Skip to content
2000
Volume 21, Issue 8
  • ISSN: 1573-4110
  • E-ISSN: 1875-6727

Abstract

Background

Fossil fuels have been used extensively as primary energy sources, which has resulted in nearly depleted reserves, a contaminated environment, and a variety of negative health effects globally. Hydrogen has been proposed by researchers as an effective “carbon neutral” fuel. Large-scale hydrogen production through electrochemical water splitting necessitates the use of inexpensive, extremely effective, and earth-abundant electrocatalysts.

Methods

In this study, chitosan–sodium tripolyphosphate (TPP) nanoparticles are combined with CuO nanostructures to produce chitosan–TPP–CuO (CT/CuO) nanocomposite. Chitosan–TPP nanoparticles were first synthesized using the ionic gelation method. These nanoparticles were then extracted, and CuO was synthesized in polymer nanoparticles using a simple chemical precipitation method. Chitosan and CuO are abundantly available and are environmentally beneficial materials. The porous structure and open channels within the chitosan polymer matrix host the CuO nanostructures, which promote electrolyte penetration, mass transport, and charge transfer, while the metal-oxide nanostructures act as catalytic centers. The structural and morphological properties of the CT/CuO nanocomposite were investigated using XRD, HRSEM, and HRTEM. The band gap and functional groups in the material were measured by UV–Vis DRS and FTIR methods, respectively. Elemental analysis was conducted utilizing EDS, HRSEM, and XPS. Thermal characteristics of the CT/CuO nanocomposite were investigated using TG-DTA and DSC methods. Electrochemical techniques were used to investigate the activities of HER and OER.

Results

The XRD examination of the CT/CuO nanocomposite revealed semi-crystalline chitosan peaks and a monoclinic CuO structure. HRSEM and HRTEM pictures indicated that chitosan–TPP nanoparticles and CuO nanostructures were evenly spread and clustered to create a nanoparticulate matrix. UV–Vis DRS indicated that the CT/CuO nanocomposite had a direct band gap of 1.702 eV. The FTIR and XPS studies revealed the various bonds and oxidation states of the nanocomposite. Thermal analyses demonstrated that the inclusion of CuO increased the thermal stability of the CT/CuO nanocomposite. CT/CuO nanocomposite exhibited excellent OER and HER activity, requiring a low overpotential of 444 mV and 379 mV at 10 mA cm−2 and -10 mA cm−2, respectively.

Conclusion

Biopolymer metal-oxide nanocomposites could potentially be used as electrocatalysts in water splitting, energy conversion, storage devices, sensors, and several other fields.

Loading

Article metrics loading...

/content/journals/cac/10.2174/0115734110334031240927051501
2024-10-08
2025-12-24
Loading full text...

Full text loading...

References

  1. McHughP.J. StergiouA.D. SymesM.D. Decoupled electrochemical water splitting: From fundamentals to applications.Adv. Energy Mater.20201044200245310.1002/aenm.202002453
    [Google Scholar]
  2. ZhangB. ZhengY. MaT. YangC. PengY. ZhouZ. ZhouM. LiS. WangY. ChengC. Designing MOF nanoarchitectures for electrochemical water splitting.Adv. Mater.20213317200604210.1002/adma.202006042 33749910
    [Google Scholar]
  3. XuX. ZhouW. SunH. SongY. ShaoZ. SunH. SongY. ZhouW. ShaoZ. XuX. Designing high‐valence metal sites for electrochemical water splitting.Wiley Online Library202110.1002/adfm.202009779
    [Google Scholar]
  4. LiX. HaoX. AbudulaA. Nanostructured catalysts for electrochemical water splitting: Current state and prospects.J. Mater. Chem. A201641197312000
    [Google Scholar]
  5. YangM. ZhangC.H. LiN.W. LuanD. YuL. LouX.W.D. Design and synthesis of hollow nanostructures for electrochemical water splitting.Adv. Sci.202299210513510.1002/advs.202105135 35043604
    [Google Scholar]
  6. LiS. LiE. AnX. HaoX. JiangZ. GuanG. Transition metal-based catalysts for electrochemical water splitting at high current density: current status and perspectives.Nanoscale20211330127881281710.1039/D1NR02592A 34477767
    [Google Scholar]
  7. LiW. WangC. LuX. Integrated transition metal and compounds with carbon nanomaterials for electrochemical water splitting.J. Mater. Chem. A Mater. Energy Sustain.2021973786382710.1039/D0TA09495A
    [Google Scholar]
  8. Al-NaggarA.H. ShindeN.M. KimJ.S. ManeR.S. Water splitting performance of metal and non-metal-doped transition metal oxide electrocatalysts.Coord. Chem. Rev.202347421486410.1016/j.ccr.2022.214864
    [Google Scholar]
  9. SunH. XuX. KimH. JungW. ZhouW. ShaoZ. Electrochemical water splitting: Bridging the gaps between fundamental research and industrial applications.Wiley Online Library202210.1002/eem2.12441
    [Google Scholar]
  10. WeiC. XuZ.J. WeiC. XuZ.J. The comprehensive understanding of as an evaluation parameter for electrochemical water splitting.Wiley Online Library201810.1002/smtd.201800168
    [Google Scholar]
  11. ZhuC. ShiQ. FengS. DuD. LinY. Single-atom catalysts for electrochemical water splitting.ACS Energy Lett.2018371713172110.1021/acsenergylett.8b00640
    [Google Scholar]
  12. AnantharajS. KunduS. Do the evaluation parameters reflect intrinsic activity of electrocatalysts in electrochemical water splitting?ACS Energy Lett.2019461260126410.1021/acsenergylett.9b00686
    [Google Scholar]
  13. TanY. WangH. LiuP. ShenY. ChengC. HirataA. FujitaT. TangZ. ChenM. Versatile nanoporous bimetallic phosphides towards electrochemical water splitting.Energy Environ. Sci.2016972257226110.1039/C6EE01109H
    [Google Scholar]
  14. ChenZ. DuanX. WeiW. WangS. NiB.J. Iridium-based nanomaterials for electrochemical water splitting.Nano Energy20207810527010.1016/j.nanoen.2020.105270
    [Google Scholar]
  15. YuJ. HeQ. YangG. ZhouW. ShaoZ. NiM. Recent advances and prospective in ruthenium-based materials for electrochemical water splitting.ACS Catal.201991199731001110.1021/acscatal.9b02457
    [Google Scholar]
  16. ZhengX. QinM. MaS. ChenY. NingH. YangR. MaoS. WangY. Strong oxide‐support interaction over IrO 2/V 2 O 5 for efficient ph‐universal water splitting.Adv. Sci. (Weinh.)2022911210463610.1002/advs.202104636 35152570
    [Google Scholar]
  17. Ibn ShamsahS.M. Earth-abundant electrocatalysts for water splitting: Current and future directions.Catalysts202111442910.3390/catal11040429
    [Google Scholar]
  18. ZhangB. WangW. LiangL. XuZ. LiX. QiaoS. Prevailing conjugated porous polymers for electrochemical energy storage and conversion: Lithium-ion batteries, supercapacitors and water-splitting.Coord. Chem. Rev.202143621378210.1016/j.ccr.2021.213782
    [Google Scholar]
  19. ZhouY. FanH.J. Progress and challenge of amorphous catalysts for electrochemical water splitting.ACS Materials Letters20213113614710.1021/acsmaterialslett.0c00502
    [Google Scholar]
  20. AnantharajS. NodaS. Amorphous catalysts and electrochemical water splitting: An untold story of harmony.Small2020162190577910.1002/smll.201905779 31823508
    [Google Scholar]
  21. KimI.Y. SeoS.J. MoonH.S. YooM.K. ParkI.Y. KimB.C. ChoC.S. Chitosan and its derivatives for tissue engineering applications.Biotechnol. Adv.200826112110.1016/j.biotechadv.2007.07.009 17884325
    [Google Scholar]
  22. ArdeanC DavidescuCM NemeşNS NegreaA CiopecM DuteanuN NegreaP Duda‐seimanD MustaV Factors influencing the antibacterial activity of chitosan and chitosan modified by functionalization.Int. J. Mol. Sci.202122744910.3390/ijms22147449
    [Google Scholar]
  23. PokhrelS. YadavP.N. Functionalization of chitosan polymer and their applications.J. Macromol. Sci. Part A201956450475
    [Google Scholar]
  24. NicolleL. JournotCMA Gerber-Lemaire, S Chitosan functionalization: Covalent and non-covalent interactions and their characterization.Polymers2021134118
    [Google Scholar]
  25. KyzasGZ BikiarisDN Recent modifications of chitosan for adsorption applications: A critical and systematic review.Mar. Drugs20151331233710.3390/md13010312
    [Google Scholar]
  26. PodrepšekG.H. KnezŽ. LeitgebM. Development of chitosan functionalized magnetic nanoparticles with bioactive compounds.Nanomaterials2020101913
    [Google Scholar]
  27. AlvesN.M. ManoJ.F. Chitosan derivatives obtained by chemical modifications for biomedical and environmental applications.Int. J. Biol. Macromol.200843540141410.1016/j.ijbiomac.2008.09.007 18838086
    [Google Scholar]
  28. DingJ. ZhongL. HuangQ. GuoY. MiaoT. HuY. QianJ. HuangS. Chitosan hydrogel derived carbon foam with typical transition-metal catalysts for efficient water splitting.Carbon202117716017010.1016/j.carbon.2021.01.160
    [Google Scholar]
  29. WangJ. SunJ. HuangJ. FakhriA. GuptaV.K. Synthesis and its characterization of silver sulfide/nickel titanate/chitosan nanocomposites for photocatalysis and water splitting under visible light, and antibacterial studies.Mater. Chem. Phys.202127212499010.1016/j.matchemphys.2021.124990
    [Google Scholar]
  30. DhanasekaranT. BovasA. RadhakrishnanT.P. Hydrogel polymer–pba nanocomposite thin film-based bifunctional catalytic electrode for water splitting: The unique role of the polymer matrix in enhancing the electrocatalytic efficiency.ACS Appl. Mater. Interfaces20231556687669610.1021/acsami.2c18006 36695812
    [Google Scholar]
  31. ChangB. HaoS. YeZ. YangY. A self-supported amorphous Ni–P alloy on a CuO nanowire array: An efficient 3D electrode catalyst for water splitting in alkaline media.Chem. Commun. (Camb.)201854192393239610.1039/C7CC09007B 29457161
    [Google Scholar]
  32. SajidM. QayyumW. FarhanA. QamarM.A. NawazH. Progress in the development of copper oxide-based materials for electrochemical water splitting.Int. J. Hydrogen Energy20246220922710.1016/j.ijhydene.2024.02.377
    [Google Scholar]
  33. ZuoY. LiuY. LiJ. DuR. HanX. ZhangT. ArbiolJ. DivinsN.J. LlorcaJ. GuijarroN. SivulaK. CabotA. In situ electrochemical oxidation of Cu 2 S into CuO nanowires as a durable and efficient electrocatalyst for oxygen evolution reaction.Chem. Mater.201931187732774310.1021/acs.chemmater.9b02790
    [Google Scholar]
  34. XiongX. YouC. LiuZ. AsiriA.M. SunX. Co-doped CuO nanoarray: An efficient oxygen evolution reaction electrocatalyst with enhanced activity.ACS Sustain. Chem.& Eng.2018632883288710.1021/acssuschemeng.7b03752
    [Google Scholar]
  35. KhanN.A. AhmadI. RashidN. HussainS. ZairovR. AlsaiariM. AlkorbiA.S. UllahZ. Hafiz urRehman; Nazar, M.F. Effective CuO/CuS heterostructures catalyst for OER performances.Int. J. Hydrogen Energy20234880311423115110.1016/j.ijhydene.2023.04.308
    [Google Scholar]
  36. CzioskaS. WangJ. ZuoS. TengX. ChenZ. Hierarchically structured NiFeOx/CuO nanosheets/nanowires as an efficient electrocatalyst for the oxygen evolution reaction.ChemCatChem20181051005101110.1002/cctc.201701441
    [Google Scholar]
  37. GhoshD. PradhanD. Effect of cooperative redox property and oxygen vacancies on bifunctional OER and HER activities of solvothermally synthesized CeO2/CuO composites.Langmuir20233993358337010.1021/acs.langmuir.2c03242 36847346
    [Google Scholar]
  38. KumarN. UpadhyayS. KarthikeyanM. SenA. ChetanaS. JoshiN.C. PriyadarshiN. HossainI. AnsariM.N.M. Facile one-step solid-state synthesis of CuO nanoparticles finely decorated over carbon sheets for improved OER activity.J. Alloys Compd.202498317384210.1016/j.jallcom.2024.173842
    [Google Scholar]
  39. YinH.J. YuanK. ZhengY.L. SunX.C. ZhangY.W. In situ synthesis of NiO/CuO nanosheet heterostructures rich in defects for efficient electrocatalytic oxygen evolution reaction.J. Phys. Chem. C202112530165161652310.1021/acs.jpcc.1c03824
    [Google Scholar]
  40. MaX-X. ChenL. ZhangZ. TangJ-L. Electrochemical performance evaluation of CuO@Cu2O nanowires array on cu foam as bifunctional electrocatalyst for efficient water splitting.Chin. J. Anal. Chem.2020481e20001e2001210.1016/S1872‑2040(19)61211‑9
    [Google Scholar]
  41. CaiZ. LiA. ZhangW. ZhangY. CuiL. LiuJ. Hierarchical Cu@Co-decorated CuO@Co3O4 nanostructure on Cu foam as efficient self-supported catalyst for hydrogen evolution reaction.J. Alloys Compd.202188216074910.1016/j.jallcom.2021.160749
    [Google Scholar]
  42. PandaC. MenezesP.W. ZhengM. OrthmannS. DriessM. In situ formation of nanostructured core–shell Cu3 N–CuO to promote alkaline water electrolysis.ACS Energy Lett.20194374775410.1021/acsenergylett.9b00091
    [Google Scholar]
  43. CuiS. QianM. LiuX. SunZ. DuP. A copper porphyrin‐based conjugated mesoporous polymer‐derived bifunctional electrocatalyst for hydrogen and oxygen evolution.ChemSusChem20169172365237310.1002/cssc.201600452 27530422
    [Google Scholar]
  44. RajagopalV. ManivannanM. KathiresanM. SuryanarayananV. JonesL.A. Metal/metal oxide-decorated covalent organic frameworks as electrocatalysts for electrocarboxylation and water splitting.Mater. Chem. Phys.202228512610410.1016/j.matchemphys.2022.126104
    [Google Scholar]
  45. DebnathA. DiyaliS. DasM. PandaS.J. MondalD. DhakD. PurohitC.S. RayP.P. BiswasB. Harnessing the hydrogen evolution reaction (HER) through the electrical mobility of an embossed Ag(I)-molecular cage and a Cu(II)-coordination polymer.Dalton Trans.202352268850885610.1039/D3DT01073B 37338097
    [Google Scholar]
  46. HuangX. YaoH. CuiY. HaoW. ZhuJ. XuW. ZhuD. Conductive copper benzenehexathiol coordination polymer as a hydrogen evolution catalyst.ACS Appl. Mater. Interfaces2017946407524075910.1021/acsami.7b14523 29086557
    [Google Scholar]
  47. VargheseA. Devi KRS. PinheiroD. Rational design of PANI incorporated PEG capped CuO/TiO2 for electrocatalytic hydrogen evolution and supercapattery applications.Int. J. Hydrogen Energy20234876295522956410.1016/j.ijhydene.2023.04.114
    [Google Scholar]
  48. LiQ. BiJ. YaoY. LiX. XuD. A novel 3D CoNiCu-LDH@CuO micro-flowers on copper foam as efficient electrocatalyst for overall water splitting.Appl. Surf. Sci.202362215687410.1016/j.apsusc.2023.156874
    [Google Scholar]
  49. CalvoP. Remuñán-LópezC. Vila-JatoJ.L. AlonsoM.J. Novel hydrophilic chitosan-polyethylene oxide nanoparticles as protein carriers.J. Appl. Polym. Sci.19976312513210.1002/(SICI)1097‑4628(19970103)63:1<125::AID‑APP13>3.0.CO;2‑4
    [Google Scholar]
  50. BadawyAA AbdelfattahNAH SalemSS AwadMF Fouda, A Efficacy assessment of biosynthesized copper oxide nanoparticles (CuO-NPs) on stored grain insects and their impacts on morphological and physiological traits of wheat (Triticum aestivum L.) plant.Biology202110233
    [Google Scholar]
  51. Bin MobarakM. HossainM.S. ChowdhuryF. AhmedS. Synthesis and characterization of CuO nanoparticles utilizing waste fish scale and exploitation of XRD peak profile analysis for approximating the structural parameters.Arab. J. Chem.2022151010411710.1016/j.arabjc.2022.104117
    [Google Scholar]
  52. Siavash MoakharR. Hosseini-HosseinabadS.M. Masudy-PanahS. SezaA. JalaliM. Fallah-AraniH. DabirF. GholipourS. AbdiY. Bagheri-HaririM. Riahi-NooriN. LimY.F. HagfeldtA. SalibaM. Photoelectrochemical water‐splitting using cuo‐based electrodes for hydrogen production: A review.Adv. Mater.20213333200728510.1002/adma.202007285 34117806
    [Google Scholar]
  53. Anaya-EsparzaL.M. Ruvalcaba-GómezJ.M. Romero-ToledoR. Sánchez-BurgosJ.A. Montalvo-GonzálezE. Pérez-LariosA. Investigating structural changes of Chitosan-TiO2 and Chitosan-TiO2-ZnO-MgO hybrid films during storage by FTIR spectroscopy.Maced. J. Chem. Chem. Eng.202140219721110.20450/mjcce.2021.2396
    [Google Scholar]
  54. SoleymanfallahS. KhoshkhooZ. HosseiniS.E. AziziM.H. Preparation, physical properties, and evaluation of antioxidant capacity of aqueous grape extract loaded in chitosan‐TPP nanoparticles.Food Sci. Nutr.202210103272328110.1002/fsn3.2891 36249981
    [Google Scholar]
  55. Afanas’evaN.V. PetrovaV.A. VlasovaE.N. GladchenkoS.V. KhayrullinA.R. VolchekB.Z. BochekA.M. Molecular mobility of chitosan and its interaction with montmorillonite in composite films: Dielectric spectroscopy and FTIR studies.Polym. Sci. Ser. A2013551273874810.1134/S0965545X13120018
    [Google Scholar]
  56. SpoialăA. IlieC.I. DoleteG. CroitoruA.M. SurduV.A. TrușcăR.D. MotelicaL. OpreaO.C. FicaiD. FicaiA. AndronescuE. DițuL.M. Preparation and characterization of chitosan/TiO2 composite membranes as adsorbent materials for water purification.Membranes202212880410.3390/membranes12080804 36005719
    [Google Scholar]
  57. SaccoP. BorgognaM. TravanA. MarsichE. PaolettiS. AsaroF. GrassiM. DonatiI. Polysaccharide-based networks from homogeneous chitosan-tripolyphosphate hydrogels: Synthesis and characterization.Biomacromolecules20141593396340510.1021/bm500909n 25133954
    [Google Scholar]
  58. Elya SudrajatS. LotulungPD AnwarE Phosphorylation of gelatine and chitosan as an excipient for asiaticoside nanofibers.Malaysian J. Anal. Sci.20141815867
    [Google Scholar]
  59. ChandrasekarM. SubashM. LogambalS. UdhayakumarG. UthrakumarR. InmozhiC. Al-OnaziW.A. Al-MohaimeedA.M. ChenT.W. KanimozhiK. Synthesis and characterization studies of pure and Ni doped CuO nanoparticles by hydrothermal method.J. King Saud Univ. Sci.202234310183110.1016/j.jksus.2022.101831
    [Google Scholar]
  60. RamzanM. ObodoR.M. MukhtarS. IlyasS.Z. AzizF. ThovhogiN. Green synthesis of copper oxide nanoparticles using Cedrus deodara aqueous extract for antibacterial activity.Mater. Today Proc.20213657658110.1016/j.matpr.2020.05.472
    [Google Scholar]
  61. PatelM. MishraS. VermaR. ShikhaD. Synthesis of ZnO and CuO nanoparticles via Sol gel method and its characterization by using various technique.Discover Materials20222111110.1007/s43939‑022‑00022‑6
    [Google Scholar]
  62. SanthaA. VargheseR. Joy PrabuH. JohnsonI. Magimai Antoni RajD. John SundaramS. Production of sustainable biofuel from biogenic waste using CuO nanoparticles as heterogeneous catalyst.Mater. Today Proc.20213644745210.1016/j.matpr.2020.05.069
    [Google Scholar]
  63. KhaledB. NassiraZ. ImeneH. Eco-friendly synthesis of self-regenerative low-cost biosorbent by the incorporation of CuO: A photocatalyst sensitive to visible light irradiation for azo dye removal.Environ. Sci. Pollut. Res. Int.20202725310743109110.1007/s11356‑020‑09364‑1 32524399
    [Google Scholar]
  64. Handbook of X-ray Photoelectron Spectroscopy: A Reference Book of Standard.Available from https://books.google.co.in/books/about/Handbook_of_X_ray_Photoelectron_Spectros.html?id=oY5TAAAAYAAJ&redir_esc=y
  65. GuyF. RunttiH. DuclauxL. OndartsM. ReinertL. OutinJ. GonzeE. BonnamyS. SonedaY. Synthesis and characterization of Cu doped activated carbon beads from chitosan.Microporous Mesoporous Mater.202132211114710.1016/j.micromeso.2021.111147
    [Google Scholar]
  66. LiP.C. LiaoG.M. KumarS.R. ShihC.M. YangC.C. WangD.M. LueS.J. Fabrication and characterization of chitosan nanoparticle-incorporated quaternized poly(vinyl alcohol) composite membranes as solid electrolytes for direct methanol alkaline fuel cells.Electrochim. Acta201618761662810.1016/j.electacta.2015.11.117
    [Google Scholar]
  67. ShijieF. JiefengZ. PengyuZ. YunlingG. JunxianY. A degradable super-hydrophilic/underwater super-oleophobic membrane prepared by a green modification method for efficient oil-in-water emulsion separation.SSRN Electron. J.2021
    [Google Scholar]
  68. AljuhaniA. RiyadhS.M. KhalilK.D. Chitosan/CuO nanocomposite films mediated regioselective synthesis of 1,3,4-trisubstituted pyrazoles under microwave irradiation.J. Saudi Chem. Soc.202125810127610.1016/j.jscs.2021.101276
    [Google Scholar]
  69. Senthil KumarP. SelvakumarM. BabuS.G. JaganathanS.K. KaruthapandianS. ChattopadhyayS. Novel CuO/chitosan nanocomposite thin film: Facile hand-picking recoverable, efficient and reusable heterogeneous photocatalyst.RSC Advances2015571574935750110.1039/C5RA08783J
    [Google Scholar]
  70. RaniB.J. MohanaP. SwathiS. YuvakkumarR. RaviG. ThambiduraiM. NguyenH.D. VelauthapillaiD. Exploration of bifunctionality in Mn, Co codoped cuo nanoflakes for overall water splitting.Int. J. Energy Res.2023202311510.1155/2023/6052251
    [Google Scholar]
  71. ZahraT. AhmadK.S. Functionalization of MN2O3/PDO/ZNO electrocatalyst using organic template with accentuated electrochemical potential toward water splitting.Int. J. Energy Res.202246145246310.1002/er.6677
    [Google Scholar]
  72. YangY ForsterM LingY WangG ZhaiT TongY CowanAJ Acid treatment enables suppression of electron-hole recombination in hematite for photoelectrochemical water splitting.Angew. Chem. Int. Ed. Engl.2016551034033407
    [Google Scholar]
  73. LopesT. AndradeL. Le FormalF. GratzelM. SivulaK. MendesA. Hematite photoelectrodes for water splitting: Evaluation of the role of film thickness by impedance spectroscopy.Phys. Chem. Chem. Phys.20141631165151652310.1039/C3CP55473B 24987751
    [Google Scholar]
/content/journals/cac/10.2174/0115734110334031240927051501
Loading
/content/journals/cac/10.2174/0115734110334031240927051501
Loading

Data & Media loading...

Supplements

Supplementary material is available on the publisher's website along with the published article.

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test