Skip to content
2000
Volume 21, Issue 9
  • ISSN: 1573-4110
  • E-ISSN: 1875-6727

Abstract

In the present era of science and technology, cadmium poisoning in humans is reported from several parts of the world and now it is a global health problem.

Accumulation of cadmium in human organs and tissues, such as the liver, kidney, ., leads to carcinogenic effects and toxicity to the organ system. Therefore, several efforts are being made to develop a monitoring system for cadmium metal ions in the environment.

This review aimed to summarise the different carbon-composite materials-based electrochemical sensors reported to date for cadmium ions detection.

The first section of this review provides a brief discussion on the source and harmful effects of cadmium ions, and the rest part includes different carbon (graphite, graphene, graphene oxide, carbon nanotubes, )-based composite nanomaterials reported to date for the electrochemical detection of cadmium ions in different analytes.

Carbon-based nanocomposite materials have been found to be very suitable for the detection of Cd(II) ions due to their boosted electron transportation and high surface, leading towards high sensitivity and high selectivity.

Loading

Article metrics loading...

/content/journals/cac/10.2174/0115734110336212241003114035
2024-10-09
2025-12-20
Loading full text...

Full text loading...

References

  1. MunisamyR. IsmailS.N.S. PraveenaS.M. Cadmium exposure via food crops: A case study of intensive farming area.Am. J. Appl. Sci.201310101252126210.3844/ajassp.2013.1252.1262
    [Google Scholar]
  2. BartonJ. GarcíaM.B.G. SantosD.H. Fanjul-BoladoP. RibottiA. McCaulM. DiamondD. MagniP. Screen-printed electrodes for environmental monitoring of heavy metal ions: A review.Mikrochim. Acta2016183250351710.1007/s00604‑015‑1651‑0
    [Google Scholar]
  3. Rafati RahimzadehM. Rafati RahimzadehM. KazemiS. MoghadamniaA.A. MoghadamniaA.A. Cadmium toxicity and treatment: An update.Caspian J. Intern. Med.20178313514510.22088/cjim.8.3.135 28932363
    [Google Scholar]
  4. SilvaA.L. CorrêaM.M. de OliveiraG.C. MichelR.C. SemaanF.S. PonzioE.A. Development and application of a routine robust graphite/poly(lactic acid) composite electrode for the fast simultaneous determination of Pb 2+ and Cd 2+ in jewelry by square wave anodic stripping voltammetry.New J. Chem.20184224195371954710.1039/C8NJ03501F
    [Google Scholar]
  5. de OliveiraG.C. VicentinoP.O. CassellaR.J. XingY.T. PonzioE.A. Simultaneous voltammetric determination of Cd 2+ and Pb 2+ in gasoline samples employing a chemically modified acrylonitrile‐butadiene‐styrene (ABS) composite electrode.Electroanalysis202133368269410.1002/elan.202060139
    [Google Scholar]
  6. RobinA.B. Cadmium toxicity and treatment.Sci. World J.2013201339465210.1155/2013/394652
    [Google Scholar]
  7. GoyalT. MitraP. SinghP. SharmaS. Assessment of blood lead and cadmium levels in occupationally exposed workers of Jodhpur, Rajasthan.J. Clin Biochem202010.1007/s12291‑020‑00878‑6
    [Google Scholar]
  8. IdreesN. TabassumB. Abd AllahE.F. HashemA. SarahR. HashimM. Groundwater contamination with cadmium concentrations in some West U.P. Regions, India.Saudi J. Biol. Sci.20182571365136810.1016/j.sjbs.2018.07.005 30505182
    [Google Scholar]
  9. SatarugS. GarrettS.H. SensM.A. SensD.A. Cadmium, environmental exposure, and health outcomes.Environ. Health Perspect.2010118218219010.1289/ehp.0901234 20123617
    [Google Scholar]
  10. TekayaN. SaiapinaO. Ben OuadaH. LagardeF. Ben OuadaH. Jaffrezic-RenaultN. Ultra-sensitive conductometric detection of heavy metals based on inhibition of alkaline phosphatase activity from Arthrospira platensis.Bioelectrochemistry201390242910.1016/j.bioelechem.2012.10.001 23174485
    [Google Scholar]
  11. BorraccinoA. CampanellaL. SammartinoM.P. TomassettiM. BattilottiM. Suitable ion-selective sensors for lead and cadmium analysis.Sens. Actuators B Chem.199271-353553910.1016/0925‑4005(92)80359‑6
    [Google Scholar]
  12. Health risks of heavy metals from long-range trans-boundary air pollution.CopenhagenWorld Health Organization Regional Office for Europe20074045
    [Google Scholar]
  13. SinghA. SharmaR.K. AgrawalM. MarshallF.M. Health risk assessment of heavy metals via dietary intake of foodstuffs from the wastewater irrigated site of a dry tropical area of India.Food Chem. Toxicol.201048261161910.1016/j.fct.2009.11.041 19941927
    [Google Scholar]
  14. KajiM. Role of experts and public participation in pollution control: The case of Itai-itai disease in Japan<sup>1.Ethics Sci. Environ. Polit.20121229911110.3354/esep00126
    [Google Scholar]
  15. JavanbakhtM. Shabani-KiaA. DarvichM.R. GanjaliM.R. ShamsipurM. Cadmium(II)-selective membrane electrode based on a synthesized tetrol compound.Anal. Chim. Acta20004081-2758110.1016/S0003‑2670(99)00771‑0
    [Google Scholar]
  16. DasilvaJ. BorgesD. DaveigaM. CurtiusA. WelzB. Determination of cadmium in biological samples solubilized with tetramethylammonium hydroxide by electrothermal atomic absorption spectrometry, using ruthenium as permanent modifier.Talanta200360597798210.1016/S0039‑9140(03)00182‑6 18969123
    [Google Scholar]
  17. RoseM. KnaggsM. OwenL. BaxterM. A review of analytical methods for lead, cadmium, mercury, arsenic and tin determination used in proficiency testing.J. Anal. At. Spectrom.20011691101110610.1039/b102839c
    [Google Scholar]
  18. Guidelines for Drinking-Water Quality.4th edGeneva, SwitzerlandWorld Health Organization2011118
    [Google Scholar]
  19. Exposure to cadmium: A major public health concernWorld Health Organization2010
    [Google Scholar]
  20. Agency for toxic substances and disease registry (atsdr). toxicological profile for cadmium. u.s. department of health and human services, centers for disease control and prevention, agency for toxic substances and disease registry. atlanta (ga).2015Available from: https://www.atsdr.cdc.gov/toxpro files/tp.asp?id=48&tid=15
  21. ATSDR - Toxicological Profile: Cadmium.2020Available from: https://www.atsdr.cdc.gov/toxprofiles/tp.asp?id=48&tid=15
  22. Fourth national report on human exposure to environmental chemicals.2009Available from: https://www.cdc.gov/exposurereport
  23. BeckN.G. FranksR.P. BrulandK.W. Analysis for Cd, Cu, Ni, Zn, and Mn in estuarine water by inductively coupled plasma mass spectrometry coupled with an automated flow injection system.Anal. Chim. Acta20024551112210.1016/S0003‑2670(01)01561‑6
    [Google Scholar]
  24. YuanC.G. JiangG.B. CaiY.Q. HeB. LiuJ.F. Determination of cadmium at the nanogram per liter level in seawater by graphite furnace AAS using cloud point extraction.At. Spectr.200425170
    [Google Scholar]
  25. HuttonE.A. van ElterenJ.T. OgorevcB. SmythM.R. Validation of bismuth film electrode for determination of cobalt and cadmium in soil extracts using ICP–MS.Talanta200463484985510.1016/j.talanta.2003.12.038 18969509
    [Google Scholar]
  26. Abu-SalahK. AlrokyanS.A. KhanM.N. AnsariA.A. Nanomaterials as analytical tools for genosensors.Sensors201010196399310.3390/s100100963 22315580
    [Google Scholar]
  27. YavuzS. ErkalA. Kariperİ.A. SolakA.O. JeonS. Mülazımoğluİ.E. ÜstündağZ. Carbonaceous Materials-12: A novel highly sensitive graphene oxide-based carbon electrode: Preparation, characterization, and heavy metal analysis in food samples.Food Anal. Methods20169232233110.1007/s12161‑015‑0198‑3
    [Google Scholar]
  28. RibeiroR.S.A. RamirezN.I.B. SemaanF.S. AlhadeffE.M. Bionanopolymeric film for the electroanalytical detection of zinc, cadmium and lead ions.Mater. Res. Innov.2020119
    [Google Scholar]
  29. MainierF.B. SemaanF.S. SarmentoT.P. AmorimP.H.O. SantosR.G.S. Lead and cadmium distribution in tubes of galvanized steel by hot-dip used for drinking water supply.J Civil Engg and Architect2020141
    [Google Scholar]
  30. NaserH.M. ShilN.C. MahmudN.U. RashidM.H. HossainK.M. Lead, cadmium and nickel contents of vegetables grown in industrially polluted and non-polluted areas of Bangladesh.Bangladesh J. Agric. Res.197034454555410.3329/bjar.v34i4.5831
    [Google Scholar]
  31. MeregalliV. ParrinelloM. Review of theoretical calculations of hydrogen storage in carbon-based materials.Appl. Phys., A Mater. Sci. Process.200172214314610.1007/s003390100789
    [Google Scholar]
  32. AngioneM.D. PilolliR. CotroneS. MagliuloM. MallardiA. PalazzoG. SabbatiniL. FineD. DodabalapurA. CioffiN. TorsiL. Carbon based materials for electronic bio-sensing.Mater. Today201114942443310.1016/S1369‑7021(11)70187‑0
    [Google Scholar]
  33. GeimA.K. NovoselovK.S. The rise of graphene.Nat. Mater.20076318319110.1038/nmat1849 17330084
    [Google Scholar]
  34. KiliçA. AslanM. LeventA. Investigation of the electrochemical properties of edoxaban using glassy carbon and boron-doped diamond electrodes and development of an eco-friendly and cost effective voltammetric method for its determination.Anal. Biochem.202468511538610.1016/j.ab.2023.115386 37977214
    [Google Scholar]
  35. HangarterC.M. BangarM. MulchandaniA. MyungN.V. Conducting polymer nanowires for chemiresistive and FET-based bio/chemical sensors.J. Mater. Chem.201020163131314010.1039/b915717d
    [Google Scholar]
  36. BuiM.P.N. LiC.A. HanK.N. PhamX.H. SeongG.H. Electrochemical determination of cadmium and lead on pristine single-walled carbon nanotube electrodes.Anal. Sci.201228769970410.2116/analsci.28.699 22790373
    [Google Scholar]
  37. IijimaS. Carbon nanotubes: Past, present, and future.Physica B20023231-41510.1016/S0921‑4526(02)00869‑4
    [Google Scholar]
  38. RaniG.M. WuC.M. MotoraK.G. UmapathiR. JoseC.R.M. Acoustic-electric conversion and triboelectric properties of nature-driven CF-CNT based triboelectric nanogenerator for mechanical and sound energy harvesting.Nano Energy202310810821110.1016/j.nanoen.2023.108211
    [Google Scholar]
  39. AfkhamiA. KhoshsafarH. BagheriH. MadrakianT. Construction of a carbon ionic liquid paste electrode based on multi-walled carbon nanotubes-synthesized Schiff base composite for trace electrochemical detection of cadmium.Mater. Sci. Eng. C20143581410.1016/j.msec.2013.10.025 24411345
    [Google Scholar]
  40. HuangH. ChenT. LiuX. MaH. Ultrasensitive and simultaneous detection of heavy metal ions based on three-dimensional graphene-carbon nanotubes hybrid electrode materials.Anal. Chim. Acta2014852455410.1016/j.aca.2014.09.010 25441878
    [Google Scholar]
  41. ZhaoD. GuoX. WangT. AlvarezN. ShanovV.N. HeinemanW.R. Simultaneous detection of heavy metals by anodic stripping voltammetry using carbon nanotube thread.Electroanalysis201426348849610.1002/elan.201300511
    [Google Scholar]
  42. JiangR. LiuN. GaoS. MamatX. SuY. WagbergT. LiY. HuX. HuG. A facile electrochemical sensor based on PyTS–CNTs for simultaneous determination of cadmium and lead ions.Sensors20181851567157910.3390/s18051567 29762494
    [Google Scholar]
  43. AravindA. MathewB. Tailoring of nanostructured material as an electrochemical sensor and sorbent for toxic Cd (II) ions from various real samples.Anal. Sci. Technol201891810.1186/s40543‑018‑0153‑1
    [Google Scholar]
  44. PalisocS. VittoR.I.M. NatividadM. NatividadM. Determination of heavy metals in herbal food supplements using Bismuth/multi-walled carbon nanotubes/nafion modified graphite electrodes sourced from waste batteries.Sci. Rep.201991184911850310.1038/s41598‑019‑54589‑x 31811219
    [Google Scholar]
  45. MohammedR.H.R. HassanR.Y.A. MahmoudR. FarghaliA.A. HassounaM.E.M. Electrochemical determination of cadmium ions in biological and environmental samples using a newly developed sensing platform made of nickel tungstate-doped multi-walled carbon nanotubes.J. Appl. Electrochem.202454365766810.1007/s10800‑023‑01976‑y
    [Google Scholar]
  46. WeiY. GaoC. MengF.L. LiH.H. WangL. LiuJ.H. HuangX.J. SnO2/reduced graphene oxide nanocomposite for the simultaneous electrochemical detection of cadmium (II), lead (II), copper (II), and mercury (II): An interesting favorable mutual interference.J. Phys. Chem. C201211611034104110.1021/jp209805c
    [Google Scholar]
  47. XieY.L. ZhaoS.Q. YeH.L. YuanJ. SongP. HuS.Q. Graphene/CeO 2 hybrid materials for the simultaneous electrochemical detection of cadmium(II), lead(II), copper(II), and mercury(II).J. Electroanal. Chem.201575723524210.1016/j.jelechem.2015.09.043
    [Google Scholar]
  48. XingH. XuJ. ZhuX. DuanX. LuL. WangW. ZhangY. YangT. Highly sensitive simultaneous determination of cadmium (II), lead (II), copper (II), and mercury (II) ions on N-doped graphene modified electrode.J. Electroanal. Chem.2016760525810.1016/j.jelechem.2015.11.043
    [Google Scholar]
  49. SiY. LiuJ. ChenY. MiaoX. YeF. LiuZ. LiJ. rGO/AuNPs/tetraphenylporphyrin nanoconjugate-based electrochemical sensor for highly sensitive detection of cadmium ions.Anal. Methods201810293631363610.1039/C8AY01020J
    [Google Scholar]
  50. Üstündağİ. ErkalA. ÜstündağZ. SolakA.O. Electrochemical detection of cadmium and lead in rice on manganese dioxide reinforced carboxylated graphene oxide nanofilm.MANAS J. Eng.2018696109
    [Google Scholar]
  51. PandeyS.K. SachanS. SinghS.K. Ultra-trace sensing of cadmium and lead by square wave anodic stripping voltammetry using ionic liquid modified graphene oxide.Mater. Sci. Energy Technol.20192366767510.1016/j.mset.2019.09.004
    [Google Scholar]
  52. YiW. HeZ. FeiJ. HeX. Sensitive electrochemical sensor based on poly(L -glutamic acid)/graphene oxide composite material for simultaneous detection of heavy metal ions.RSC Advances2019930173251733410.1039/C9RA01891C 35519871
    [Google Scholar]
  53. BhardiyaS. R. AsatiA. SheshmaH. RaiA. RaiV. K. SinghM. A novel bioconjugated reduced graphene oxide-based nanocomposite for sensitive electrochemical detection of cadmium in water.Sens. Actuat. B Chem. B202132812901912902810.1016/j.snb.2020.129019
    [Google Scholar]
  54. LiY. LiuX. ZengX. LiuY. LiuX. WeiW. LuoS. Simultaneous determination of ultra-trace lead and cadmium at a hydroxyapatite-modified carbon ionic liquid electrode by square-wave stripping voltammetry.Sens. Actuat. Biol. Chem.200913960461010.1016/j.snb.2009.03.045
    [Google Scholar]
  55. KumarS. SaraswathiR. Electrochemical sensing of cadmium and lead ions at zeolite-modified electrodes: Optimization and field measurements.Sens. Actuat. Biol. Chem.2009141657510.1016/j.snb.2009.05.029
    [Google Scholar]
  56. PalisocS. GonzalesA.J. PardillaA. RacinesL. NatividadM. Electrochemical detection of lead and cadmium in UHT-processed milk using bismuth nanoparticles/Nafion®-modified pencil graphite electrode.Sens. Biosensing Res.20192310026810.1016/j.sbsr.2019.100268
    [Google Scholar]
  57. ZhangP. DongS. GuG. HuangT. Simultaneous determination of Cd2+.Bull. Korean Chem. Soc.201031102949295410.5012/bkcs.2010.31.10.2949
    [Google Scholar]
  58. WangZ. LiuG. ZhangL. WangH. Electrochemical detection of trace cadmium in soil using a Nafion/stannum film-modified molecular wire carbon paste electrodes.Ionics201319111687169310.1007/s11581‑013‑0891‑4
    [Google Scholar]
  59. MadhuR. SankarK.V. ChenS.M. SelvanR.K. Eco-friendly synthesis of activated carbon from dead mango leaves for the ultrahigh sensitive detection of toxic heavy metal ions and energy storage applications.RSC Adv.2014431225123310.1039/C3RA45089A
    [Google Scholar]
  60. VeerakumarP. VeeramaniV. ChenS.M. MadhuR. LiuS.B. Palladium nanoparticle incorporated porous activated carbon: Electrochemical detection of toxic metal ions.ACS Appl. Mater. Interfaces2016821319132610.1021/acsami.5b10050 26700093
    [Google Scholar]
  61. MaghearA. TertişM. FriteaL. MarianI.O. IndreaE. WalcariusA. SăndulescuR. Tetrabutylammonium-modified clay film electrodes: Characterization and application to the detection of metal ions.Talanta2014125364410.1016/j.talanta.2014.02.042 24840412
    [Google Scholar]
  62. ChenL. Sensitive square wave anodic stripping voltammetric determination of Cd2+ and Pb2+ ions at Bi/Nafion/overoxidized 2-mercaptoethanesulfonate-tethered polypyrrole/glassy carbon electrode.Sens. Actuat. Biol. Chem.201419194101
    [Google Scholar]
  63. XieR. ZhouL. LanC. FanF. XieR. TanH. XieT. ZhaoL. Nanostructured carbon black for simultaneous electrochemical determination of trace lead and cadmium by differential pulse stripping voltammetry.R. Soc. Open Sci.20185718028218029110.1098/rsos.180282 30109084
    [Google Scholar]
  64. ZhengX. ChenS. ChenJ. GuoY. PengJ. ZhouX. LvR. LinJ. LinR. Highly sensitive determination of lead(II) and cadmium(II) by a large surface area mesoporous alumina modified carbon paste electrode.RSC Advances20188147883789110.1039/C8RA00041G 35539135
    [Google Scholar]
  65. YaoY. WuH. PingJ. Simultaneous determination of Cd(II) and Pb(II) ions in honey and milk samples using a single-walled carbon nanohorns modified screen-printed electrochemical sensor.Food Chem.201927481510.1016/j.foodchem.2018.08.110 30373012
    [Google Scholar]
  66. PudzaM.Y. AbidinZ.Z. Abdul-RashidS. YasinF.M. NoorA.S.M. AbdullahJ. Selective and simultaneous detection of cadmium, lead and copper by tapioca-derived carbon dot–modified electrode.Environ. Sci. Pollut. Res. Int.20202712133151332410.1007/s11356‑020‑07695‑7 32020456
    [Google Scholar]
  67. LevanenG. DaliA. LerouxY. LupoiT. BeteluS. MichelK. Ababou-GirardS. HapiotP. DahechI. CristeaC. FeierB. RazanF. GenesteF. Specific electrochemical sensor for cadmium detection: Comparison between monolayer and multilayer functionalization.Electrochim. Acta202346414296210.1016/j.electacta.2023.142962
    [Google Scholar]
  68. GaoW. WangX. LiP. WuQ. QiF. WuS. YuY. DingK. Highly sensitive and selective detection of cadmium with graphitic carbon nitride nanosheets/nafion electrode.RSC Adv.2016611357011357510.1039/C6RA24638A
    [Google Scholar]
  69. LiuZ. WangR. XueQ. ChangC. LiuY. HeL. Highly efficient detection of Cd(II) ions in water by graphitic carbon nitride and tin dioxide nanoparticles modified glassy carbon electrode.Inorg. Chem. Commun.202314811032110.1016/j.inoche.2022.110321
    [Google Scholar]
  70. WangX. WangR. XueQ. LiuZ. LiuY. WangJ. ZhuC. Detection of cadmium (II) ion in water by novel electrochemical sensor based on the modification of graphitic nitride and polyaniline composite.Diam. Relat. Mater.202314011042710.1016/j.diamond.2023.110427
    [Google Scholar]
/content/journals/cac/10.2174/0115734110336212241003114035
Loading
/content/journals/cac/10.2174/0115734110336212241003114035
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test