Skip to content
2000
Volume 21, Issue 8
  • ISSN: 1573-4110
  • E-ISSN: 1875-6727

Abstract

Analytical Quality by Design (AQbD) represents a transformative methodology in pharmaceutical development, anchored in a systematic, risk-based, and data-driven framework. This approach optimizes analytical methods, fostering heightened product quality, efficient regulatory compliance, and informed decision-making. The industry's increasing acceptance of AQbD principles signifies a paradigm shift towards enhanced efficiency, sustainability, and global harmonization. This review comprehensively explores AQbD principles, regulatory perspectives, and its applications, particularly in analytical method development, including high-performance liquid chromatography (HPLC) and high-performance thin-layer chromatography (HPTLC). Emphasis is placed on the symbiotic relationship between AQbD and analytical method validation (AMV), elucidating their collective role in ensuring reliable and accurate analytical results. Integrating AQbD in method transfer, automation, and control strategies underscores its pivotal role in achieving robust, efficient, and compliant analytical processes. The review delves into lifecycle management and continuous improvement, coupled with AQbD principles, ensuring sustained method reliability throughout the pharmaceutical product lifecycle. AQbD's significant contribution to pharmaceutical lifecycle management, optimization, and change control is explored, emphasizing its systematic, data-driven, and risk-based approach to method development, validation, and ongoing enhancement. This review illuminates AQbD's transformative impact on pharmaceutical analysis, aligning with industry trends toward quality, efficiency, and regulatory compliance.

Loading

Article metrics loading...

/content/journals/cac/10.2174/0115734110321580240924073705
2024-10-07
2025-12-26
Loading full text...

Full text loading...

References

  1. TomeT. ŽigartN. ČasarZ. ObrezaA. Development and optimization of liquid chromatography analytical methods by using AQbD principles: Overview and recent advances.Org. Process Res. Dev.20192391784180210.1021/acs.oprd.9b00238
    [Google Scholar]
  2. LiX. Recent applications of quantitative mass spectrometry in biopharmaceutical process development and manufacturing.J. Pharm. Biomed. Anal.202323411558110.1016/j.jpba.2023.115581 37494866
    [Google Scholar]
  3. RamalingamP. JahnaviB. QbD considerations for analytical development.Pharmaceutical Quality by Design.Elsevier20197710810.1016/B978‑0‑12‑815799‑2.00005‑8
    [Google Scholar]
  4. RubinA.E. TummalaS. BothD.A. WangC. DelaneyE.J. Emerging technologies supporting chemical process R&D and their increasing impact on productivity in the pharmaceutical industry.Chem. Rev.200610672794281010.1021/cr040674i 16836299
    [Google Scholar]
  5. MahapatraA. MeyyanathanS.N. Approach of analytical quality by design and regulatory need.Int. J. Health Sci.202262572259210.53730/ijhs.v6nS5.9208
    [Google Scholar]
  6. JainS. Quality by design (QBD): A comprehensive understanding of implementation and challenges in pharmaceuticals development.Int. J. Pharm. Pharm. Sci.201462935
    [Google Scholar]
  7. PuranikA. DandekarP. JainR. Exploring the potential of machine learning for more efficient development and production of biopharmaceuticals.Biotechnol. Prog.2022386e329110.1002/btpr.3291 35918873
    [Google Scholar]
  8. JacksonP. BormanP. CampaC. ChatfieldM. GodfreyM. HamiltonP. HoyerW. NorelliF. OrrR. SchofieldT. Using the analytical target profile to drive the analytical method lifecycle.Anal. Chem.20199142577258510.1021/acs.analchem.8b04596 30624912
    [Google Scholar]
  9. KannaiahK.P. SugumaranA. ChanduluruH.K. Simultaneous estimation of crotamiton and hydrocortisone by RP-UPLC using green analytical principles embedded analytical quality by design (AQbD) method.Microchem. J.202318410816610.1016/j.microc.2022.108166
    [Google Scholar]
  10. MishraV. ThakurS. PatilA. ShuklaA. Quality by design (QbD) approaches in current pharmaceutical set-up.Expert Opin. Drug Deliv.201815873775810.1080/17425247.2018.1504768 30044646
    [Google Scholar]
  11. DewiM. PratamaR. ArifkaM. ChaerunisaaA. Quality by design: Approach to analytical method validation.Sci. Pharm.202211384610.58920/sciphar01010033
    [Google Scholar]
  12. KumariN. SinghB. SainiG. ChaudharyA. VermaK. VyasM. Quality by design: a systematic approach for the analytical method validation.J. Drug Deliv. Ther.201993-s1006101210.22270/jddt.v9i3‑s.3114
    [Google Scholar]
  13. WaghuleT. DabholkarN. GorantlaS. RapalliV.K. SahaR.N. SinghviG. Quality by design (QbD) in the formulation and optimization of liquid crystalline nanoparticles (LCNPs): A risk based industrial approach.Biomed. Pharmacother.202114111194010.1016/j.biopha.2021.111940 34328089
    [Google Scholar]
  14. AliJ. PramodK. TahirM.A. CharooN.A. AnsariS.H. Pharmaceutical product development: A quality by design approach.Int. J. Pharm. Investig.20166312913810.4103/2230‑973X.187350 27606256
    [Google Scholar]
  15. RamanN.V. MalluU.R. BapatuH.R. Analytical quality by design approach to test method development and validation in drug substance manufacturing.J. Chem.201520151810.1155/2015/435129
    [Google Scholar]
  16. DarkundeS.L. A review on quality by design.Int. J. Pharmaceu. Chem. Analy.2020511610.18231/2394‑2797.2018.0001
    [Google Scholar]
  17. BegS. HasnainM.S. RahmanM. SwainS. Introduction to quality by design (QbD): fundamentals, principles, and applications.Pharmaceutical Quality by Design.Elsevier201911710.1016/B978‑0‑12‑815799‑2.00001‑0
    [Google Scholar]
  18. PrajapatiP. PatelA. ShahS. DoE-based analytical quality risk management for enhanced AQbD approach to economical and eco-friendly RP-HPLC method for synchronous estimation of multiple FDC products of antihypertensive drugs.J. Chromatogr. Sci.2021608bmab12310.1093/chromsci/bmab123 34619761
    [Google Scholar]
  19. PrajapatiP.B. PatelA. ShahS.A. Risk and DoE-based DMAIC principle to the multipurpose-RP-HPLC method for synchronous estimation of anti-hypertensive drugs using AQbD approach.J. AOAC Int.202110451442145210.1093/jaoacint/qsab079 34115124
    [Google Scholar]
  20. FukudaI.M. PintoC.F. MoreiraC.S. SavianoA.M. LourençoF.R. Design of experiments (DoE) applied to pharmaceutical and analytical quality by design (QbD).Brazilian J. Pharmaceu. Sci201854
    [Google Scholar]
  21. RamalinagmP. BashaS.S. BhaddrayaK. BegS. Risk assessment and design space consideration in analytical quality by design.Handbook of Analytical Quality by Design.Elsevier202116718910.1016/B978‑0‑12‑820332‑3.00008‑X
    [Google Scholar]
  22. DeiddaR. OrlandiniS. HubertP. HubertC. Risk-based approach for method development in pharmaceutical quality control context: A critical review.J. Pharm. Biomed. Anal.201816111012110.1016/j.jpba.2018.07.050 30145448
    [Google Scholar]
  23. YuillE.M. IlekaK.M. La CruzT.E. LiJ. ShackmanJ.G. TattersallP.I. ZangJ. Leveraging AQbD principles for development of challenging drug substance stability-indicating methods.Org. Process Res. Dev.20212561431143910.1021/acs.oprd.1c00121
    [Google Scholar]
  24. DasP. MaityA. Analytical quality by design (AQbD): a new horizon for robust analytics in pharmaceutical process and automation.Int. J. Pharmaceu. Drug Analy.201758324337
    [Google Scholar]
  25. TaleuzzamanM. JahangirM.A. ChauhanS. KalaC. BegS. Good laboratory practice and current good manufacturing practice requirements in the development of cancer nanomedicines.Nanoformulation Strategies for Cancer Treatment.Elsevier202134135210.1016/B978‑0‑12‑821095‑6.00007‑0
    [Google Scholar]
  26. AlmeidaJ. BezerraM. MarklD. BerghausA. BormanP. SchlindweinW. Development and validation of an in-line API quantification method using AQbD principles based on UV-vis spectroscopy to monitor and optimise continuous hot melt extrusion process.Pharmaceutics202012215010.3390/pharmaceutics12020150 32059445
    [Google Scholar]
  27. SinghL. SharmaV. Quality by design (QbD) approach in pharmaceuticals: status, challenges and next steps.Drug Deliv. Lett.2015512810.2174/2210303104666141112220253
    [Google Scholar]
  28. JaganB. MurthyP.N. MahapatraA.K. PatraR.K. Quality by Design (QbD): Principles, underlying concepts, and regulatory prospects. Thai J.Pharmaceu. Sci.20214515469
    [Google Scholar]
  29. PrajapatiP.B. RadadiyaK. ShahS.A. Quality risk management based: analytical quality by design approach to eco-friendly and versatile chromatography method for simultaneous estimation of multiple fixed-dose-combination products of anti-diabetic drugs.J. Pharm. Innov.20201711810.1007/s12247‑020‑09506‑5
    [Google Scholar]
  30. DispasA. AvohouH.T. LebrunP. HubertP. HubertC. ‘Quality by Design’ approach for the analysis of impurities in pharmaceutical drug products and drug substances.Trends Analyt. Chem.2018101243310.1016/j.trac.2017.10.028
    [Google Scholar]
  31. OkpalaC.O. KorzeniowskaM. Understanding the relevance of quality management in agro-food product industry: From ethical considerations to assuring food hygiene quality safety standards and its associated processes.Food Rev. Int.20233941879195210.1080/87559129.2021.1938600
    [Google Scholar]
  32. VogtF.G. KordA.S. Development of quality-by-design analytical methods.J. Pharm. Sci.2011100379781210.1002/jps.22325 21280050
    [Google Scholar]
  33. ThomasJ.R. Job and career opportunities in the pharmaceutical industry: an overview. career options in the pharmaceutical and biomedical industry.An Insider’s Guide.Springer2023338410.1007/978‑3‑031‑14911‑5_3
    [Google Scholar]
  34. YangB. Gomes Dos SantosA. PuriS. BakA. ZhouL. The industrial design, translation, and development strategies for long-acting peptide delivery.Expert Opin. Drug Deliv.202219101233124510.1080/17425247.2022.2098276 35787229
    [Google Scholar]
  35. PumJ. A practical guide to validation and verification of analytical methods in the clinical laboratory.Adv. Clin. Chem.20199021528110.1016/bs.acc.2019.01.006 31122610
    [Google Scholar]
  36. CharooN.A. KhanM.A. RahmanZ. Data integrity issues in pharmaceutical industry: Common observations, challenges and mitigations strategies.Int. J. Pharm.202363112250310.1016/j.ijpharm.2022.122503 36529357
    [Google Scholar]
  37. Ten simple rules on how to write a standard operating procedure.CA, USAPublic Library of Science San Francisco2020e100809510.1371/journal.pcbi.1008095
    [Google Scholar]
  38. JalundhwalaF. LondheV. A systematic review on implementing operational excellence as a strategy to ensure regulatory compliance: a roadmap for Indian pharmaceutical industry.Int. J. Lean Six Sigma202314473075810.1108/IJLSS‑04‑2022‑0078
    [Google Scholar]
  39. PeramanR. BhadrayaK. Padmanabha ReddyY. Analytical quality by design: a tool for regulatory flexibility and robust analytics.Int. J. Anal. Chem.201520151910.1155/2015/868727 25722723
    [Google Scholar]
  40. HolmP. AllesøM. BryderM.C. HolmR. ICH Quality Guidelines: An Implementation Guide.Wiley201710.1002/9781118971147.ch20
    [Google Scholar]
  41. ElderD. TeasdaleA. ICH Q9 quality risk management.ICH Quality Guidelines: An Implementation Guide.Wiley201757961010.1002/9781118971147.ch21
    [Google Scholar]
  42. VanDuyseS.A. FulfordM.J. BartlettM.G. ICH Q10 Pharmaceutical quality system guidance: understanding its impact on pharmaceutical quality.AAPS J.202123611710.1208/s12248‑021‑00657‑y 34773177
    [Google Scholar]
  43. GuidelineI.H. Analytical procedure development Q14.Geneva, SwitzerlandICH2022
    [Google Scholar]
  44. DeVriesJ.H. IrsA. HillegeH.L. The European Medicines Agency assessment of mavacamten as treatment of symptomatic obstructive hypertrophic cardiomyopathy in adult patients.Eur. Heart J.202344373492349410.1093/eurheartj/ehad429
    [Google Scholar]
  45. SandujaS. Lessey-MorillonL. AllenR. WangX. ImperatoG. ArcidiaconoJ. United states food and drug administration regulation of human cells, tissues, and gene therapies, in regulatory aspects of gene therapy and cell therapy products: A Global perspective.Adv. Exp. Med. Biol.20232023718910.1007/978‑3‑031‑34567‑8_5
    [Google Scholar]
  46. KilariJ. BrahmanP.K. Using the aqbd approach, development and validation of a simple, rapid stability indicating chromatographic method for quantification of related impurities of apixaban.J. Chromatogr. Sci.20232023bmad06510.1093/chromsci/bmad065 37592905
    [Google Scholar]
  47. KhanA. NaquviK.J. HaiderM.F. KhanM.A. Quality by design-newer technique for pharmaceutical product development.Intell. Pharma.20232110.1016/j.ipha.2023.10.004
    [Google Scholar]
  48. FoodU. AdministrationD. Analytical procedures and methods validation for drugs and biologics Guidance for Industry.Silver Spring, MDUS Food and Drug Administration, US Department of Health and Human Services2015
    [Google Scholar]
  49. LloydD.K. BergumJ. Application of quality by design (QbD) to the development and validation of analytical methods.Specification of Drug Substances and Products.Elsevier2014297210.1016/B978‑0‑08‑098350‑9.00003‑5
    [Google Scholar]
  50. FoodU. AdministrationD. Process validation: general principles and practices.Guidance for Industry2011
    [Google Scholar]
  51. OjhaA. BhargavaS. International council for harmonisation (ICH) guidelines. Regulatory Affairs in the Pharmaceutical Industry.Elsevier2022477410.1016/B978‑0‑12‑822211‑9.00008‑3
    [Google Scholar]
  52. ShojiN. TaneseK. SasakiA. HoriuchiT. UtsunoY. FukudaK. HoshinoY. NodaS. MinamiH. AsakuraW. Pharmaceuticals and medical device agency approval summary: Amenamevir for the treatment of herpes zoster.J. Dermatol.202047768368810.1111/1346‑8138.15393 32424854
    [Google Scholar]
  53. JonesC.M. ShaheedC.A. FerreiraG. MannixL. HarrisI.A. BuchbinderR. MaherC.G. Spinal cord stimulators: an analysis of the adverse events reported to the Australian therapeutic goods administration.J. Patient Saf.202218550751110.1097/PTS.0000000000000971 35067619
    [Google Scholar]
  54. MahrA.G. LourençoF.R. BormanP. WeitzelJ. RousselJ.-M. Analytical quality by design fundamentals and compendial and regulatory perspectives, in introduction to quality by design in pharmaceutical manufacturing and analytical development.Springer202310.1007/978‑3‑031‑31505‑3_8
    [Google Scholar]
  55. PedroF. VeigaF. Mascarenhas-MeloF. Impact of GAMP 5, data integrity and QbD on quality assurance in the pharmaceutical industry: How obvious is it?Drug Discov. Today2023281110375910.1016/j.drudis.2023.103759 37660982
    [Google Scholar]
  56. WangY. GraingerD.W. Regulatory considerations specific to liposome drug development as complex drug products.Front. Drug Deliv.2022290128110.3389/fddev.2022.901281
    [Google Scholar]
  57. van ReesC.B. WaylenK.A. Schmidt-KloiberA. ThackerayS.J. KalinkatG. MartensK. DomischS. LillebøA.I. HermosoV. GrossartH.P. SchineggerR. DecleerK. AdriaensT. DenysL. JarićI. JanseJ.H. MonaghanM.T. De WeverA. GeijzendorfferI. AdamescuM.C. JähnigS.C. Safeguarding freshwater life beyond 2020: Recommendations for the new global biodiversity framework from the European experience.Conserv. Lett.2021141e1277110.1111/conl.12771
    [Google Scholar]
  58. AlhakeemM.A. GhicaM.V. PîrvuC.D. AnuțaV. PopaL. Analytical quality by design with the lifecycle approach: A modern epitome for analytical method development.Acta Med. Marisiensis2019652374410.2478/amma‑2019‑0010
    [Google Scholar]
  59. ZagaloD.M. SousaJ. SimõesS. Quality by design (QbD) approach in marketing authorization procedures of Non-Biological Complex Drugs: A critical evaluation.Eur. J. Pharm. Biopharm.202217812410.1016/j.ejpb.2022.07.014 35908664
    [Google Scholar]
  60. BurnsL. RouxN.L. Kalesnik-OrszulakR. ChristianJ. HukkelhovenM. RockholdF. O’DonnellJ. Real-world evidence for regulatory decision-making: guidance from around the world.Clin. Ther.202244342043710.1016/j.clinthera.2022.01.012 35181179
    [Google Scholar]
  61. BastogneT. CaputoF. Prina-MelloA. BorgosS. Barberi-HeyobM. A state of the art in analytical quality-by-design and perspectives in characterization of nano-enabled medicinal products.J. Pharm. Biomed. Anal.202221911491110.1016/j.jpba.2022.114911 35779356
    [Google Scholar]
  62. CortesJ. Perez-GarcíaJ.M. Llombart-CussacA. CuriglianoG. El SaghirN.S. CardosoF. BarriosC.H. WagleS. RomanJ. HarbeckN. EniuA. KaufmanP.A. TaberneroJ. García-EstévezL. SchmidP. ArribasJ. Enhancing global access to cancer medicines.CA Cancer J. Clin.202070210512410.3322/caac.21597 32068901
    [Google Scholar]
  63. WeitzelJ. PappaH. BanikG.M. BarkerA.R. BladenE. ChirmuleN. DeFeoJ. DevineJ. EmrickS. HoutT.K. LevyM.S. MahlanguG.N. RellahanB. VenemaJ. WorkmanW. Understanding quality paradigm shifts in the evolving pharmaceutical landscape: perspectives from the USP quality advisory group.AAPS J.202123611210.1208/s12248‑021‑00634‑5 34654974
    [Google Scholar]
  64. GrangeiaH.B. SilvaC. SimõesS.P. ReisM.S. Quality by design in pharmaceutical manufacturing: A systematic review of current status, challenges and future perspectives.Eur. J. Pharm. Biopharm.2020147193710.1016/j.ejpb.2019.12.007 31862299
    [Google Scholar]
  65. TauqeerF. MyhrK. GopinathanU. Institutional barriers and enablers to implementing and complying with internationally accepted quality standards in the local pharmaceutical industry of Pakistan: a qualitative study.Health Policy Plan.201934644044910.1093/heapol/czz054 31302684
    [Google Scholar]
  66. BegS. RahmanM. KohliK. Quality-by-design approach as a systematic tool for the development of nanopharmaceutical products.Drug Discov. Today201924371772510.1016/j.drudis.2018.12.002 30557651
    [Google Scholar]
  67. BadnjevićA. PokvićL.G. DeumićA. BećirovićL.S. Post-market surveillance of medical devices: A review.Technol. Health Care20223061315132910.3233/THC‑220284 35964220
    [Google Scholar]
  68. RahiS. RanaA. Role of ICH guidelines in registration of Pharmaceutical Products.Int. J. Drug Regula. Affai.201974142710.22270/ijdra.v7i4.365
    [Google Scholar]
  69. ManascoP. BhattD.L. Evaluating the evaluators - Developing evidence of quality oversight effectiveness for clinical trial monitoring: Source data verification, source data review, statistical monitoring, key risk indicators, and direct measure of high risk errors.Contemp. Clin. Trials202211710676410.1016/j.cct.2022.106764 35436623
    [Google Scholar]
  70. LewisA. VallaV. CharitouP. KarapatsiaA. KoukouraA. TzelepiK. BergsteinssonJ.I. OuzounelliM. VassiliadisE. Digital Health Technologies for Medical Devices – Real World Evidence Collection – Challenges and Solutions Towards Clinical Evidence.Int. J. Digital Health202221810.29337/ijdh.49
    [Google Scholar]
  71. PrajapatiP.B. BagulN. KalyankarG. Implementation of DoE and risk-based enhanced analytical quality by design approach to stability-indicating RP-HPLC method for stability study of bosutinib.J. AOAC Int.202110461742175310.1093/jaoacint/qsab078 34100929
    [Google Scholar]
  72. PengL. GaoX. WangL. ZhuA. CaiX. LiP. LiW. Design of experiment techniques for the optimization of chromatographic analysis conditions: A review.Electrophoresis20224318-191882189810.1002/elps.202200072 35848309
    [Google Scholar]
  73. BandopadhyayS. BegS. KatareO.P. SharmaT. SinghB. Integrated analytical quality by design (AQbD) approach for the development and validation of bioanalytical liquid chromatography method for estimation of valsartan.J. Chromatogr. Sci.202058760662110.1093/chromsci/bmaa024 32706387
    [Google Scholar]
  74. GorbounovM. TaylorJ. PetrovicB. Masoudi SoltaniS. To DoE or not to DoE? A technical review on roadmap for optimisation of carbonaceous adsorbents and adsorption processes.S. Afr. J. Chem. Eng.202241111112810.1016/j.sajce.2022.06.001
    [Google Scholar]
  75. SalimiS. AlmuktarS.A. ScholzM. Impact of climate change on wetland ecosystems: A critical review of experimental wetlands.J. Environ. Manage.202128611216010.1016/j.jenvman.2021.112160 33611067
    [Google Scholar]
  76. SchweikerM. AmpatziE. AndargieM.S. AndersenR.K. AzarE. BarthelmesV.M. BergerC. BourikasL. CarlucciS. ChinazzoG. EdappillyL.P. FaveroM. GauthierS. JamrozikA. KaneM. MahdaviA. PiselliC. PiselloA.L. RoetzelA. RysanekA. SharmaK. ZhangS. Review of multi‐domain approaches to indoor environmental perception and behaviour.Build. Environ.202017610680410.1016/j.buildenv.2020.106804
    [Google Scholar]
  77. sheikh, B.U.H.; Zafar, A. Beyond accuracy and precision: a robust deep learning framework to enhance the resilience of face mask detection models against adversarial attacks.Evol. Syst.202415112410.1007/s12530‑023‑09522‑z
    [Google Scholar]
  78. ChavanA.V. GandhimathiR. Quality by design approach: Progress in pharmaceutical method development and validation.Biomed. Pharmacol. J.20231631669167910.13005/bpj/2745
    [Google Scholar]
  79. WangZ. WangN. SuX. GeS. An empirical study on business analytics affordances enhancing the management of cloud computing data security.Int. J. Inf. Manage.20205038739410.1016/j.ijinfomgt.2019.09.002
    [Google Scholar]
  80. KumarN. SangeethaD. Analytical method development by using QbD-An emerging approach for robust analytical method development.J. Pharmaceu Sci. Resea.2020121012981305
    [Google Scholar]
  81. N PolitisS. ColomboP. ColomboG. M RekkasD. Design of experiments (DoE) in pharmaceutical development.Drug Dev. Ind. Pharm.201743688990110.1080/03639045.2017.1291672 28166428
    [Google Scholar]
  82. Al-KharusiG. DunneN.J. LittleS. LevingstoneT.J. The role of machine learning and design of experiments in the advancement of biomaterial and tissue engineering research.Bioengineering202291056110.3390/bioengineering9100561 36290529
    [Google Scholar]
  83. Caballero-CaseroN. BelovaL. VervlietP. AntignacJ.P. CastañoA. DebrauwerL. LópezM.E. HuberC. KlanovaJ. KraussM. LommenA. MolH.G. OberacherH. PardoO. PriceE.J. ReinstadlerV. VitaleC.M. van NuijsA.L. CovaciA. Towards harmonised criteria in quality assurance and quality control of suspect and non-target LC-HRMS analytical workflows for screening of emerging contaminants in human biomonitoring.Trends Analyt. Chem.202113611620110.1016/j.trac.2021.116201
    [Google Scholar]
  84. KonstantzosI. SadeghiS.A. KimM. XiongJ. TzempelikosA. The effect of lighting environment on task performance in buildings – A review.Energy Build.202022611039410.1016/j.enbuild.2020.110394
    [Google Scholar]
  85. HuangL. HuangH. WangY. Resilience analysis of traffic network under emergencies: a case study of bus transit network.Appl. Sci.20231315883510.3390/app13158835
    [Google Scholar]
  86. AkbulutU. CifciM.A. AslanZ. Hybrid modeling for stream flow estimation: Integrating machine learning and federated learning.Appl. Sci.202313181020310.3390/app131810203
    [Google Scholar]
  87. CARTUNR.W. TAYLORC.R. DABBSD.J. Theranostic and Genomic Applications.ScienceDirect2021
    [Google Scholar]
  88. CaroY.S. CámaraM.S. De ZanM.M. In introduction to quality by design in pharmaceutical manufacturing and analytical development.Spronger202310.1007/978‑3‑031‑31505‑3_10
    [Google Scholar]
  89. ChiappiniF.A. TegliaC.M. AzcarateS.M. GoicoecheaH.C. Fundamentals of design of experiments and optimization: designs for factor screening and data analysis in pre-response surface methodology.Introduction to Quality by Design in Pharmaceutical Manufacturing and Analytical Development.Springer2023294510.1007/978‑3‑031‑31505‑3_2
    [Google Scholar]
  90. MuchakayalaS.K. KatariN.K. SaripellaK.K. SchaafH. MarisettiV.M. EttaboinaS.K. RekulapallyV.K. Implementation of analytical quality by design and green chemistry principles to develop an ultra-high performance liquid chromatography method for the determination of Fluocinolone Acetonide impurities from its drug substance and topical oil formulations.J. Chromatogr. A2022167946338010.1016/j.chroma.2022.463380 35970050
    [Google Scholar]
  91. JankovicA. ChaudharyG. GoiaF. Designing the design of experiments (DoE) – An investigation on the influence of different factorial designs on the characterization of complex systems.Energy Build.202125011129810.1016/j.enbuild.2021.111298
    [Google Scholar]
  92. DongW. WuY. QinT. BianX. ZhaoY. HeY. XuY. YuC. What is the difference between augmented reality and 2D navigation electronic maps in pedestrian wayfinding?Cartogr. Geogr. Inf. Sci.202148322524010.1080/15230406.2021.1871646
    [Google Scholar]
  93. Raghavendra NaveenN. KurakulaM. GowthamiB. Process optimization by response surface methodology for preparation and evaluation of methotrexate loaded chitosan nanoparticles.Mater. Today Proc.2020332716272410.1016/j.matpr.2020.01.491
    [Google Scholar]
  94. KaurR. SainiS. PatelA. SharmaT. KaurR. KatareO.P. SinghB. Developing a validated HPLC method for quantification of ceftazidime employing analytical quality by design and Monte Carlo simulations.J. AOAC Int.2021104362063210.1093/jaoacint/qsab014 33528003
    [Google Scholar]
  95. ShieldsB.J. StevensJ. LiJ. ParasramM. DamaniF. AlvaradoJ.I.M. JaneyJ.M. AdamsR.P. DoyleA.G. Bayesian reaction optimization as a tool for chemical synthesis.Nature20215907844899610.1038/s41586‑021‑03213‑y 33536653
    [Google Scholar]
  96. VoraL.K. GholapA.D. JethaK. ThakurR.R. SolankiH.K. ChavdaV.P. Artificial intelligence in pharmaceutical technology and drug delivery design.Pharmaceutics2023157191610.3390/pharmaceutics15071916 37514102
    [Google Scholar]
  97. SchubertM. PanzarasaG. BurgertI. Sustainability in wood products: a new perspective for handling natural diversity.Chem. Rev.202312351889192410.1021/acs.chemrev.2c00360 36535040
    [Google Scholar]
  98. CorreiaA.C. MoreiraJ.N. Sousa LoboJ.M. SilvaA.C. Design of experiment (DoE) as a quality by design (QbD) tool to optimise formulations of lipid nanoparticles for nose-to-brain drug delivery.Expert Opin. Drug Deliv.202320121731174810.1080/17425247.2023.2274902 37905547
    [Google Scholar]
  99. JenaB.R. PandaS.P. UmasankarK. SwainS. Koteswara RaoG.S. DamayanthiD. GhoseD. PradhanD.P. Applications of QbD-based software’s in analytical research and development.Curr. Pharm. Anal.202117446147310.2174/1573412916666200108155853
    [Google Scholar]
  100. JonesB. SallJ. JMP statistical discovery software.Rev. Comput. Stat.20113318819410.1002/wics.162
    [Google Scholar]
  101. AfzalH. KamranA. NoreenA. Survival analysis of python and r within the job market trend.J. Infor Technol. Comp.202011314010.48185/jitc.v1i1.94
    [Google Scholar]
  102. FabbriF. BertoliniF.A. GuebitzG.M. PellisA. Biocatalyzed synthesis of flavor esters and polyesters: A Design of Experiments (DoE) approach.Int. J. Mol. Sci.20212216849310.3390/ijms22168493 34445200
    [Google Scholar]
  103. BehE.J. Simple correspondence analysis: a bibliographic review.Int. Stat. Rev.200472225728410.1111/j.1751‑5823.2004.tb00236.x
    [Google Scholar]
  104. OustaloupA. MelchiorP. LanusseP. CoisO. DanclaF. The CRONE toolbox for Matlab. in CACSD. Conference Proceedings.IEEE International Symposium on Computer-Aided Control System Design25-27 September 2000, Anchorage, AK, USA19019510.1109/CACSD.2000.900210
    [Google Scholar]
  105. AbdelmonemR. AbdellatifM.M. Al-SamadiI.E. El-NabarawiM.A. Formulation and evaluation of baclofen-meloxicam orally disintegrating tablets (ODTs) using co-processed excipients and improvement of ODTs performance using six sigma method.Drug Des. Devel. Ther.2021154383440210.2147/DDDT.S327193 34690500
    [Google Scholar]
  106. MirandaM. PaisA.A. CardosoC. VitorinoC. aQbD as a platform for IVRT method development – A regulatory oriented approach.Int. J. Pharm.201957211869510.1016/j.ijpharm.2019.118695 31536762
    [Google Scholar]
  107. SwainS. ParhiR. JenaB.R. BabuS.M. Quality by design: concept to applications.Curr. Drug Discov. Technol.201916324025010.2174/1570163815666180308142016 29521238
    [Google Scholar]
  108. Baumfeld AndreE. ReynoldsR. CaubelP. AzoulayL. DreyerN.A. Trial designs using real‐world data: The changing landscape of the regulatory approval process.Pharmacoepid. Drug Saf.202029101201121210.1002/pds.4932 31823482
    [Google Scholar]
  109. WasalathanthriD.P. RehmannM.S. SongY. GuY. MiL. ShaoC. ChemmalilL. LeeJ. GhoseS. BorysM.C. DingJ. LiZ.J. Technology outlook for real‐time quality attribute and process parameter monitoring in biopharmaceutical development—A review.Biotechnol. Bioeng.2020117103182319810.1002/bit.27461 32946122
    [Google Scholar]
  110. CaveA. KurzX. ArlettP. Real‐world data for regulatory decision making: challenges and possible solutions for Europe.Clin. Pharmacol. Ther.20191061363910.1002/cpt.1426 30970161
    [Google Scholar]
  111. BreitkreitzM. Analytical quality by design. Braz. J. Analy.Chem20218321510.30744/brjac.2179‑3425.editorial.mcbreitkreitz.N32
    [Google Scholar]
  112. EssexR. KalocsányiováE. RumyantsevaN. JamesonJ. Trust amongst refugees in resettlement settings: a systematic scoping review and thematic analysis of the literature.J. Int. Migr. Integr.202223254356810.1007/s12134‑021‑00850‑0
    [Google Scholar]
  113. SidkyH. YoungJ.C. GirvinA.T. LeeE. ShaoY.R. HotalingN. MichaelS. WilkinsK.J. SetoguchiS. FunkM.J. AlexanderG.C. BatesB. ChuteC.G. DahlinJ.L. GersingK. HaendelM.A. MehtaH.B. PfaffE.R. SahnerD. Data quality considerations for evaluating COVID-19 treatments using real world data: learnings from the National COVID Cohort Collaborative (N3C).BMC Med. Res. Methodol.20232314610.1186/s12874‑023‑01839‑2 36800930
    [Google Scholar]
  114. Abdel-MoetyE.M. RezkM.R. WadieM. TantawyM.A. A combined approach of green chemistry and Quality-by-Design for sustainable and robust analysis of two newly introduced pharmaceutical formulations treating benign prostate hyperplasia.Microchem. J.202116010571110.1016/j.microc.2020.105711
    [Google Scholar]
  115. DongM. Huynh-BaK. AyersJ. Development of stability-indicating analytical procedures by HPLC: an overview and best practices.LC GC N. Am.2020388440456
    [Google Scholar]
  116. ChaturvediP.K. JoshiK.H. ChopraS. TauroS.J. PrajapatiP.B. Pitfalls and opportunities in the execution of quality by design in analytical sciences.Curr. Pharm. Anal.202319539941210.2174/1573412919666230517141015
    [Google Scholar]
  117. KumarR. MittalA. KulkarniM.P. Quality by design in pharmaceutical development, in Computer Aided pharmaceutics and drug delivery.An Application Guide for Students and Researchers of Pharmaceutical Sciences.Springer20229912710.1007/978‑981‑16‑5180‑9_4
    [Google Scholar]
  118. RathiB.S. KumarP.S. VoD.V. Critical review on hazardous pollutants in water environment: Occurrence, monitoring, fate, removal technologies and risk assessment.Sci. Total Environ.202179714913410.1016/j.scitotenv.2021.149134 34346357
    [Google Scholar]
  119. BowdenG.D. PichlerB.J. MaurerA. A design of experiments (DoE) approach accelerates the optimization of copper-mediated 18F-fluorination reactions of arylstannanes.Sci. Rep.2019911137010.1038/s41598‑019‑47846‑6 31388076
    [Google Scholar]
  120. HuG. FengH. HeP. LiJ. HewageK. SadiqR. Comparative life-cycle assessment of traditional and emerging oily sludge treatment approaches.J. Clean. Prod.202025111959410.1016/j.jclepro.2019.119594
    [Google Scholar]
  121. HuW. YaoZ. ChenS. XuZ. LiuY. FengZ. LigthartL. Spatial resolution and data integrity enhancement of microwave radiometer measurements using total variation deconvolution and bilateral fusion technique.Remote Sens.20221414350210.3390/rs14143502
    [Google Scholar]
  122. VerchT. CampaC. ChéryC.C. FrenkelR. GraulT. JayaN. NakhleB. SpringallJ. StarkeyJ. WypychJ. RanheimT. Analytical quality by design, life cycle management, and method control.AAPS J.20222413410.1208/s12248‑022‑00685‑2 35149913
    [Google Scholar]
  123. FreyD. WelschR. Improvement of cleaning effectiveness through Statistical Process Control in active pharmaceutical ingredient (API) manufacturing.Massachusetts Institute of Technology2018
    [Google Scholar]
  124. KasemiireA. AvohouH.T. De BleyeC. SacreP.Y. DumontE. HubertP. ZiemonsE. Design of experiments and design space approaches in the pharmaceutical bioprocess optimization.Eur. J. Pharm. Biopharm.202116614415410.1016/j.ejpb.2021.06.004 34147574
    [Google Scholar]
  125. PrajapatiP. ShahiA. AcharyaA. PulusuV.S. ShahS. Implementation of white analytical chemistry–assisted analytical quality by design approach to green liquid chromatographic method for concomitant analysis of anti-hypertensive drugs in human plasma.J. Chromatogr. Sci.20232023bmad05410.1093/chromsci/bmad054 37525531
    [Google Scholar]
  126. LisiI. Di RisioM. De GirolamoP. GabelliniM. Engineering tools for the estimation of dredging-induced sediment resuspension and coastal environmental management.Applied Studies of Coastal and Marine Environment.IntechOpen2016558310.5772/61979
    [Google Scholar]
  127. RoundyP.T. BradshawM. BrockmanB.K. The emergence of entrepreneurial ecosystems: A complex adaptive systems approach.J. Bus. Res.20188611010.1016/j.jbusres.2018.01.032
    [Google Scholar]
  128. AlliouiH. MourdiY. Exploring the full potentials of iot for better financial growth and stability: A Comprehensive survey.Sensors20232319801510.3390/s23198015 37836845
    [Google Scholar]
  129. BegS. HaneefJ. RahmanM. PeramanR. TaleuzzamanM. AlmalkiW.H. Introduction to analytical quality by design.Handbook of Analytical Quality by Design.Elsevier202111410.1016/B978‑0‑12‑820332‑3.00009‑1
    [Google Scholar]
  130. SubramanianV.B. KatariN.K. DongalaT. JonnalagaddaS.B. Stability‐indicating RP‐HPLC method development and validation for determination of nine impurities in apixaban tablet dosage forms. Robustness study by quality by design approach.Biomed. Chromatogr.2020341e471910.1002/bmc.4719 31634417
    [Google Scholar]
  131. AmeeduzzafarI. El-BagoryI. AlruwailiN.K. ImamS.S. AlomarF.A. ElkomyM.H. AhmadN. ElmowafyM. Quality by design (QbD) based development and validation of bioanalytical RP-HPLC method for dapagliflozin: Forced degradation and preclinical pharmacokinetic study.J. Liq. Chromatogr. Relat. Technol.2020431-2536510.1080/10826076.2019.1667820
    [Google Scholar]
  132. PalandurkarK. BhandreR. BodduS.H. HardeM. LakadeS. KandekarU. WaghmareP. Quality risk assessment and DoE – Practiced validated stability-indicating chromatographic method for quantification of Rivaroxaban in bulk and tablet dosage form.Acta Chromatogr.2023351102010.1556/1326.2021.00978
    [Google Scholar]
  133. KharateV. KuchekarM. HardeM. PimpleB. PatoleV. SalunkheM. WadgaveP. BhiseM. GaikwadA. TareH. Development of validated stability indicating hptlc method for estimation of febuxostat in bulk and tablet dosage form by using QBD approach. Int. j. drug delivery technol.202213254255010.25258/ijddt.13.2.14
    [Google Scholar]
  134. BodasK. ShindeV.M. VishalD. SheetalD. Analytical quality by design (aqbd) assisted development and validation of hptlc method for estimation of rottlerin in topical patch formulation.Pharmacognosy Res.202315226727610.5530/pres.15.2.029
    [Google Scholar]
  135. PrajapatiP. RanaB. PulusuV.S. ShahS. Simultaneous chromatographic estimation of vildagliptin and dapagliflozin using hybrid principles of white analytical chemistry and analytical quality by design.J. AOAC Int.2024107121222210.1093/jaoacint/qsad108 37698979
    [Google Scholar]
  136. SharmaT. Kaur KhuranaR. BorgesB. KaurR. KatareO.P. SinghB. An HPTLC densitometric method for simultaneous quantification of sorafenib tosylate and chrysin: Analytical method development, validation and applications.Microchem. J.202116210582110.1016/j.microc.2020.105821
    [Google Scholar]
  137. El-SayedH.M. AbdellatefH.E. HendawyH.A.M. El-AbassyO.M. IbrahimH. DoE-enhanced development and validation of eco-friendly RP-HPLC method for analysis of safinamide and its precursor impurity: QbD approach.Microchem. J.202319010873010.1016/j.microc.2023.108730
    [Google Scholar]
  138. SuryawanshiD. JhaD.K. ShindeU. AminP.D. Development and validation of a stability-indicating RP-HPLC method of cholecalciferol in bulk and pharmaceutical formulations: analytical quality by design approach.J. Appl. Pharmaceu. Sci201910.7324/JAPS.2019.90604
    [Google Scholar]
  139. TiwariR. KumarA. SolankiP. DhobiM. SundaresanV. KalaiselvanV. RaghuvanshiR.S. Analytical quality-by-design (AQbD) guided development of a robust HPLC method for the quantification of plumbagin from Plumbago species.J. Liq. Chromatogr. Relat. Technol.20214411-1252953710.1080/10826076.2021.1973027
    [Google Scholar]
  140. AdinS.N. GuptaI. AqilM. MujeebM. NajmiA.K. Application of a Quality by Design‐based approach in development and validation of an RP‐HPLC method for simultaneous estimation of methotrexate and mangiferin in dual drug‐loaded liposomes.Biomed. Chromatogr.2023378e564810.1002/bmc.5648 37051941
    [Google Scholar]
  141. DongalaT. KatakamL.N. PalakurthiA.K. KatariN.K. RP-HPLC stability indicating method development and validation of pseudoephedrine sulfate and related organic impurities in tablet dosage forms, robustness by QbD approach.Anal. Chem. Lett.20199569771010.1080/22297928.2019.1696701
    [Google Scholar]
  142. Sha’atM. SpacA.F. StoleriuI. BujorA. CretanM.S. HartanM. OchiuzL. Implementation of qbd approach to the analytical method development and validation for the estimation of metformin hydrochloride in tablet dosage forms by hPLC.Pharmaceutics2022146118710.3390/pharmaceutics14061187 35745760
    [Google Scholar]
  143. PatelK.Y. DedaniaZ.R. DedaniaR.R. PatelU. QbD approach to HPLC method development and validation of ceftriaxone sodium.Fut. J. Pharmaceu. Sci.20217114110.1186/s43094‑021‑00286‑4
    [Google Scholar]
  144. SainiS. SharmaT. PatelA. KaurR. TripathiS.K. KatareO.P. SinghB. QbD-steered development and validation of an RP-HPLC method for quantification of ferulic acid: Rational application of chemometric tools.J. Chromatogr. B Analyt. Technol. Biomed. Life Sci.2020115512230010.1016/j.jchromb.2020.122300 32771967
    [Google Scholar]
  145. ShamimA. AnsariM.J. AodahA. IqbalM. AqilM. MirzaM.A. IqbalZ. AliA. QbD-engineered development and validation of a rp-hplc method for simultaneous estimation of rutin and ciprofloxacin hcl in bilosomal nanoformulation.ACS Omega2023824216182162710.1021/acsomega.3c00956 37360463
    [Google Scholar]
  146. WadhwaG. KrishnaK.V. DubeyS.K. TaliyanR. Development and validation of RP-HPLC method for quantification of repaglinide in mPEG-PCL polymeric nanoparticles: QbD-driven optimization, force degradation study, and assessment of in vitro release mathematic modeling.Microchem. J.202116810649110.1016/j.microc.2021.106491
    [Google Scholar]
  147. PrajapatiP.B. ShetaB.M. PulusuV. ShahS.A. Analytical quality risk assessment and design of experiments to green hptlc method for simultaneous estimation of sildenafil citrate and dapoxetine hydrochloride.J. Appl. Pharmaceu. Sci.2023202305710.1093/chromsci/bmad057
    [Google Scholar]
  148. GandhiN. EzhavaS. Stability-indicating analytical method development using quality by design (QbD) approach for simultaneous estimation of budesonide and levosalbutamol.J. AOAC Int.2022105366567410.1093/jaoacint/qsab172 34951646
    [Google Scholar]
  149. PrajapatiP. RanaB. PulusuV.S. ShahS. Method operable design region for robust RP-HPLC analysis of pioglitazone hydrochloride and teneligliptin hydrobromide hydrate: incorporating hybrid principles of white analytical chemistry and design of experiments.Fut. J. Pharmaceu. Sci.2023919310.1186/s43094‑023‑00546‑5
    [Google Scholar]
  150. KovácsB. PéterfiO. Kovács-DeákB. Székely-SzentmiklósiI. FülöpI. BábaL.I. BodaF. Quality-by-design in pharmaceutical development: From current perspectives to practical applications.Acta Pharm.202171449752610.2478/acph‑2021‑0039 36651549
    [Google Scholar]
  151. DoltadeM. SaudagarR. The analytical method development and validation: a review.J. Drug Deliv. Ther.20199356357010.22270/jddt.v9i3.2774
    [Google Scholar]
  152. ParkG. KimM.K. GoS.H. ChoiM. JangY.P. Analytical quality by design (aqbd) approach to the development of analytical procedures for medicinal plants.Plants20221121296010.3390/plants11212960 36365413
    [Google Scholar]
  153. Volta e SousaL. GonçalvesR. MenezesJ.C. RamosA. Analytical method lifecycle management in pharmaceutical industry: A review.AAPS PharmSciTech202122312810.1208/s12249‑021‑01960‑9 33835304
    [Google Scholar]
  154. MarsonB. ConcentinoV. JunkertA. FachiM. VilhenaR. PontaroloR. Validation of analytical methods in a pharmaceutical quality system: An overview focused on HPLC methods.Quim. Nova2020431190120310.21577/0100‑4042.20170589
    [Google Scholar]
  155. AnjaliM. ShreshtaM. PrasannaR. ShrishaT. KumarM.S. Method development and validation of ertugliflozin and sitagliptin by using simultaneous equation method.J. Inno. Pharmaceu. Sci.2019312228
    [Google Scholar]
  156. RaposoF. Ibelli-BiancoC. Performance parameters for analytical method validation: Controversies and discrepancies among numerous guidelines.Trends Analyt. Chem.202012911591310.1016/j.trac.2020.115913
    [Google Scholar]
  157. ShenashenM.A. EmranM.Y. El SabaghA. SelimM.M. ElmarakbiA. El-SaftyS.A. Progress in sensory devices of pesticides, pathogens, coronavirus, and chemical additives and hazards in food assessment: Food safety concerns.Prog. Mater. Sci.202212410086610.1016/j.pmatsci.2021.100866
    [Google Scholar]
  158. JayagopalB. ShivashankarM. Analytical quality by design–a legitimate paradigm for pharmaceutical analytical method development and validation. Mechanics, Materials Science &.Eng. J.2017910.2412/mmse.96.97.276
    [Google Scholar]
  159. WangJ. LiS. ZhuY. GuoJ. LiuJ. HeB. Targeted eco-pharmacovigilance as an optimized management strategy for adverse effects of pharmaceuticals in the environment.Environ. Toxicol. Pharmacol.20218210356510.1016/j.etap.2020.103565 33321209
    [Google Scholar]
  160. McDermottO. AntonyJ. SonyM. HealyT. Critical failure factors for continuous improvement methodologies in the Irish MedTech industry.TQM J.2022347183810.1108/TQM‑10‑2021‑0289
    [Google Scholar]
  161. DuivelshofB. ZöldhegyiA. GuillarmeD. LauberM. FeketeS. Expediting the chromatographic analysis of COVID-19 antibody therapeutics with ultra-short columns, retention modeling and automated method development.J. Pharm. Biomed. Anal.202222111503910.1016/j.jpba.2022.115039 36115204
    [Google Scholar]
  162. ChowF.K. Column switching techniques in pharmaceutical analysis.HPLC in the Pharmaceutical Industry.CRC Press2022416110.1201/9781003066699‑4
    [Google Scholar]
  163. SilgeA. WeberK. Cialla-MayD. Müller-BötticherL. FischerD. PoppJ. Trends in pharmaceutical analysis and quality control by modern Raman spectroscopic techniques.Trends Analyt. Chem.202215311662310.1016/j.trac.2022.116623
    [Google Scholar]
  164. ManzonD. Claeys-BrunoM. DeclomesnilS. CaritéC. SergentM. Quality by design: comparison of design space construction methods in the case of design of experiments.Chemom. Intell. Lab. Syst.202020010400210.1016/j.chemolab.2020.104002
    [Google Scholar]
  165. MatićJ. PaudelA. BauerH. GarciaR.A. BiedrzyckaK. KhinastJ.G. Developing HME-based drug products using emerging science: A fast-track roadmap from concept to clinical batch.AAPS PharmSciTech202021517610.1208/s12249‑020‑01713‑0 32572701
    [Google Scholar]
  166. LloydD.K. BergumJ. WangQ. Application of quality by design to the development and validation of analytical methods.Specification of Drug Substances and Products.Elsevier2020599910.1016/B978‑0‑08‑102824‑7.00004‑X
    [Google Scholar]
  167. MaithaniM. ChawlaV. ChawlaP.A. Computers in Pharmaceutical Analysis.Computer Aided Pharmaceutics and Drug Delivery: An Application Guide for Students and Researchers of Pharmaceutical Sciences.Springer202259362110.1007/978‑981‑16‑5180‑9_19
    [Google Scholar]
  168. ChaudhariA.S. SandinoC.M. ColeE.K. LarsonD.B. GoldG.E. VasanawalaS.S. LungrenM.P. HargreavesB.A. LanglotzC.P. Prospective deployment of deep learning in MRI: a framework for important considerations, challenges, and recommendations for best practices.J. Magn. Reson. Imaging202154235737110.1002/jmri.27331 32830874
    [Google Scholar]
  169. DeepaN. PhamQ.V. NguyenD.C. BhattacharyaS. PrabadeviB. GadekalluT.R. MaddikuntaP.K. FangF. PathiranaP.N. A survey on blockchain for big data: Approaches, opportunities, and future directions.Future Gener. Comput. Syst.202213120922610.1016/j.future.2022.01.017
    [Google Scholar]
  170. ElpaD.P. PrabhuG.R. WuS.P. TayK.S. UrbanP.L. Automation of mass spectrometric detection of analytes and related workflows: A review.Talanta202020812030410.1016/j.talanta.2019.120304 31816721
    [Google Scholar]
  171. KimE.J. KimJ.H. KimM.S. JeongS.H. ChoiD.H. Process analytical technology tools for monitoring pharmaceutical unit operations: a control strategy for continuous process verification.Pharmaceutics202113691910.3390/pharmaceutics13060919 34205797
    [Google Scholar]
  172. KambojS. GuptaN. BandralJ.D. GandotraG. AnjumN. Food safety and hygiene: A review.Int. J. Chem. Stud.20208235836810.22271/chemi.2020.v8.i2f.8794
    [Google Scholar]
  173. YitmenI. AlizadehsalehiS. Akınerİ. AkınerM.E. An adapted model of cognitive digital twins for building lifecycle management.Appl. Sci.2021119427610.3390/app11094276
    [Google Scholar]
  174. ShaheenK. HanifM.A. HasanO. ShafiqueM. Continual learning for real-world autonomous systems: Algorithms, challenges and frameworks.J. Intell. Robot. Syst.20221051910.1007/s10846‑022‑01603‑6
    [Google Scholar]
  175. MohanJ. RathiR. KaswanM.S. NainS.S. Green lean six sigma journey: Conceptualization and realization.Mater. Today Proc.2022501991199810.1016/j.matpr.2021.09.338
    [Google Scholar]
  176. FellowsM. FriedliT. LiY. MaguireJ. RakalaN. RitzM. BernasconiM. SeissM. StiberN. SwatekM. ViehmannA. Benchmarking the quality practices of global pharmaceutical manufacturing to advance supply chain resilience.AAPS J.202224611110.1208/s12248‑022‑00761‑7 36266372
    [Google Scholar]
  177. UngureanuP. CochisC. BertolottiF. MattarelliE. ScapolanA.C. Multiplex boundary work in innovation projects: the role of collaborative spaces for cross-functional and open innovation.Eur. J. Innov. Manage.2021243984101010.1108/EJIM‑11‑2019‑0338
    [Google Scholar]
  178. AlgorriM. CauchonN.S. ChristianT. O’ConnellC. VaidyaP. Patient-centric product development: a summary of select regulatory cmc and device considerations.J. Pharm. Sci.2023112492293610.1016/j.xphs.2023.01.029 36739904
    [Google Scholar]
  179. HamiltonA.B. FinleyE.P. Qualitative methods in implementation research: An introduction.Psychiatry Res.201928011251610.1016/j.psychres.2019.112516 31437661
    [Google Scholar]
  180. DjurisJ. IbricS. ĐurićZ. Quality by design in the pharmaceutical development.Computer-Aided Applications in Pharmaceutical Technology.Elsevier202412110.1016/B978‑0‑443‑18655‑4.00003‑0
    [Google Scholar]
  181. PatilS. AdhyapakA. ShettiP. GuraoR. Development of a robust and reliable reverse-phase high-performance liquid chromatography (RP-HPLC) method using analytical quality by design principles for the accurate determination of esculin in its bulk form.Fut. J. Pharmaceu. Sci.2023916910.1186/s43094‑023‑00524‑x
    [Google Scholar]
  182. PainG. HickeyG. MondouM. CrumpD. HeckerM. BasuN. MaguireS. Drivers of and obstacles to the adoption of toxicogenomics for chemical risk assessment: insights from social science perspectives.Environ. Health Perspect.20201281010500210.1289/EHP6500 33112659
    [Google Scholar]
  183. Castillo-HenríquezL. Murillo-CastilloB. Chaves-SilesL. Mora-RománJ.J. Ramírez-ArguedasN. Hernández-MoraÉ. Vega-BaudritJ. Quality by design: a suitable methodology in industrial pharmacy for Costa Rican universities.Sci. Pharm.20229023410.3390/scipharm90020034
    [Google Scholar]
  184. GerzonG. ShengY. KirkitadzeM. Process analytical technologies – Advances in bioprocess integration and future perspectives.J. Pharm. Biomed. Anal.202220711437910.1016/j.jpba.2021.114379 34607168
    [Google Scholar]
  185. JayagopalB. MurugeshS. QbD-mediated RP-UPLC method development invoking an FMEA-based risk assessment to estimate nintedanib degradation products and their pathways.Arab. J. Chem.20201397087710310.1016/j.arabjc.2020.07.014
    [Google Scholar]
  186. AliA.M. AlanaziM.M. AttwaM.W. DarwishH.W. Selective stability indicating liquid chromatographic method based on quality by design framework and in silico toxicity assessment for infigratinib and its degradation products.Molecules20232822747610.3390/molecules28227476 38005198
    [Google Scholar]
/content/journals/cac/10.2174/0115734110321580240924073705
Loading
/content/journals/cac/10.2174/0115734110321580240924073705
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test