Skip to content
2000
Volume 21, Issue 5
  • ISSN: 1573-4110
  • E-ISSN: 1875-6727

Abstract

Introduction

pH indicators have long been utilized for rapid pH determination, relying on color changes to indicate pH values. However, visual color detection suffers from low sensitivity due to the limitations of the human eye. In this study, we explored the use of pyrylium compounds as pH indicators.

Methods

Three pyrylium compounds were synthesized, and their pH-dependent UV-Vis absorption and color changes were investigated. UV-Vis absorption studies revealed distinct pH-dependent changes, enabling the compounds to function as dual-transition pH indicators. The pKa values of these indicators can be tuned by changing the substituent on the chromophore core.

Results

Principal component analysis of the mixture of these three compounds demonstrated the ability of the system to measure pH with high precision, making it suitable for real sample analysis. Smartphone-assisted analysis was employed to exploit the potential of these indicators for wide-range (4.0-13.5) pH determination.

Conclusion

The obtained results demonstrated for the first time that pyrylium compounds can be used as dual-transition pH indicators. By modifying the substituents on this chromophore, indicators operating in different pH ranges can be obtained and utilized in smartphone-assisted pH detection.

Loading

Article metrics loading...

/content/journals/cac/10.2174/0115734110333632240820073214
2024-09-04
2025-10-26
Loading full text...

Full text loading...

References

  1. RakowN.A. SuslickK.S. A colorimetric sensor array for odour visualization.Nature2000406679771071310.1038/35021028 10963592
    [Google Scholar]
  2. HouC. LeiJ. HuoD. SongK. LiJ. LuoX. YangM. FaH. Discrimination of lung cancer related volatile organic compounds with a colorimetric sensor array.Anal. Lett.201346132048205910.1080/00032719.2013.782550
    [Google Scholar]
  3. Lopez-RuizN. CurtoV.F. ErenasM.M. Benito-LopezF. DiamondD. PalmaA.J. Capitan-VallveyL.F. Smartphone-based simultaneous pH and nitrite colorimetric determination for paper microfluidic devices.Anal. Chem.201486199554956210.1021/ac5019205 25158126
    [Google Scholar]
  4. UpadhyayS. KumarA. SrivastavaM. SrivastavaA. DwivediA. SinghR.K. SrivastavaS.K. Recent advancements of smartphone-based sensing technology for diagnosis, food safety analysis, and environmental monitoring.Talanta202427512608010.1016/j.talanta.2024.126080 38615454
    [Google Scholar]
  5. BiswasS. ChakrabortyJ. AgarwalA. KumbhakarP. Gold nanostructures for the sensing of pH using a smartphone.RSC Advances2019959341443415110.1039/C9RA07101F 35529967
    [Google Scholar]
  6. ValekT. ValkovaP. PohankaM. Colorimetric Method for the Determination of Proteins Using Immobilized Microbial Protease and a Smartphone Camera.Anal. Lett.20215461023103710.1080/00032719.2020.1792477
    [Google Scholar]
  7. MagnaghiL.R. AlbertiG. PazziB.M. ZanoniC. BiesuzR. A green-PAD array combined with chemometrics for pH measurements.New J. Chem.20224640194601946710.1039/D2NJ03675D
    [Google Scholar]
  8. ShiQ. WangT. ZhengY. GuoQ. WangB. ZhuS. Sensitive Colorimetric Determination of Cyromazine Using a Gold Nanoparticle (Au NP) Based Sensor with Smartphone Detection.Anal. Lett.202356121896191010.1080/00032719.2022.2150202
    [Google Scholar]
  9. PastoreA. BadoccoD. CappellinL. TubianaM. PastoreP. Positively Charged Organosilanes Covalently Linked to the Silica Network as Modulating Tools for the Salinity Correction of pH Values Obtained with Colorimetric Sensor Arrays (CSAs).Sensors (Basel)202424241710.3390/s24020417 38257510
    [Google Scholar]
  10. RenX.H. MaZ.B. ZhangH.R. HeX.W. LiW.Y. ZhangY.K. A dual-response ratiometric fluorescent sensor by europium-doped silicon nanoparticles for fluorescent and smartphone imaging detection of tetracycline.Talanta202427812643210.1016/j.talanta.2024.126432 38917547
    [Google Scholar]
  11. LiX.Y. LongQ.H. PanZ. MaX.H. XiaC. MaiX. LiN. Integrated Eu3+ loaded covalent organic framework with smartphone for ratiometric fluorescence detection of tetracycline.Spectrochim. Acta A Mol. Biomol. Spectrosc.202432012461010.1016/j.saa.2024.124610 38852306
    [Google Scholar]
  12. TongX. CaiG. ZhuY. TongC. WangF. GuoY. ShiS. Integrating smartphone-assisted ratiometric fluorescent sensors with in situ hydrogel extraction for visual detection of organophosphorus pesticides.New J. Chem.202246178195820210.1039/D1NJ05614J
    [Google Scholar]
  13. LianM. ShiF. CaoQ. WangC. LiN. LiX. ZhangX. ChenD. Paper-based colorimetric sensor using bimetallic Nickel-Cobalt selenides nanozyme with artificial neural network-assisted for detection of H2O2 on smartphone.Spectrochim. Acta A Mol. Biomol. Spectrosc.202431112403810.1016/j.saa.2024.124038 38364516
    [Google Scholar]
  14. MohindrooP. SarvaiyaJ. DangeS. VarmaK.S. Polydiacetylene based colorimetric nano-sensor for on-spot detection of aflatoxin in food matrices and animal feed.J. Food Compos. Anal.202312210544110.1016/j.jfca.2023.105441
    [Google Scholar]
  15. GaoL. LiL. Smartphone-assisted Colorimetric Sensing Platform Based on Au@Pt Nanozyme Used for Visual Monitoring of Ascorbic Acid.Sens. Mater.2024364133710.18494/SAM5028
    [Google Scholar]
  16. ShaM.S. MauryaM.R. ChowdhuryM.E.H. MuthalifA.G.A. Al-MaadeedS. SadasivuniK.K. A smartphone-interfaced, low-cost colorimetry biosensor for selective detection of bronchiectasis via an artificial neural network.RSC Advances20221237239462395510.1039/D2RA03769F 36128540
    [Google Scholar]
  17. SunX. WenR. ZhangR. GuoY. LiH. LeeY.I. Engineering a ratiometric-sensing platform based on a PTA-NH2@GSH-AuNCs composite for the visual detection of copper ions via RGB assay.Microchem. J.202218210787710.1016/j.microc.2022.107877
    [Google Scholar]
  18. KanwalT. RasheedS. HassanM. FatimaB. XiaoH.M. MusharrafS.G. Najam-ul-HaqM. HussainD. Smartphone-Assisted EY@MOF-5-Based Dual-Emission Fluorescent Sensor for Rapid On-Site Detection of Daclatasvir and Nitenpyram.ACS Appl. Mater. Interfaces20241611688170410.1021/acsami.3c12565 38110286
    [Google Scholar]
  19. KimD. HanS. JiY. YounH. KimH. KoO. LeeJ.B. RNA polymerization actuating nucleic acid membrane (RANAM)-based biosensing for universal RNA virus detection.Biosens. Bioelectron.202219911388010.1016/j.bios.2021.113880 34915215
    [Google Scholar]
  20. GanjaliM.R. AbdiM. PirelahiH. MouradzadegunA. SohrabiM.R. Novel Imidazole PVC-Based Membrane Sensor Based on 4-Methyl-2,6-diphenylthiopyrylium.Anal. Lett.200437217919010.1081/AL‑120027784
    [Google Scholar]
  21. García-AcostaB. GarcíaF. GarcíaJ.M. Martínez-MáñezR. SancenónF. San-JoséN. SotoJ. Chromogenic signaling of hydrogen carbonate anion with pyrylium-containing polymers.Org. Lett.20079132429243210.1021/ol0705191 17518473
    [Google Scholar]
  22. BeltránA. Isabel BurgueteM. AbánadesD.R. Pérez-SalaD. LuisS.V. GalindoF. Turn-on fluorescent probes for nitric oxide sensing based on the ortho-hydroxyamino structure showing no interference with dehydroascorbic acid.Chem. Commun. (Camb.)201450273579358110.1039/c3cc49555h 24567953
    [Google Scholar]
  23. YinW. WangH. DengB. MaF. ZhangJ. ZhouM. WangH. LuY. A pyrylium salt-based fluorescent probe for the highly sensitive detection of methylamine vapour.Analyst (Lond.)2022147153451345510.1039/D2AN00911K 35766484
    [Google Scholar]
  24. TeknikelE. Chemodosimetric discriminative analysis of cyanide, ammonia, aliphatic amine, and hydrazine utilizing the diverse reaction types of the pyrylium salt.J. Mol. Struct.2024129813701510.1016/j.molstruc.2023.137015
    [Google Scholar]
  25. QianX. GongW. WangF. LinY. NingG. A pyrylium-based colorimetric and fluorimetric chemosensor for the selective detection of lysine in aqueous environment and real sample.Tetrahedron Lett.201556212764276710.1016/j.tetlet.2015.04.029
    [Google Scholar]
  26. ShiraishiY. NakamuraM. MatsushitaN. HiraiT. A pyrylium–coumarin dyad as a colorimetric receptor for ratiometric detection of cyanide anions by two absorption bands in the visible region.New J. Chem.201640119520110.1039/C5NJ02219C
    [Google Scholar]
  27. LouW. ZhangY. XiangY. CuiZ. LiB. GongY.J. A symmetric pyrylium based near-infrared probe with large Stokes shift for detection of H2S in water, food, and living cells.J. Food Compos. Anal.202412810602210.1016/j.jfca.2024.106022
    [Google Scholar]
  28. Esquivel-AlvaradoD. Alfaro-ViquezE. PolewskiM.A. KruegerC.G. VestlingM.M. ReedJ.D. Synthesis of Fluorescent Proanthocyanidin-Cinnamaldehydes Pyrylium Products for Microscopic Detection of Interactions with Extra-Intestinal Pathogenic Escherichia coli.J. Agric. Food Chem.20216936107001070810.1021/acs.jafc.1c02873 34464123
    [Google Scholar]
  29. Bustamante FonsecaS.E. RivasB.L. García PérezJ.M. Vallejos CalzadaS. GarcíaF. Synthesis of a polymeric sensor containing an occluded pyrylium salt and its application in the colorimetric detection of trimethylamine vapors.J. Appl. Polym. Sci.2018135194618510.1002/app.46185
    [Google Scholar]
  30. D, B.; Dey, D.; T. L, V.; Thodi F. Salfeena, C.; Panda, M. K.; Somappa, S. B. Rapid Visual Detection of Amines by Pyrylium Salts for Food Spoilage Taggant.ACS Appl. Bio Mater.2020377277810.1021/acsabm.9b00711
    [Google Scholar]
  31. BeltránA. BurgueteM.I. GalindoF. LuisS.V. Synthesis of new fluorescent pyrylium dyes and study of their interaction with N -protected amino acids.New J. Chem.202044229509952110.1039/D0NJ02033H
    [Google Scholar]
  32. HolaE. OrtylJ. Pyrylium salt as a visible-light-induced photoredox catalyst for polymer and organic synthesis – Perspectives on catalyst design and performance.Eur. Polym. J.202115011036510.1016/j.eurpolymj.2021.110365
    [Google Scholar]
  33. MichaudelQ. ChauviréT. KottischV. SupejM.J. StawiaszK.J. ShenL. ZipfelW.R. AbruñaH.D. FreedJ.H. ForsB.P. Mechanistic Insight into the Photocontrolled Cationic Polymerization of Vinyl Ethers.J. Am. Chem. Soc.201713943155301553810.1021/jacs.7b09539 28985061
    [Google Scholar]
  34. WangG. LiX. WangX. ZhangK. Efficient cascade reactions for luminescent pyrylium biolabels catalysed by light rare-earth elements.New J. Chem.20214527123051231010.1039/D1NJ01793D
    [Google Scholar]
  35. NielsenM.M. HolmstrømT. PedersenC.M. Stereoselective O-Glycosylations by Pyrylium Salt Organocatalysis**.Angew. Chem. Int. Ed.2022616e20211539410.1002/anie.202115394 34847269
    [Google Scholar]
  36. JosephS. KhassenovaG. MancheñoO.G. Catalytic Enantioselective Reactions with (Benzo)Pyrylium Salts.Chimia (Aarau)2020741185786510.2533/chimia.2020.857 33243320
    [Google Scholar]
  37. ChanduP. GhoshK.G. SureshkumarD. Metal-Free Visible-Light-Promoted Trifluoromethylation of Vinylcyclopropanes Using Pyrylium Salt as a Photoredox Catalyst.J. Org. Chem.201984138771878110.1021/acs.joc.9b01033 31244163
    [Google Scholar]
  38. CruzC.L. Holmberg-DouglasN. OnuskaN.P.R. McManusJ.B. MacKenzieI.A. HutsonB.L. EskewN.A. NicewiczD.A. Development of a Large-Enrollment Course-Based Research Experience in an Undergraduate Organic Chemistry Laboratory: Structure–Function Relationships in Pyrylium Photoredox Catalysts.J. Chem. Educ.20209761572157810.1021/acs.jchemed.9b00786
    [Google Scholar]
  39. MaY. PangY. ChabbraS. ReijerseE.J. SchneggA. NiskiJ. LeutzschM. CornellaJ. Radical C−N Borylation of Aromatic Amines Enabled by a Pyrylium Reagent.Chemistry202026173738374310.1002/chem.202000412 31994764
    [Google Scholar]
  40. ZhangS.Y. GongW.T. QuW.D. DengX.R. DongK.X. ZhangS.G. NingG.L. Construction of Ionic Porous Organic Polymers (iPOPs) via Pyrylium Mediated Transformation.Chin. J. Polym. Sci.202038995896410.1007/s10118‑020‑2436‑4
    [Google Scholar]
  41. DeviL. SharmaG. KantR. ShuklaS.K. RastogiN. Regioselective synthesis of functionalized pyrazole-chalcones via a base mediated reaction of diazo compounds with pyrylium salts.Org. Biomol. Chem.202119184132413610.1039/D1OB00274K 33870359
    [Google Scholar]
  42. SantosW.G. BudkinaD.S. SantagneliS.H. TarnovskyA.N. Zukerman-SchpectorJ. RibeiroS.J.L. Ion-Pair Complexes of Pyrylium and Tetraarylborate as New Host–Guest Dyes: Photoinduced Electron Transfer Promoting Radical Polymerization.J. Phys. Chem. A2019123347374738310.1021/acs.jpca.9b03581 31386369
    [Google Scholar]
  43. MoserD. DuanY. WangF. MaY. O’NeillM.J. CornellaJ. Selective Functionalization of Aminoheterocycles by a Pyrylium Salt.Angew. Chem. Int. Ed.20185734110351103910.1002/anie.201806271 29969531
    [Google Scholar]
  44. TanP. WangS.R. Reductive (3 + 2) Annulation of Benzils with Pyrylium Salts: Stereoselective Access to Furyl Analogues of cis -Chalcones.Org. Lett.201921156029603310.1021/acs.orglett.9b02182 31335151
    [Google Scholar]
  45. LiuL. BaoG.Y. ZhangS.S. QinY. ChenX.P. WangM.D. ZhuJ.P. YinH. LinG.Q. FengC.G. ZhangF. GuoY.L. Analysis of the Amine Submetabolome Using Novel Isotope-Coded Pyrylium Salt Derivatization and LC-MS: Herbs and Cancer Tissues as Cases.Anal. Chem.20229450176061761510.1021/acs.analchem.2c04246 36473140
    [Google Scholar]
  46. HuangS. LiuX. LiuD. ZhangX. ZhangL. LeW. ZhangY. Pyrylium-Based Derivatization for Rapid Labeling and Enhanced Detection of Cholesterol in Mass Spectrometry Imaging.J. Am. Soc. Mass Spectrom.202233122310231810.1021/jasms.2c00271 36331251
    [Google Scholar]
  47. ShariatgorjiM. NilssonA. KällbackP. KarlssonO. ZhangX. SvenningssonP. AndrenP.E. Pyrylium Salts as Reactive Matrices for MALDI-MS Imaging of Biologically Active Primary Amines.J. Am. Soc. Mass Spectrom.201526693493910.1007/s13361‑015‑1119‑9 25821050
    [Google Scholar]
  48. MirandaM.A. GarciaH. 2,4,6-Triphenylpyrylium Tetrafluoroborate as an Electron-Transfer Photosensitizer.Chem. Rev.19949441063108910.1021/cr00028a009
    [Google Scholar]
  49. MartinyM. SteckhanE. EschT. Cycloaddition Reactions Initiated by Photochemically Excited Pyrylium Salts.Chem. Ber.199312671671168210.1002/cber.19931260726
    [Google Scholar]
  50. AmatA. p-Coumaric acid photodegradation with solar light, using a 2,4,6-triphenylpyrylium salt as photosensitizer A comparison with other oxidation methods.Appl. Catal. B1999232-320521410.1016/S0926‑3373(99)00080‑6
    [Google Scholar]
  51. MirandaM.A. GalindoF. AmatA.M. ArquesA. Pyrylium salt-photosensitized degradation of phenolic contaminants derived from cinnamic acid with solar light Correlation of the observed reactivities with fluorescence quenching.Appl. Catalysis B Environ.2000282127133
    [Google Scholar]
  52. MattayJ. VondenhofM. DenigR. Pyrylium Salts as Photosensitizers in Homogeneous and Heterogeneous Electron-Transfer Catalysis. – A Comparison with Cyano Arenes.Chem. Ber.1989122595195810.1002/cber.19891220526
    [Google Scholar]
  53. ZhuX. HanJ. ChenZ. ShiZ. ZhangJ. GuoS. Construction of a tunable pyrylium based porous ionic polymer network for efficient waterborne pollutant treatment.Green Chem.20242695339534610.1039/D3GC04737G
    [Google Scholar]
  54. LiS. GengY. TengB. XuS. PetkovP.S. LiaoZ. JostB. LiuY. FengX. WuB. ZhangT. Nature-Inspired Pyrylium Cation-Based Vinylene-Linked Two-Dimensional Covalent Organic Framework for Efficient Sunlight-Driven Water Purification.Chem. Mater.20233541594160010.1021/acs.chemmater.2c03083
    [Google Scholar]
  55. Chacon-TeranM.A. MoustafaC. LuuJ. MartiniA. FindlaterM. Pyrylium- and Pyridinium-Based Ionic Liquids as Friction Modifiers for Greases.ACS Appl. Mater. Interfaces20241610133461335110.1021/acsami.4c01750 38427334
    [Google Scholar]
  56. HuR. HassanM. LiuL. ZhangS. GongW. Pyrylium-based porous organic polymers via Knoevenagel condensation for efficient visible-light-driven heterogeneous photodegradation.Chin. Chem. Lett.202334410754110.1016/j.cclet.2022.05.055
    [Google Scholar]
  57. El-RozM. AwalaH. Thibault-StarzykF. MintovaS. Selective response of pyrylium-functionalized nanozeolites in the visible spectrum towards volatile organic compounds.Sens. Actuators B Chem.201724911412210.1016/j.snb.2017.04.038
    [Google Scholar]
  58. VallayilP. SankararamanS. RamanujamK. Structurally and electrochemically tunable pyrylium platforms: A new class of redox anolyte for non-aqueous organic redox flow battery operating at a high-current density.J. Energy Storage20235810632510.1016/j.est.2022.106325
    [Google Scholar]
  59. MkrtchyanS. ShalimovO. GarciaM.G. ZapletalJ. IaroshenkoV.O. Mechanochemical synthesis of aromatic ketones: pyrylium tetrafluoroborate mediated deaminative arylation of amides.Chem. Sci. (Camb.)202415249155916310.1039/D4SC00904E 38903233
    [Google Scholar]
  60. DzaraevaL.B. SabanovV.K. DzhatievaR.D. AbaevaA.F. Pyrylium salts in the synthesis of redoxites.Russ. J. Gen. Chem.20138381526152810.1134/S1070363213080094
    [Google Scholar]
  61. Al-EssaM.K. AlzayadnehE. Al-HadidiK. Assessment of Proteolysis by Pyrylium and Other Fluorogenic Reagents.Protein Pept. Lett.202128780981610.2174/0929866528999201231214954 33390107
    [Google Scholar]
  62. BugeanI-G. PaunA. DiacuE. CristeaM. BirzanL. UngureanuE.M. Chemically modified electrodes based on 4-(azulen-1-yl)-2,6-bis((e)-2-(furan-2-yl)vinyl)pyrylium perchlorate for heavy metals ions detection.Romanian International Conference of Analytical Chemistry28-31 August, 2016Iasi, Romania2020
    [Google Scholar]
  63. ShionoK. TsutsumiT. NabeshiH. IkedaA. YokoyamaJ. AkiyamaH. Simple and rapid determination of biogenic amines in fish and fish products by liquid chromatography–tandem mass spectrometry using 2,4,6-triethyl-3,5-dimethyl pyrylium trifluoromethanesulfonate as a derivatization reagent.J. Chromatogr. A2021164346204610.1016/j.chroma.2021.462046 33774435
    [Google Scholar]
  64. Muñoz RestaI. MiravetJ.F. YamajiM. GalindoF. Solid-state white-light emission from a pyrylium dye obtained in one synthetic step.J. Mater. Chem. C Mater. Opt. Electron. Devices2020841143481435210.1039/D0TC02987D
    [Google Scholar]
  65. WilliamsA. Hydrolysis of pyrylium salts. Kinetic evidence for hemiacetal intermediates.J. Am. Chem. Soc.197193112733273710.1021/ja00740a025
    [Google Scholar]
  66. YoungD.N. SerguievskiP. DettyM.R. Hydrolysis Studies of Chalcogenopyrylium Trimethine Dyes. 2. Chalcogen Atom Effects on the Rates of Hydrolysis of Chalcogenopyrylium Dyes.J. Org. Chem.199863165716572110.1021/jo980742z
    [Google Scholar]
  67. TeknikelE. A Near-IR Fluorimetric Chemosensing System for the Turn-On Detection of Hydrogen Sulfate Anion.ChemistrySelect202499e20240037310.1002/slct.202400373
    [Google Scholar]
  68. Jan BecherF.M.A. Derivatives and reactions of glutaconaldehyde. XV: Preparation of 3-acetyl-2(1H)-pyridinethiones from pyrylium salts.Synthesis19831025
    [Google Scholar]
  69. BecherJ. AsaadF.M. WinckelmannI. Pyridinethiones, X Preparation of Pentene-1,5-dione Enolates and of 3-Benzoyl-2(1 H)-.Pyridinethiones. Liebigs Ann. Chem.19851985362062710.1002/jlac.198519850323
    [Google Scholar]
  70. ChakrabortyS. JosephM.M. VarugheseS. GhoshS. MaitiK.K. SamantaA. AjayaghoshA. A new pentacyclic pyrylium fluorescent probe that responds to pH imbalance during apoptosis.Chem. Sci. (Camb.)20201147126951270010.1039/D0SC02623A 34094464
    [Google Scholar]
  71. BalabanA.T. MateescuG.D. ElianM. Infra-red absorption spectra of pyrylium salts.Tetrahedron196218101083109410.1016/S0040‑4020(01)99274‑9
    [Google Scholar]
  72. GotorR. AshokkumarP. HechtM. KeilK. RurackK. [Gotor, R., Ashokkumar, P., Hecht, M., Keil, K., Rurack, K. Optical pH sensor covering the range from pH 0–14 compatible with mobile-device readout and based on a set of rationally designed indicator dyes.Anal. Chem.201789168437844410.1021/acs.analchem.7b01903 28696681
    [Google Scholar]
  73. DevadhasanJ.P. KimS. An ultrasensitive method of real time pH monitoring with complementary metal oxide semiconductor image sensor.Anal. Chim. Acta2015858555910.1016/j.aca.2014.12.015 25597802
    [Google Scholar]
  74. EhtesabiH. AsadollahiA. HallajiZ. GoudarziM. RezaeiA. Smartphone-based portable device for rapid and sensitive pH detection by fluorescent carbon dots.Sens. Actuators A Phys.202133211305710.1016/j.sna.2021.113057
    [Google Scholar]
  75. LiuT. WangW. DingH. YiD. Smartphone-Based Hand-Held Optical Fiber Fluorescence Sensor for On-Site pH Detection.IEEE Sens. J.201919209441944610.1109/JSEN.2019.2926153
    [Google Scholar]
  76. XuW. LuS. ChenY. ZhaoT. JiangY. WangY. ChenX. Simultaneous color sensing of O2 and pH using a smartphone.Sens. Actuators B Chem.201522032633010.1016/j.snb.2015.05.088
    [Google Scholar]
  77. DuttaS. SarmaD. PatelA. NathP. Dye-Assisted pH Sensing Using a Smartphone.IEEE Photonics Technol. Lett.201527222363236610.1109/LPT.2015.2465132
    [Google Scholar]
/content/journals/cac/10.2174/0115734110333632240820073214
Loading
/content/journals/cac/10.2174/0115734110333632240820073214
Loading

Data & Media loading...

Supplements

Supplementary material is available on the publisher's website along with the published article.

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test