Skip to content
2000
Volume 21, Issue 9
  • ISSN: 1567-2050
  • E-ISSN: 1875-5828

Abstract

Extracellular vesicles (EVs) are nano-sized membranous particles that are secreted by various cell types and play a critical role in intercellular communication. Their unique properties and remarkable ability to deliver bioactive cargo to target cells have made them promising tools in the treatment of various diseases, including Alzheimer's disease (AD). AD is a devastating neurodegenerative disease characterized by progressive cognitive decline and neuropathological hallmarks, such as amyloid-beta plaques and neurofibrillary tangles. Despite extensive research, no disease-modifying therapy for AD is currently available. However, EVs have emerged as a potential therapeutic agent in AD due to their ability to cross the blood-brain barrier, deliver bioactive cargo, and modulate neuroinflammation. This review provides a comprehensive overview of the current knowledge on the role of EVs in AD and discusses their potential as a therapeutic approach. It covers the mechanisms of action, potential therapeutic targets, and challenges and limitations of EV-based therapies for AD.

Loading

Article metrics loading...

/content/journals/car/10.2174/0115672050365314250112042136
2024-09-01
2025-09-18
Loading full text...

Full text loading...

References

  1. PegtelD.M. GouldS.J. Exosomes.Annu. Rev. Biochem.201988148751410.1146/annurev‑biochem‑013118‑11190231220978
    [Google Scholar]
  2. KalluriR. LeBleuV.S. The biology, function, and biomedical applications of exosomes.Science20203676478eaau697710.1126/science.aau697732029601
    [Google Scholar]
  3. SedgwickA.E. D’Souza-SchoreyC. The biology of extracellular microvesicles.Traffic201819531932710.1111/tra.1255829479795
    [Google Scholar]
  4. ClancyJ.W. SchmidtmannM. D’Souza-SchoreyC. The ins and outs of microvesicles.FASEB Bioadv.20213639940610.1096/fba.2020‑0012734124595
    [Google Scholar]
  5. SantavanondJ.P. RutterS.F. Atkin-SmithG.K. PoonI.K. Apoptotic bodies: mechanism of formation, isolation and functional relevance.Sub Cell. Biochem.20219761-88
    [Google Scholar]
  6. ZhouM. LiY.J. TangY.C. HaoX.Y. XuW.J. XiangD.X. WuJ.Y. Apoptotic bodies for advanced drug delivery and therapy.J. Control. Release202235139440610.1016/j.jconrel.2022.09.04536167267
    [Google Scholar]
  7. SadallahS. EkenC. SchifferliJ.A. Ectosomes as immunomodulators.Semin. Immunopathol.2011335487-9510.1007/s00281‑010‑0232‑x
    [Google Scholar]
  8. MeldolesiJ. Exosomes and ectosomes in intercellular communication.Curr. Biol.2018288R435R44410.1016/j.cub.2018.01.05929689228
    [Google Scholar]
  9. MeehanB. RakJ. Di VizioD. Oncosomes – large and small: what are they, where they came from?J. Extracell. Vesicles2016513310910.3402/jev.v5.3310927680302
    [Google Scholar]
  10. MorelloM. MinciacchiV. de CandiaP. YangJ. PosadasE. KimH. GriffithsD. BhowmickN. ChungL. GandelliniP. FreemanM. DemichelisF. DiVizioD. Large oncosomes mediate intercellular transfer of functional microRNA.Cell Cycle201312223526353610.4161/cc.2653924091630
    [Google Scholar]
  11. CiardielloC. LeoneA. LanutiP. RocaM.S. MocciaT. MinciacchiV.R. MinopoliM. GigantinoV. De CecioR. RippaM. PettiL. CaponeF. VitaglianoC. MiloneM.R. PucciB. LombardiR. IannelliF. Di GennaroE. BruzzeseF. MarchisioM. CarrieroM.V. Di VizioD. BudillonA. Large oncosomes overexpressing integrin alpha-V promote prostate cancer adhesion and invasion via AKT activation.J. Exp. Clin. Cancer Res.201938131710.1186/s13046‑019‑1317‑631319863
    [Google Scholar]
  12. MatsumotoJ. StewartT. BanksW.A. ZhangJ. The transport mechanism of extracellular vesicles at the blood-brain barrier.Curr. Pharm. Des.201823406206621410.2174/138161282366617091316473828914201
    [Google Scholar]
  13. Ramos-ZaldívarH.M. PolakovicovaI. Salas-HuenuleoE. CorvalánA.H. KoganM.J. YefiC.P. AndiaM.E. Extracellular vesicles through the blood–brain barrier: a review.Fluids Barriers CNS20221916010.1186/s12987‑022‑00359‑335879759
    [Google Scholar]
  14. Krämer-AlbersE.M. Extracellular Vesicles at CNS barriers: Mode of action.Curr. Opin. Neurobiol.20227510256910.1016/j.conb.2022.10256935667340
    [Google Scholar]
  15. BusattoS. MoradG. GuoP. MosesM.A. The role of extracellular vesicles in the physiological and pathological regulation of the blood–brain barrier.FASEB Bioadv.20213966567510.1096/fba.2021‑0004534485835
    [Google Scholar]
  16. PengH. HarveyB.T. RichardsC.I. NixonK. Neuron-derived extracellular vesicles modulate microglia activation and function.Biology (Basel)2021101094810.3390/biology1010094834681047
    [Google Scholar]
  17. HeringC. ShettyA.K. Extracellular vesicles derived from neural stem cells, astrocytes, and microglia as therapeutics for easing TBI-induced brain dysfunction.Stem Cells Transl. Med.202312314015310.1093/stcltm/szad00436847078
    [Google Scholar]
  18. WhitleyJ.A. CaiH. Engineering extracellular vesicles to deliver CRISPR ribonucleoprotein for gene editing.J. Extracell. Vesicles20231291234310.1002/jev2.1234337723839
    [Google Scholar]
  19. Izquierdo-AltarejosP. Cabrera-PastorA. Martínez-GarcíaM. Sánchez-HuertasC. HernándezA. Moreno-ManzanoV. FelipoV. Extracellular vesicles from mesenchymal stem cells reduce neuroinflammation in hippocampus and restore cognitive function in hyperammonemic rats.J. Neuroinflammation2023201110.1186/s12974‑022‑02688‑436593485
    [Google Scholar]
  20. KumarS.K. SasidharM.V. Recent trends in the use of small extracellular vesicles as optimal drug delivery vehicles in oncology.Mol. Pharm.20232083829384210.1021/acs.molpharmaceut.3c0036337410017
    [Google Scholar]
  21. KeighronC.N. AvazzadehS. Goljanek-WhysallK. McDonaghB. HowardL. RitterT. QuinlanL.R. Extracellular vesicles, cell-penetrating peptides and miRNAs as future novel therapeutic interventions for Parkinson’s and Alzheimer’s disease.Biomedicines202311372810.3390/biomedicines1103072836979707
    [Google Scholar]
  22. YinT. LiuY. JiW. ZhuangJ. ChenX. GongB. ChuJ. LiangW. GaoJ. YinY. Engineered mesenchymal stem cell-derived extracellular vesicles: A state-of-the-art multifunctional weapon against Alzheimer’s disease.Theranostics20231341264128510.7150/thno.8186036923533
    [Google Scholar]
  23. DuttaS. HornungS. TahaH.B. BitanG. Biomarkers for parkinsonian disorders in CNS-originating EVs: promise and challenges.Acta Neuropathol.2023145551554010.1007/s00401‑023‑02557‑137012443
    [Google Scholar]
  24. AnanbehH. Kupcova SkalnikovaH. Extracellular vesicles as possible sources of Huntington’s disease biomarkers202310.1007/978‑3‑031‑32815‑2_3
    [Google Scholar]
  25. ZamboniS. D’AmbrosioA. MarguttiP. Extracellular vesicles as contributors in the pathogenesis of multiple sclerosis.Mult. Scler. Relat. Disord.20237110455410.1016/j.msard.2023.10455436842311
    [Google Scholar]
  26. OzansoyM. MikatiH. VeliogluH.A. YulugB. Exosomes: A missing link between chronic systemic inflammation and Alzheimer’s disease?Biomed. Pharmacother.202315911416110.1016/j.biopha.2022.11416136641928
    [Google Scholar]
  27. PishbinE. SadriF. DehghanA. KianiM.J. HashemiN. ZareI. MousaviP. RahiA. Recent advances in isolation and detection of exosomal microRNAs related to Alzheimer’s disease.Environ. Res.202322711570510.1016/j.envres.2023.11570536958383
    [Google Scholar]
  28. KhanM.I. JeongE.S. KhanM.Z. ShinJ.H. KimJ.D. Stem cells-derived exosomes alleviate neurodegeneration and Alzheimer’s pathogenesis by ameliorating neuroinflamation, and regulating the associated molecular pathways.Sci. Rep.20231311573110.1038/s41598‑023‑42485‑437735227
    [Google Scholar]
  29. KumarP. SharmaH. SinghA. PandeyS.N. ChandraP. Correlation between rxosomes and neuro-inflammation in various brain disorders.Exsomes Based Drug Deliv. Strateg. Brain Disord.2024273-30210.1007/978‑981‑99‑8373‑5_11
    [Google Scholar]
  30. ZhuY. WangF. XiaY. WangL. LinH. ZhongT. WangX. Research progress on astrocyte-derived extracellular vesicles in the pathogenesis and treatment of neurodegenerative diseases.Rev. Neurosci.202435885587510.1515/revneuro‑2024‑004338889403
    [Google Scholar]
  31. OgakiA. IkegayaY. KoyamaR. Extracellular vesicles taken up by astrocytes.Int. J. Mol. Sci.202122191055310.3390/ijms22191055334638890
    [Google Scholar]
  32. Nogueras-OrtizC.J. MahairakiV. Delgado-PerazaF. DasD. AvgerinosK. ErenE. HentschelM. GoetzlE.J. MattsonM.P. KapogiannisD. Astrocyte-and neuron-derived extracellular vesicles from Alzheimer’s disease patients effect complement-mediated neurotoxicity.Cells202097161810.3390/cells907161832635578
    [Google Scholar]
  33. UpadhyaR. ZinggW. ShettyS. ShettyA.K. Astrocyte-derived extracellular vesicles: Neuroreparative properties and role in the pathogenesis of neurodegenerative disorders.J. Control. Release202032322523910.1016/j.jconrel.2020.04.01732289328
    [Google Scholar]
  34. ZhaoS. ShengS. WangY. DingL. XuX. XiaX. ZhengJ.C. Astrocyte-derived extracellular vesicles: A double-edged sword in central nervous system disorders.Neurosci. Biobehav. Rev.202112514815910.1016/j.neubiorev.2021.02.02733626395
    [Google Scholar]
  35. Krämer-AlbersE.M. Extracellular vesicles in the oligodendrocyte microenvironment.Neurosci. Lett.202072513491510.1016/j.neulet.2020.13491532208226
    [Google Scholar]
  36. CasellaG. RasouliJ. BoehmA. ZhangW. XiaoD. IshikawaL.L.W. ThomeR. LiX. HwangD. PorazziP. MoluguS. TangH.Y. ZhangG.X. CiricB. RostamiA. Oligodendrocyte-derived extracellular vesicles as antigen-specific therapy for autoimmune neuroinflammation in mice.Sci. Transl. Med.202012568eaba059910.1126/scitranslmed.aba059933148622
    [Google Scholar]
  37. Krämer-AlbersE.M. WernerH.B. Mechanisms of axonal support by oligodendrocyte-derived extracellular vesicles.Nat. Rev. Neurosci.202324847448610.1038/s41583‑023‑00711‑y37258632
    [Google Scholar]
  38. SunM. ChenZ. Unveiling the complex role of exosomes in Alzheimer’s disease.J. Inflamm. Res.2024173921394810.2147/JIR.S46682138911990
    [Google Scholar]
  39. NataleF. FuscoS. GrassiC. Dual role of brain-derived extracellular vesicles in dementia-related neurodegenerative disorders: cargo of disease spreading signals and diagnostic-therapeutic molecules.Transl. Neurodegener.20221115010.1186/s40035‑022‑00326‑w36437458
    [Google Scholar]
  40. ThakorA.S. Garcia-ContrerasM. Extracellular vesicles in Alzheimer’s disease: from pathology to therapeutic approaches.Neural Regen. Res.2023181182210.4103/1673‑5374.34388235799503
    [Google Scholar]
  41. RoudiS. RädlerJ.A. El AndaloussiS. Therapeutic potential of extracellular vesicles in neurodegenerative disorders.Handb. Clin. Neurol.202319324326610.1016/B978‑0‑323‑85555‑6.00017‑536803815
    [Google Scholar]
  42. RaghavA. SinghM. JeongG.B. GiriR. AgarwalS. KalaS. GautamK.A. Extracellular vesicles in neurodegenerative diseases: A systematic review.Front. Mol. Neurosci.202215106107610.3389/fnmol.2022.106107636504676
    [Google Scholar]
  43. GaoX. GaoL.-f. KongX.-q. ZhangY.-n. JiaS. MengC.-y. Mesenchymal stem cell-derived extracellular vesicles carrying miR-99b-3p restrain microglial activation and neuropathic pain by stimulating autophagy.Int. Immunopharmacol.202311510969510.1016/j.intimp.2023.109695
    [Google Scholar]
  44. HaoL. YangY. XuX. GuoX. ZhanQ. Modulatory effects of mesenchymal stem cells on microglia in ischemic stroke.Front. Neurol.202313107395810.3389/fneur.2022.107395836742051
    [Google Scholar]
  45. GabrielliM. TozziF. VerderioC. OrigliaN. Emerging roles of extracellular vesicles in Alzheimer’s disease: Focus on synaptic dysfunction and vesicle–neuron interaction.Cells20221216310.3390/cells1201006336611856
    [Google Scholar]
  46. BonettoV. GrilliM. Neural stem cell-derived extracellular vesicles: Mini players with key roles in neurogenesis, immunomodulation, neuroprotection and aging.Front. Mol. Biosci.202310118726310.3389/fmolb.2023.118726337228583
    [Google Scholar]
  47. MehrabadiS. MotevaseliE. SadrS.S. MoradbeygiK. Hypoxic-conditioned medium from adipose tissue mesenchymal stem cells improved neuroinflammation through alternation of toll like receptor (TLR) 2 and TLR4 expression in model of Alzheimer’s disease rats.Behav. Brain Res.202037911236210.1016/j.bbr.2019.11236231739000
    [Google Scholar]
  48. TrottaT. Antonietta PanaroM. CianciulliA. MoriG. Di BenedettoA. PorroC. Microglia-derived extracellular vesicles in Alzheimer’s disease: A double-edged sword.Biochem. Pharmacol.201814818419210.1016/j.bcp.2017.12.02029305855
    [Google Scholar]
  49. TanH.S. WangT. SunH.N. LiuA. LiS.S. Advances of surface-enhanced Raman spectroscopy in exosomal biomarkers analysis.Trends Analyt. Chem.202316711725310.1016/j.trac.2023.117253
    [Google Scholar]
  50. JangY.O. AhnH.S. DaoT.N.T. HongJ. ShinW. LimY.M. ChungS.J. LeeJ.H. LiuH. KooB. KimM.G. KimK. LeeE.J. ShinY. Magnetic transferrin nanoparticles (MTNs) assay as a novel isolation approach for exosomal biomarkers in neurological diseases.Biomater. Res.20232711210.1186/s40824‑023‑00353‑236797805
    [Google Scholar]
  51. VandendriesscheC. BalusuS. Van CauwenbergheC. BrkicM. PauwelsM. PlehiersN. BruggemanA. DujardinP. Van ImschootG. Van WonterghemE. HendrixA. BaekeF. De RyckeR. GevaertK. VandenbrouckeR.E. Importance of extracellular vesicle secretion at the blood–cerebrospinal fluid interface in the pathogenesis of Alzheimer’s disease.Acta Neuropathol. Commun.20219114310.1186/s40478‑021‑01245‑z34425919
    [Google Scholar]
  52. HornungS. DuttaS. BitanG. CNS-derived blood exosomes as a promising source of biomarkers: Opportunities and challenges.Front. Mol. Neurosci.2020133810.3389/fnmol.2020.0003832265650
    [Google Scholar]
  53. TahaH.B. Extracellular vesicles for Alzheimer disease and dementia diagnosismedRxiv20242024.04
    [Google Scholar]
  54. CaiH. PangY. RenZ. FuX. JiaL. Delivering synaptic protein mRNAs via extracellular vesicles ameliorates cognitive impairment in a mouse model of Alzheimer’s disease.BMC Med.202422113810.1186/s12916‑024‑03359‑238528511
    [Google Scholar]
  55. ShaS. ShenX. CaoY. QuL. Mesenchymal stem cells-derived extracellular vesicles ameliorate Alzheimer’s disease in rat models via the microRNA-29c-3p/BACE1 axis and the Wnt/β-catenin pathway.Aging20211311152851530610.18632/aging.20308834086603
    [Google Scholar]
  56. MirB. GoettschC. Extracellular vesicles as delivery vehicles of specific cellular cargo.Cells202097160110.3390/cells907160132630649
    [Google Scholar]
  57. DixsonA.C. DawsonT.R. Di VizioD. WeaverA.M. Context-specific regulation of extracellular vesicle biogenesis and cargo selection.Nat. Rev. Mol. Cell Biol.202324745447610.1038/s41580‑023‑00576‑036765164
    [Google Scholar]
  58. XueV.W. WongS.C.C. SongG. ChoW.C.S. Promising RNA-based cancer gene therapy using extracellular vesicles for drug delivery.Expert Opin. Biol. Ther.202020776777710.1080/14712598.2020.173837732125904
    [Google Scholar]
  59. BornL.J. HarmonJ.W. JayS.M. Therapeutic potential of extracellular vesicle-associated long noncoding RNA.Bioeng. Transl. Med.202053e1017210.1002/btm2.1017233005738
    [Google Scholar]
  60. NajafiS. MajidpoorJ. MortezaeeK. Extracellular vesicle–based drug delivery in cancer immunotherapy.Drug Deliv. Transl. Res.202313112790280610.1007/s13346‑023‑01370‑337261603
    [Google Scholar]
  61. WiklanderO.P.B. MamandD.R. MohammadD.K. ZhengW. Jawad WiklanderR. SychT. ZicklerA.M. LiangX. SharmaH. LavadoA. BostJ. RoudiS. CorsoG. LennaárdA.J. Abedi-ValugerdiM. MägerI. AliciE. SezginE. NordinJ.Z. GuptaD. GörgensA. EL AndaloussiS. Antibody-displaying extracellular vesicles for targeted cancer therapy.Nat. Biomed. Eng.20248111453146810.1038/s41551‑024‑01214‑638769158
    [Google Scholar]
  62. KangJ.H. JungM.Y. ChoudhuryM. LeofE.B. Transforming growth factor beta induces fibroblasts to express and release the immunomodulatory protein PD-L1 into extracellular vesicles.FASEB J.20203422213222610.1096/fj.201902354R31907984
    [Google Scholar]
  63. AhnS.Y. ParkW.S. KimY.E. SungD.K. SungS.I. AhnJ.Y. ChangY.S. Vascular endothelial growth factor mediates the therapeutic efficacy of mesenchymal stem cell-derived extracellular vesicles against neonatal hyperoxic lung injury.Exp. Mol. Med.201850411210.1038/s12276‑018‑0055‑829650962
    [Google Scholar]
  64. OszvaldÁ. SzvicsekZ. SándorG.O. KelemenA. SoósA.Á. PálócziK. BursicsA. DedeK. TölgyesT. BuzásE.I. ZeöldA. WienerZ. Extracellular vesicles transmit epithelial growth factor activity in the intestinal stem cell niche.Stem Cells202038229130010.1002/stem.311331675158
    [Google Scholar]
  65. RussellA.E. SneiderA. WitwerK.W. BergeseP. BhattacharyyaS.N. CocksA. CocucciE. ErdbrüggerU. Falcon-PerezJ.M. FreemanD.W. GallagherT.M. HuS. HuangY. JayS.M. KanoS. LavieuG. LeszczynskaA. LlorenteA.M. LuQ. MahairakiV. MuthD.C. HootenN.N. OstrowskiM. PradaI. SahooS. SchøyenT.H. ShengL. TeschD. Van NielG. VandenbrouckeR.E. VerweijF.J. VillarA.V. WaubenM. WehmanA.M. YinH. CarterD.R.F. VaderP. Biological membranes in EV biogenesis, stability, uptake, and cargo transfer: An ISEV position paper arising from the ISEV membranes and EVs workshop.J. Extracell. Vesicles201981168486210.1080/20013078.2019.168486231762963
    [Google Scholar]
  66. VandendriesscheC. KapogiannisD. VandenbrouckeR.E. Biomarker and therapeutic potential of peripheral extracellular vesicles in Alzheimer’s disease.Adv. Drug Deliv. Rev.202219011448610.1016/j.addr.2022.11448635952829
    [Google Scholar]
  67. HernandoS. Santos-VizcaínoE. IgartuaM. HernandezR.M. Targeting the central nervous system: From synthetic nanoparticles to extracellular vesicles—Focus on Alzheimer’s and parkinson’s disease.Wiley Interdiscip. Rev. Nanomed. Nanobiotechnol.2023155e189810.1002/wnan.189837157144
    [Google Scholar]
  68. RupertD.L.M. ClaudioV. LässerC. BallyM. Methods for the physical characterization and quantification of extracellular vesicles in biological samples.Biochim. Biophys. Acta, Gen. Subj.2017186113164317910.1016/j.bbagen.2016.07.02827495390
    [Google Scholar]
  69. AyersL. PinkR. CarterD.R.F. NieuwlandR. Clinical requirements for extracellular vesicle assays.J. Extracell. Vesicles201981159375510.1080/20013078.2019.159375530949310
    [Google Scholar]
  70. KornilovR. PuhkaM. MannerströmB. HiidenmaaH. PeltoniemiH. SiljanderP. Seppänen-KaijansinkkoR. KaurS. Efficient ultrafiltration-based protocol to deplete extracellular vesicles from fetal bovine serum.J. Extracell. Vesicles201871142267410.1080/20013078.2017.142267429410778
    [Google Scholar]
  71. LoT.W. ZhuZ. PurcellE. WatzaD. WangJ. KangY.T. JollyS. NagrathD. NagrathS. Microfluidic device for high- throughput affinity-based isolation of extracellular vesicles.Lab Chip202020101762177010.1039/C9LC01190K32338266
    [Google Scholar]
  72. RezaeiS. NilforoushzadehM.A. AmirkhaniM.A. MoghadasaliR. TaghiabadiE. NasrabadiD. Preclinical and clinical studies on the use of extracellular vesicles derived from mesenchymal stem cells in the treatment of chronic wounds.Mol. Pharm.20242162637265810.1021/acs.molpharmaceut.3c0112138728585
    [Google Scholar]
  73. XieX. SongQ. DaiC. CuiS. TangR. LiS. ChangJ. LiP. WangJ. LiJ. GaoC. ChenH. ChenS. RenR. GaoX. WangG. Clinical safety and efficacy of allogenic human adipose mesenchymal stromal cells-derived exosomes in patients with mild to moderate Alzheimer’s disease: A phase I/II clinical trial.Gen. Psychiatr.2023365e10114310.1136/gpsych‑2023‑10114337859748
    [Google Scholar]
  74. YuanY. SunJ. YouT. ShenW. XuW. DongQ. CuiM. Extracellular vesicle-based therapeutics in neurological disorders.Pharmaceutics20221412265210.3390/pharmaceutics1412265236559145
    [Google Scholar]
  75. ConeA.S. YuanX. SunL. DukeL.C. VreonesM.P. CarrierA.N. KenyonS.M. CarverS.R. BenthemS.D. StimmellA.C. MoseleyS.C. HikeD. GrantS.C. WilberA.A. OlceseJ.M. MeckesD.G.Jr Mesenchymal stem cell-derived extracellular vesicles ameliorate Alzheimer’s disease-like phenotypes in a preclinical mouse model.Theranostics202111178129814210.7150/thno.6206934373732
    [Google Scholar]
  76. GaoG. LiC. MaY. LiangZ. LiY. LiX. FuS. WangY. XiaX. ZhengJ.C. Neural stem cell-derived extracellular vesicles mitigate Alzheimer’s disease-like phenotypes in a preclinical mouse model.Signal Transduct. Target. Ther.20238122810.1038/s41392‑023‑01436‑137311758
    [Google Scholar]
  77. XingZ. ZhaoC. LiuH. FanY. Endothelial progenitor cell-derived extracellular vesicles: A novel candidate for regenerative medicine and disease treatment.Adv. Healthc. Mater.2020912200025510.1002/adhm.20200025532378361
    [Google Scholar]
  78. KazsokiA. NémethK. VisnovitzT. LenzingerD. BuzásE.I. ZelkóR. Formulation and characterization of nanofibrous scaffolds incorporating extracellular vesicles loaded with curcumin.Sci. Rep.20241412757410.1038/s41598‑024‑79277‑339528605
    [Google Scholar]
  79. EversM.J.W. van de WakkerS.I. de GrootE.M. de JongO.G. Gitz-FrançoisJ.J.J. SeinenC.S. SluijterJ.P.G. SchiffelersR.M. VaderP. Functional siRNA delivery by extracellular vesicle–liposome hybrid nanoparticles.Adv. Healthc. Mater.2022115210120210.1002/adhm.20210120234382360
    [Google Scholar]
  80. LeeS. MankhongS. KangJ.H. Extracellular vesicle as a source of Alzheimer’s biomarkers: Opportunities and challenges.Int. J. Mol. Sci.2019207172810.3390/ijms2007172830965555
    [Google Scholar]
  81. RatherH.A. AlmousaS. CraftS. DeepG. Therapeutic efficacy and promise of stem cell-derived extracellular vesicles in Alzheimer’s disease and other aging-related disorders.Ageing Res. Rev.20239210208810.1016/j.arr.2023.10208837827304
    [Google Scholar]
  82. JeongH. KimO.J. OhS.H. LeeS. Reum LeeH.A. LeeK.O. LeeB.Y. KimN.K. Extracellular vesicles released from neprilysin gene-modified human umbilical cord-derived mesenchymal stem cell enhance therapeutic effects in an Alzheimer’s disease animal model.Stem Cells Int.2021202112010.1155/2021/554863034899919
    [Google Scholar]
  83. Bodart-SantosV. PinheiroL.S. da Silva-JuniorA.J. FrozaR.L. AhrensR. GonçalvesR.A. AndradeM.M. ChenY. AlcantaraC.L. GrinbergL.T. LeiteR.E.P. FerreiraS.T. FraserP.E. De FeliceF.G. Alzheimer’s disease brain-derived extracellular vesicles reveal altered synapse-related proteome and induce cognitive impairment in mice.Alzheimers Dement.202319125418543610.1002/alz.1313437204850
    [Google Scholar]
  84. WangS.S. JiaJ. WangZ. Mesenchymal stem cell-derived extracellular vesicles suppresses iNOS expression and ameliorates neural impairment in Alzheimer’s disease mice.J. Alzheimers Dis.20186131005101310.3233/JAD‑17084829254100
    [Google Scholar]
  85. ApodacaL.A. BaddourA.A.D. GarciaC.Jr AlikhaniL. GiedzinskiE. RuN. AgrawalA. AcharyaM.M. BaulchJ.E. Human neural stem cell-derived extracellular vesicles mitigate hallmarks of Alzheimer’s disease.Alzheimers Res. Ther.20211315710.1186/s13195‑021‑00791‑x33676561
    [Google Scholar]
/content/journals/car/10.2174/0115672050365314250112042136
Loading
/content/journals/car/10.2174/0115672050365314250112042136
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test