Skip to content
2000
Volume 21, Issue 8
  • ISSN: 1573-4110
  • E-ISSN: 1875-6727

Abstract

Background

The transmission of hantaviruses through rodents has been associated with the development of severe illnesses, including Cardiopulmonary Syndrome (CPS) and Hemorrhagic Fever with Renal Syndrome (HFRS). Environmental changes impacting rodent populations affect their global distribution. These are severe diseases, potentially lethal, and widespread, making them a public health issue.

Objective

Computational studies were conducted to better understand the envelope glycoproteins that are expressed by Hantavirus, which produce the cardiopulmonary syndrome and the hemorrhagic fever with renal syndrome.

Methods

The glycoprotein sequences were found through the utilization of specific computational tools, including the Intrinsic Disorder Predisposition (PIDP), Polarity Index Method Profile 3.0v (PIM 3.0v), and genomics software.

Results

Examining the PIM 3.0v profile and the PIDP profile revealed distinct patterns in the envelope glycoproteins of different genotypes of Hantavirus. These patterns allowed for structural and morphological similarities to be identified. In particular, the PIM 3.0v profile shows that it is possible to discriminate between CPS and HFRS groups, and the PIDP profile shows the existence of an overlaid disorder profile of glycoproteins N and C from Hantavirus strains associated with CPS and HFRS.

Conclusion

Using the PIM 3.0v profile, our computer programs were able to identify isolates of Hantavirus envelope glycoproteins associated with cardiopulmonary syndrome and hemorrhagic fever with renal syndrome. We believe this research contributes to a deeper comprehension of these emerging viruses.

Loading

Article metrics loading...

/content/journals/cac/10.2174/0115734110297618240703113456
2024-07-15
2025-12-24
Loading full text...

Full text loading...

References

  1. EngelthalerD.M. MosleyD.G. CheekJ.E. LevyC.E. KomatsuK.K. EttestadP. DavisT. TandaD.T. MillerL. FramptonJ.W. PorterR. BryanR.T. Climatic and environmental patterns associated with hantavirus pulmonary syndrome, Four Corners region, United States.Emerg. Infect. Dis.199951879410.3201/eid0501.990110 10081675
    [Google Scholar]
  2. ZeierM. HandermannM. BahrU. RenschB. MüllerS. KehmR. MuranyiW. DaraiG. New ecological aspects of hantavirus infection: A change of a paradigm and a challenge of prevention: A review.Virus Genes200530215718010.1007/s11262‑004‑5625‑2 15744574
    [Google Scholar]
  3. Berzunza-CruzM. Rodríguez-MorenoÁ. Gutiérrez-GranadosG. González-SalazarC. StephensC.R. Hidalgo-MihartM. MarinaC.F. Rebollar-TéllezE.A. Bailón-MartínezD. BalcellsC.D. Ibarra-CerdeñaC.N. Sánchez-CorderoV. BeckerI. Leishmania (L.) mexicana infected bats in Mexico: novel potential reservoirs.PLoS Negl. Trop. Dis.201591e000343810.1371/journal.pntd.0003438 25629729
    [Google Scholar]
  4. Moreno SandovalH.N. Hantavirus pulmonary syndrome, a latent threat in Mexico.Rev Esp M d Quir20141996103
    [Google Scholar]
  5. PetersC.J. SimpsonG.L. LevyH. Spectrum of hantavirus infection: hemorrhagic fever with renal syndrome and hantavirus pulmonary syndrome.Annu. Rev. Med.19995053154510.1146/annurev.med.50.1.531 10073292
    [Google Scholar]
  6. SehgalA. MehtaS. SahayK. MartynovaE. RizvanovA. BaranwalM. ChandyS. KhaiboullinaS. KabweE. DavidyukY. Hemorrhagic fever with renal syndrome in asia: History, pathogenesis, diagnosis, treatment, and prevention.Viruses202315256110.3390/v15020561 36851775
    [Google Scholar]
  7. Acuna-SotoR. StahleD.W. CleavelandM.K. TherrellM.D. Megadrought and megadeath in 16th century Mexico.Emerg. Infect. Dis.20028436036210.3201/eid0804.010175 11971767
    [Google Scholar]
  8. MarrJ.S. KiracofeJ.B. Was the Huey Cocoliztli a haemorrhagic fever?Med. Hist.200044334136210.1017/S0025727300066746 10954969
    [Google Scholar]
  9. BairochA. ApweilerR. WuC. H. BarkerW. C. BoeckmannB. FerroS. GasteigerE. HuangH. LopezR. MagraneM. MartinM. J. NataleD. A. O'DonovanC. RedaschiN. YehL. S. The universal protein resource (uniprot).Nucleic acids research.200533database issueD154D159
    [Google Scholar]
  10. RomeroP. ObradovicZ. LiX. GarnerE.C. BrownC.J. DunkerA.K. Sequence complexity of disordered protein.Proteins2001421384810.1002/1097‑0134(20010101)42:1<38::AID‑PROT50>3.0.CO;2‑3 11093259
    [Google Scholar]
  11. ObradovicZ. PengK. VuceticS. RadivojacP. BrownC.J. DunkerA.K. Predicting intrinsic disorder from amino acid sequence.Proteins200353S6)(656657210.1002/prot.1053214579347
    [Google Scholar]
  12. ObradovicZ. PengK. VuceticS. RadivojacP. DunkerA.K. Exploiting heterogeneous sequence properties improves prediction of protein disorder.Proteins200561S7)(717618210.1002/prot.2073516187360
    [Google Scholar]
  13. XueB. DunbrackR.L. WilliamsR.W. DunkerA.K. UverskyV.N. PONDR-FIT: A meta-predictor of intrinsically disordered amino acids.Biochim. Biophys. Acta. Proteins Proteomics201018044996101010.1016/j.bbapap.2010.01.011 20100603
    [Google Scholar]
  14. MészárosB. ErdősG. DosztányiZ. IUPred2A: context-dependent prediction of protein disorder as a function of redox state and protein binding.Nucleic Acids Res.201846W1W329W33710.1093/nar/gky384 29860432
    [Google Scholar]
  15. DayhoffG.W.II UverskyV.N. Rapid prediction and analysis of protein intrinsic disorder.Protein Sci.20223112e449610.1002/pro.4496 36334049
    [Google Scholar]
  16. ZhouJ. OldfieldC.J. YanW. ShenB. DunkerA.K. Identification of intrinsic disorder in complexes from the protein data bank.ACS Omega2020529178831789110.1021/acsomega.9b03927 32743159
    [Google Scholar]
  17. GautamA. SinghH. TyagiA. ChaudharyK. KumarR. KapoorP. RaghavaG.P.S. CPPsite: A curated database of cell penetrating peptides.Database201220120bas01510.1093/database/bas015 22403286
    [Google Scholar]
  18. PolancoC. UverskyV.N. HubermanA. Hernandez-LemusE. Martínez-GarciaM. HernándezC.P. Rios CastroM. BuhseT. AlarconG.V. GonzálezJ.A.C. Díaz GonzálezJ.L. Sanchez DíazM.M. OlivaE.J.L. GomezF.J.R. LunaB.B. A bioinformatics study of the influenza H5N1 virus that infects wild fowl and poultry and, potentially, humans.Curr. Anal. Chem.2023191074376410.2174/0115734110271243231123160146
    [Google Scholar]
  19. PolancoC. Castañón-GonzálezJ.A. MancillaR. BuhseT. SamaniegoJ.L. GimbelA. Identification of proteins associated with Mycobacterium tuberculosis virulence pathway by their polar profile.Acta Biochim. Pol.201562219119610.18388/abp.2014_874 26020061
    [Google Scholar]
  20. ElliottR.M. Molecular biology of the Bunyaviridae.J. Gen. Virol.199071350152210.1099/0022‑1317‑71‑3‑501 2179464
    [Google Scholar]
  21. MirM.A. PanganibanA.T. The hantavirus nucleocapsid protein recognizes specific features of the viral RNA panhandle and is altered in conformation upon RNA binding.J. Virol.20057931824183510.1128/JVI.79.3.1824‑1835.2005 15650206
    [Google Scholar]
  22. GravinattiM.L. BarbosaC.M. SoaresR.M. GregoriF. Synanthropic rodents as virus reservoirs and transmitters.Rev. Soc. Bras. Med. Trop.202053e2019048610.1590/0037‑8682‑0486‑2019 32049206
    [Google Scholar]
  23. PlyusninA. VapalahtiO. VaheriA. Hantaviruses: genome structure, expression and evolution.J. Gen. Virol.199677112677268710.1099/0022‑1317‑77‑11‑2677 8922460
    [Google Scholar]
  24. KlempaB. Reassortment events in the evolution of hantaviruses.Virus Genes201854563864610.1007/s11262‑018‑1590‑z 30047031
    [Google Scholar]
  25. RamsdenC. HolmesE.C. CharlestonM.A. Hantavirus evolution in relation to its rodent and insectivore hosts: no evidence for codivergence.Mol. Biol. Evol.200826114315310.1093/molbev/msn234 18922760
    [Google Scholar]
  26. RamsdenC. MeloF.L. FigueiredoL.M. HolmesE.C. ZanottoP.M.A. High rates of molecular evolution in hantaviruses.Mol. Biol. Evol.20082571488149210.1093/molbev/msn093 18417484
    [Google Scholar]
  27. MedinaR.A. Torres-PerezF. GalenoH. NavarreteM. VialP.A. PalmaR.E. FerresM. CookJ.A. HjelleB. Ecology, genetic diversity, and phylogeographic structure of andes virus in humans and rodents in Chile.J. Virol.20098362446245910.1128/JVI.01057‑08 19116256
    [Google Scholar]
  28. SilverD. SchrittwieserJ. SimonyanK. AntonoglouI. HuangA. GuezA. HubertT. BakerL. LaiM. BoltonA. ChenY. LillicrapT. HuiF. SifreL. van den DriesscheG. GraepelT. HassabisD. Mastering the game of Go without human knowledge.Nature2017550767635435910.1038/nature24270 29052630
    [Google Scholar]
  29. PolancoC. Samaniego-MendozaJ.L. BuhseT. Castañón-GonzálezJ.A. Leopold-SordoM. Polar characterization of antifungal peptides from APD2 Database.Cell Biochem. Biophys.20147021479148810.1007/s12013‑014‑0085‑3 24980861
    [Google Scholar]
  30. GegúndezM.I. LledóL. Clinico-immunological disorders in patients with ischemic heart disease combined with metabolic syndrome and modulating effect of nebivolol for their correction.Ter. Arkh.20088012445210.1157/13078828
    [Google Scholar]
  31. Centers for Disease Control and Prevention. (2023, abril 25). Reported cases of Hantavirus disease. Hantavirus, DHCPP, CDC.Available from: https://www.cdc.gov/Hantavirus/surveillance/
  32. Avšič-ŽupancT. SaksidaA. KorvaM. Hantavirus infections.Clin. Microbiol. Infect.201921e6e1610.1111/1469‑0691.12291 24750436
    [Google Scholar]
  33. KhaiboullinaS.F. LevisS. MorzunovS.P. MartynovaE.V. AnokhinV.A. GusevO.A. St JeorS.C. LombardiV.C. RizvanovA.A. Serum cytokine profiles differentiating hemorrhagic fever with renal syndrome and Hantavirus pulmonary syndrome.Front. Immunol.2017856710.3389/fimmu.2017.00567 28572804
    [Google Scholar]
  34. KlingströmJ. Smed-SörensenA. MalekiK.T. Solà-RieraC. AhlmC. BjörkströmN.K. LjunggrenH.G. Innate and adaptive immune responses against human Puumala virus infection: immunopathogenesis and suggestions for novel treatment strategies for severe hantavirus‐associated syndromes.J. Intern. Med.2019285551052310.1111/joim.12876 30663801
    [Google Scholar]
  35. ZhangY. MaR. WangY. SunW. YangZ. HanM. HanT. WuX. LiuR. Viruses run: the evasion mechanisms of the antiviral innate immunity by Hantavirus.Front. Microbiol.20211275919810.3389/fmicb.2021.759198 34659193
    [Google Scholar]
  36. KrügerD.H. SchönrichG. KlempaB. Human pathogenic hantaviruses and prevention of infection.Hum. Vaccin.20117668569310.4161/hv.7.6.15197 21508676
    [Google Scholar]
  37. EchterdiekF. KittererD. AlscherM.D. SchwengerV. RuckenbrodB. BaldM. LatusJ. Clinical course of hantavirus-induced nephropathia epidemica in children compared to adults in Germany—analysis of 317 patients.Pediatr. Nephrol.20193471247125210.1007/s00467‑019‑04215‑9 30874941
    [Google Scholar]
  38. HuttunenN.P. MäkeläS. PokkaT. MustonenJ. UhariM. Systematic literature review of symptoms, signs and severity of serologically confirmed nephropathia epidemica in paediatric and adult patients.Scand. J. Infect. Dis.2011436-740541010.3109/00365548.2011.559666 21341977
    [Google Scholar]
  39. MocanuA. CajvanA.M. LazarucT.I. LupuV.V. FlorescuL. LupuA. BogosR.A. IoniucI. ScurtuG. DraganF. StarceaI.M. Hantavirus infection in children: A pilot study of single regional center.Viruses202315487210.3390/v15040872 37112856
    [Google Scholar]
  40. KoehlerF.C. Di CristanzianoV. SpäthM.R. Hoyer-AlloK.J.R. WankenM. MüllerR.U. BurstV. The kidney in hantavirus infection—epidemiology, virology, pathophysiology, clinical presentation, diagnosis and management.Clin. Kidney J.20221571231125210.1093/ckj/sfac008 35756741
    [Google Scholar]
  41. VaheriA. HenttonenH. VoutilainenL. MustonenJ. SironenT. VapalahtiO. Hantavirus infections in Europe and their impact on public health.Rev. Med. Virol.2013231354910.1002/rmv.1722 22761056
    [Google Scholar]
  42. Terças-TrettelA.C.P. MeloA.V.G. BonilhaS.M.F. MoraesJ.M. OliveiraR.C. GuterresA. FernandesJ. AtanakaM. EspinosaM.M. SampaioL. UedaS.K. LemosE.R.S. Hantavirus pulmonary syndrome in children: case report and case series from an endemic area of Brazil.Rev. Inst. Med. Trop. São Paulo201961e6510.1590/s1678‑9946201961065 31859842
    [Google Scholar]
  43. DheerasekaraK. SumathipalaS. MuthugalaR. Hantavirus infections: Treatment and prevention.Curr. Treat. Options Infect. Dis.202012441042110.1007/s40506‑020‑00236‑3 33144850
    [Google Scholar]
  44. LiuR. MaH. ShuJ. ZhangQ. HanM. LiuZ. JinX. ZhangF. WuX. Vaccines and therapeutics against hantaviruses.Front. Microbiol.202010298910.3389/fmicb.2019.02989 32082263
    [Google Scholar]
  45. Center for Food Security and Public Health. Iowa State University, & Institute for International Cooperation in Animal Biologics. (2010). HANTAVIRUS: Last actualization: 2009 HANT_H2008_2009.es10.2010Available from:https://www.cfsph.iastate.edu/DiseaseInfo/notes/Hantavirus.pdf
/content/journals/cac/10.2174/0115734110297618240703113456
Loading
/content/journals/cac/10.2174/0115734110297618240703113456
Loading

Data & Media loading...

Supplements

Supplementary material is available on the publisher's website along with the published article.

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test