001286172120212710.1001/jama.286.17.212011694153
    [Google Scholar]
  19. MinoshimaS. GiordaniB. BerentS. FreyK.A. FosterN.L. KuhlD.E. Metabolic reduction in the posterior cingulate cortex in very early Alzheimer’s disease.Ann. Neurol.1997421859410.1002/ana.4104201149225689
    [Google Scholar]
  20. RosenW.G. MohsR.C. DavisK.L. A new rating scale for Alzheimer’s disease.Am. J. Psychiatry1984141111356136410.1176/ajp.141.11.13566496779
    [Google Scholar]
  21. VellasB. AndrieuS. SampaioC. WilcockG. European Task Force group Disease-modifying trials in Alzheimer’s disease: A European task force consensus.Lancet Neurol.200761566210.1016/S1474‑4422(06)70677‑917166802
    [Google Scholar]
  22. MohsR.C. KnopmanD. PetersenR.C. FerrisS.H. ErnestoC. GrundmanM. SanoM. BieliauskasL. GeldmacherD. ClarkC. ThaiL.J. Development of cognitive instruments for use in clinical trials of antidementia drugs: Additions to the Alzheimer’s Disease Assessment Scale that broaden its scope. The Alzheimer’s Disease Cooperative Study.Alzheimer Dis. Assoc. Disord.199711Suppl. 2132110.1097/00002093‑199700112‑000039236948
    [Google Scholar]
  23. BattistaP. SalvatoreC. CastiglioniI. Optimizing neuropsychological assessments for cognitive, behavioral, and functional impairment classification: A machine learning study.Behav. Neurol.20172017185090910.1155/2017/185090928255200
    [Google Scholar]
  24. PodhornaJ. KrahnkeT. ShearM. E HarrisonJ. Alzheimer’s Disease Neuroimaging Initiative Alzheimer’s Disease Assessment Scale–Cognitive subscale variants in mild cognitive impairment and mild Alzheimer’s disease: Change over time and the effect of enrichment strategies.Alzheimers Res. Ther.201681810.1186/s13195‑016‑0170‑526868820
    [Google Scholar]
  25. HughesC.P. BergL. DanzigerW. CobenL.A. MartinR.L. A new clinical scale for the staging of dementia.Br. J. Psychiatry1982140656657210.1192/bjp.140.6.5667104545
    [Google Scholar]
  26. McDougallF. EdgarC. MertesM. DelmarP. FontouraP. Abi-SaabD. LansdallC.J. BoadaM. DoodyR. Psychometric properties of the Clinical Dementia Rating—Sum of Boxes and other cognitive and functional outcomes in a prodromal Alzheimer’s disease population.J. Prev. Alzheimers Dis.20218215116033569561
    [Google Scholar]
  27. O’BryantS.E. WaringS.C. CullumC.M. HallJ. LacritzL. MassmanP.J. LupoP.J. ReischJ.S. DoodyR. Texas Alzheimer’s Research Consortium Staging dementia using Clinical Dementia Rating Scale Sum of Boxes scores: A Texas Alzheimer’s research consortium study.Arch. Neurol.20086581091109510.1001/archneur.65.8.109118695059
    [Google Scholar]
  28. DickersonB.C. SperlingR.A. HymanB.T. AlbertM.S. BlackerD. Clinical prediction of Alzheimer disease dementia across the spectrum of mild cognitive impairment.Arch. Gen. Psychiatry200764121443145010.1001/archpsyc.64.12.144318056553
    [Google Scholar]
  29. BrugnoloA. NobiliF. BarbieriM.P. DessiB. FerroA. GirtlerN. PalummeriE. PartinicoD. RaiteriU. RegestaG. ServettoG. TanganelliP. UvaV. MazzeiD. DonadioS. De CarliF. ColazzoG. SerratiC. RodriguezG. The factorial structure of the mini mental state examination (MMSE) in Alzheimer’s disease.Arch. Gerontol. Geriatr.200949118018510.1016/j.archger.2008.07.00519095314
    [Google Scholar]
  30. LandauS.M. HarveyD. MadisonC.M. KoeppeR.A. ReimanE.M. FosterN.L. WeinerM.W. JagustW.J. Alzheimer’s Disease Neuroimaging Initiative Associations between cognitive, functional, and FDG-PET measures of decline in AD and MCI.Neurobiol. Aging20113271207121810.1016/j.neurobiolaging.2009.07.00219660834
    [Google Scholar]
  31. LandauS.M. HarveyD. MadisonC.M. ReimanE.M. FosterN.L. AisenP.S. PetersenR.C. ShawL.M. TrojanowskiJ.Q. JackC.R.Jr WeinerM.W. JagustW.J. Alzheimer’s Disease Neuroimaging Initiative Comparing predictors of conversion and decline in mild cognitive impairment.Neurology201075323023810.1212/WNL.0b013e3181e8e8b820592257
    [Google Scholar]
  32. ProitsiP. KimM. WhileyL. SimmonsA. SattleckerM. VelayudhanL. LuptonM.K. Association of blood lipids with Alzheimer’s disease: A comprehensive lipidomics analysis.Alzheimers Dement201713214015110.1016/j.jalz.2016.08.00327693183
    [Google Scholar]
  33. ChewH. SolomonV.A. FontehA.N. Involvement of lipids in Alzheimer’s disease pathology and potential therapies.Front. Physiol.20201159810.3389/fphys.2020.0059832581851
    [Google Scholar]
  34. CutlerR.G. KellyJ. StorieK. PedersenW.A. TammaraA. HatanpaaK. TroncosoJ.C. MattsonM.P. Involvement of oxidative stress-induced abnormalities in ceramide and cholesterol metabolism in brain aging and Alzheimer’s disease.Proc. Natl. Acad. Sci. USA200410172070207510.1073/pnas.030579910114970312
    [Google Scholar]
  35. RudajevV. NovotnyJ. Cholesterol as a key player in amyloid β-mediated toxicity in Alzheimer’s disease.Front. Mol. Neurosci.20221593705610.3389/fnmol.2022.93705636090253
    [Google Scholar]
  36. PoppJ. MeichsnerS. KölschH. LewczukP. MaierW. KornhuberJ. JessenF. LütjohannD. Cerebral and extracerebral cholesterol metabolism and CSF markers of Alzheimer’s disease.Biochem. Pharmacol.2013861374210.1016/j.bcp.2012.12.00723291240
    [Google Scholar]
  37. Di PaoloG. KimT.W. Linking lipids to Alzheimer’s disease: Cholesterol and beyond.Nat. Rev. Neurosci.201112528429610.1038/nrn301221448224
    [Google Scholar]
  38. Jun PyoK. KwangsikN. TingtingW. KevinH. MatthiasA. ShannonL.R. Circulating lipid profiles are associated with cross-sectional and longitudinal changes of central biomarkers for Alzheimer’s disease.medRxiv [Preprint]202310.1101/2023.06.12.2329105437398438
    [Google Scholar]
  39. LiuY. ThalamuthuA. MatherK.A. CrawfordJ. UlanovaM. WongM.W.K. PickfordR. SachdevP.S. BraidyN. Plasma lipidome is dysregulated in Alzheimer’s disease and is associated with disease risk genes.Transl. Psychiatry202111134410.1038/s41398‑021‑01362‑234092785
    [Google Scholar]
  40. ChanR.B. OliveiraT.G. CortesE.P. HonigL.S. DuffK.E. SmallS.A. WenkM.R. ShuiG. Di PaoloG. Comparative lipidomic analysis of mouse and human brain with Alzheimer disease.J. Biol. Chem.201228742678268810.1074/jbc.M111.27414222134919
    [Google Scholar]
  41. KamiyaY. MizunoS. KomenoiS. SakaiH. SakaneF. Activation of conventional and novel protein kinase C isozymes by different diacylglycerol molecular species.Biochem. Biophys. Rep.2016736136610.1016/j.bbrep.2016.07.01728955926
    [Google Scholar]
  42. BennettS.A.L. ValenzuelaN. XuH. FrankoB. FaiS. FigeysD. Using neurolipidomics to identify phospholipid mediators of synaptic (dys)function in Alzheimer’s Disease.Front. Physiol.2013416810.3389/fphys.2013.0016823882219
    [Google Scholar]
  43. MazereeuwG. HerrmannN. XuH. FigeysD. OhP.I. AL BennettS. LanctôtK.L. Platelet-activating factors are associated with cognitive deficits in depressed coronary artery disease patients: A hypothesis-generating study.J. Neuroinflammation201411111910.1186/1742‑2094‑11‑11924996486
    [Google Scholar]
  44. WilkinsJ.M. TrushinaE. Application of metabolomics in Alzheimer’s disease.Front. Neurol.2018871910.3389/fneur.2017.0071929375465
    [Google Scholar]
  45. WangY.Y. SunY.P. LuoY.M. PengD.H. LiX. YangB.Y. WangQ.H. KuangH.X. Biomarkers for the clinical diagnosis of Alzheimer’s disease: Metabolomics analysis of brain tissue and blood.Front. Pharmacol.20211270058710.3389/fphar.2021.70058734366852
    [Google Scholar]
  46. ListaS. González-DomínguezR. López-OrtizS. González-DomínguezÁ. MenéndezH. Martín-HernándezJ. LuciaA. EmanueleE. CentonzeD. ImbimboB.P. TriacaV. LionettoL. SimmacoM. Cuperlovic-CulfM. MillJ. LiL. MapstoneM. Santos-LozanoA. NisticòR. Integrative metabolomics science in Alzheimer’s disease: Relevance and future perspectives.Ageing Res. Rev.20238910198710.1016/j.arr.2023.10198737343679
    [Google Scholar]
  47. HorgusluogluE. NeffR. SongW.M. WangM. WangQ. ArnoldM. KrumsiekJ. Galindo-PrietoB. MingC. NhoK. KastenmüllerG. HanX. BaillieR. ZengQ. AndrewsS. ChengH. HaoK. GoateA. BennettD.A. SaykinA.J. Kaddurah-DaoukR. ZhangB. Alzheimer’s Disease Neuroimaging Initiative (ADNI) Alzheimer Disease Metabolomics Consortium Integrative metabolomics-genomics approach reveals key metabolic pathways and regulators of Alzheimer’s disease.Alzheimers Dement.20221861260127810.1002/alz.1246834757660
    [Google Scholar]
/content/journals/car/10.2174/0115672050350196250110092338
Loading
/content/journals/car/10.2174/0115672050350196250110092338
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test