Skip to content
2000
Volume 21, Issue 5
  • ISSN: 1573-4110
  • E-ISSN: 1875-6727

Abstract

Background

In the current investigation, derivatives incorporating pyrazole and thiadiazole ring systems were designed, and docking studies were conducted to elucidate their potential binding mode. Antimicrobial Resistance (AMR) is a critical threat to global public health and development, recognized by the World Health Organization (WHO) as one of the top 10 risks worldwide.

Objective

The objective was to develop new antimicrobial drugs that can effectively target a wide range of resistant microbes.

Methods

The designed derivatives were docked using AutoDock Vina 4.2 against the active sites of DHFR (2W9H), GyrB (4URO), thymidylate kinase (4QGG) for antibacterial activity and DHFR (1M78), aspartic protease 2 (3PVK), N-myristoyl transferase (1IYK) for antifungal activity.

Results

The designed derivatives underwent further assessment for physicochemical properties, and drug-likeness.

Conclusion

Several of the derivatives exhibited notable anti-microbial activity, demonstrating a potency on par with the Standard drug Ciprofloxacin and Fluconazole. The results, evaluated based on docking scores into the receptor's active site, suggested that the most active derivatives, W36 and W33, may act as promising antibacterial against 2W9H and antifungal against 1IYK, respectively.

Loading

Article metrics loading...

/content/journals/cac/10.2174/0115734110312334240820074359
2024-09-04
2025-09-02
Loading full text...

Full text loading...

References

  1. SerbanG. StanaselO. SerbanE. BotaS. 2-Amino-1,3,4-thiadiazole as a potential scaffold for promising antimicrobial agents.Drug Des. Devel. Ther.2018121545156610.2147/DDDT.S155958 29910602
    [Google Scholar]
  2. KaurP. KaurR. 1,2,4-Triazole as an antimicrobial scaffold.J. Pharm. Res. Ther.20201026270
    [Google Scholar]
  3. BansalA. A brief review on antimicrobial potential of pyrazoles (From 2010-2018).Mini Rev. Org. Chem.202017219722210.2174/1570193X16666190122162920
    [Google Scholar]
  4. EU action on antimicrobial resistance.2017Available from: https://health.ec.europa.eu/antimicrobial-resistance/eu-action-antimicrobial-resistance_en (Accessed on: 2024-02-03)
  5. KaurP. AroraV. Pyrazole as an anti-microbial scaffold: A comprehensive review.Mini Rev. Org. Chem.202320657859210.2174/1570193X20666221031100542
    [Google Scholar]
  6. WHO outlines 40 research priorities on antimicrobial resistance.2023Available from: https://www.who.int/news/item/22-06-2023-who-outlines-40-research-priorities-on-antimicrobial-resistance (Accessed on: 2024-02-03)
  7. KamatS. KumariM. Emergence of microbial resistance against nanoparticles: Mechanisms and strategies.Front. Microbiol.202314110261510.3389/fmicb.2023.1102615 36778867
    [Google Scholar]
  8. TaylorT.A. UnakalC.G. Staphylococcus aureus infection.StatPearls.StatPearls Publishing2023129810.1016/C2015‑0‑04757‑8
    [Google Scholar]
  9. SidhuA.B.S. Verdier-PinardD. FidockD.A. FidockD.A. Chloroquine resistance in Plasmodium falciparum malaria parasites conferred by pfcrt mutations.Science2002298559121021310.1126/science.1074045 12364805
    [Google Scholar]
  10. MenardD. DondorpA. Antimalarial drug resistance: A threat to malaria elimination.Cold Spring Harb. Perspect. Med.201777a02561910.1101/cshperspect.a025619 28289248
    [Google Scholar]
  11. FengY. LuH. WhitewayM. JiangY. Understanding fluconazole tolerance in Candida albicans: Implications for effective treatment of candidiasis and combating invasive fungal infections.J. Glob. Antimicrob. Resist.20233531432110.1016/j.jgar.2023.10.019 37918789
    [Google Scholar]
  12. Antimicrobial resistanceAvailable from: https://www.who.int/news-room/fact-sheets/detail/antimicrobial-resistance (Accessed on: accessed 2022-07-04)
  13. KaurP. ChawlaA. 1,2,4-TRIAZOLE: A review of pharmacological activities.Int. Res. J. Pharm.201787102910.7897/2230‑8407.087112
    [Google Scholar]
  14. KaurP. KaurR. GoswamiM. A Review on methods of synthesis of 1,2,4-triazole derivatives.Int. Res. J. Pharm.20189713510.7897/2230‑8407.097121
    [Google Scholar]
  15. KaurP. KharbR. AroraV. Pyrazole as an anti-inflammatory scaffold: A comprehensive review.Int. J. Health Sci.202210.53730/ijhs.v6nS2.7106
    [Google Scholar]
  16. PratikK. ArunK. NehaS. BhumikaY. AnshumanS. KumarG.S. Synthesis, characterization of ethyl 5-(substituted)-1H-pyrazole- 3-carboxylate derivative as potent anti-inflammatory agents.Antiinflamm. Antiallergy Agents Med. Chem.2018171323810.2174/1871523017666180411155240 29651969
    [Google Scholar]
  17. HameedS.A. VarkeyJ. JayasekharP. Schiff bases and Bicyclic derivatives comprising 1, 3, 4-thiadiazole moiety-A review on their pharmacological activities.Asian J. Pharm. Res.20199429910.5958/2231‑5691.2019.00047.9
    [Google Scholar]
  18. de Andrade Danin BarbosaG. Palermo de AguiarA. Synthesis of 1,3,4-thiadiazole derivatives and microbiological activities: A review.Rev. Virtual Quim201911380684810.21577/1984‑6835.20190058
    [Google Scholar]
  19. KarrouchiK. RadiS. RamliY. TaoufikJ. MabkhotY.N. Al-AizariF.A. AnsarM. Synthesis and pharmacological activities of pyrazole derivatives: A review.Molecules201823113410.3390/molecules23010134
    [Google Scholar]
  20. SerbanG. Future prospects in the treatment of parasitic diseases: 2-amino-1,3,4-thiadiazoles in Leishmaniasis.Molecules2019248155710.3390/molecules24081557
    [Google Scholar]
  21. MorrisG.M. HueyR. LindstromW. SannerM.F. BelewR.K. GoodsellD.S. OlsonA.J. AutoDock4 and AutoDockTools4: Automated docking with selective receptor flexibility.J. Comput. Chem.200930162785279110.1002/jcc.21256 19399780
    [Google Scholar]
  22. KitchenD.B. DecornezH. FurrJ.R. BajorathJ. Docking and scoring in virtual screening for drug discovery: Methods and applications.Nat. Rev. Drug Discov.200431193594910.1038/nrd1549 15520816
    [Google Scholar]
  23. EbenezerO. AwoladeP. KoorbanallyN. SinghP. New library of pyrazole–imidazo[1,2-α]pyridine molecular conjugates: Synthesis, antibacterial activity and molecular docking studies.Chem. Biol. Drug Des.202095116217310.1111/cbdd.13632 31580533
    [Google Scholar]
  24. PantsarT. PosoA. Binding affinity via docking: Fact and fiction.Molecules2018238189910.3390/molecules23081899 30061498
    [Google Scholar]
  25. ForliS. HueyR. PiqueM.E. SannerM.F. GoodsellD.S. OlsonA.J. Computational protein–ligand docking and virtual drug screening with the AutoDock suite.Nat. Protoc.201611590591910.1038/nprot.2016.051 27077332
    [Google Scholar]
  26. CosconatiS. ForliS. PerrymanA.L. HarrisR. GoodsellD.S. OlsonA.J. Virtual screening with AutoDock: Theory and practice.Expert Opin. Drug Discov.20105659760710.1517/17460441.2010.484460 21532931
    [Google Scholar]
  27. BragaR. AlvesV. SilvaA. NascimentoM. SilvaF. LiaoL. AndradeC. Virtual screening strategies in medicinal chemistry: The state of the art and current challenges.Curr. Top. Med. Chem.201414161899191210.2174/1568026614666140929120749 25262801
    [Google Scholar]
  28. FerreiraL. Dos SantosR. OlivaG. AndricopuloA. Molecular docking and structure-based drug design strategies.Molecules2015207133841342110.3390/molecules200713384 26205061
    [Google Scholar]
  29. AbidS.E. AbdulaA.M. Al MarjaniM.F. AbdulhameedQ.M. Synthesis, antimicrobial, antioxidant and docking study of some novel 3,5- disubstituted-4,5- dihydro- 1H- pyrazoles incorporating imine moiety.Egypt. J. Chem.20196241139114910.21608/ejchem.2018.5804.1498
    [Google Scholar]
  30. OthmanI.M.M. Gad-ElkareemM.A.M. AmrA.E.G.E. Al-OmarM.A. NossierE.S. ElsayedE.A. Novel heterocyclic hybrids of pyrazole targeting dihydrofolate reductase: design, biological evaluation and in silico studies.J. Enzyme Inhib. Med. Chem.20203511491150210.1080/14756366.2020.1791842 32668994
    [Google Scholar]
  31. Madhavi SastryG. AdzhigireyM. DayT. AnnabhimojuR. ShermanW. Protein and ligand preparation: Parameters, protocols, and influence on virtual screening enrichments.J. Comput. Aided Mol. Des.201327322123410.1007/s10822‑013‑9644‑8 23579614
    [Google Scholar]
  32. HeasletH. HarrisM. FahnoeK. SarverR. PutzH. ChangJ. SubramanyamC. BarreiroG. MillerJ.R. Structural comparison of chromosomal and exogenous dihydrofolate reductase from Staphylococcus aureus in complex with the potent inhibitor trimethoprim.Proteins200976370671710.1002/prot.22383 19280600
    [Google Scholar]
  33. LuJ. PatelS. SharmaN. SoissonS.M. KishiiR. TakeiM. FukudaY. LumbK.J. SinghS.B. Structures of kibdelomycin bound to Staphylococcus aureus GyrB and ParE showed a novel U-shaped binding mode.ACS Chem. Biol.2014992023203110.1021/cb5001197 24992706
    [Google Scholar]
  34. KawatkarS.P. KeatingT.A. OlivierN.B. BreenJ.N. GreenO.M. GulerS.Y. HentemannM.F. LochJ.T. McKenzieA.R. NewmanJ.V. OttersonL.G. Martínez-BotellaG. Antibacterial inhibitors of Gram-positive thymidylate kinase: Structure-activity relationships and chiral preference of a new hydrophobic binding region.J. Med. Chem.201457114584459710.1021/jm500463c 24828090
    [Google Scholar]
  35. WhitlowM. HowardA.J. StewartD. HardmanK.D. KuyperL.F. BaccanariD.P. FlingM.E. TansikR.L. X-ray crystallographic studies of Candida albicans dihydrofolate reductase. High resolution structures of the holoenzyme and an inhibited ternary complex.J. Biol. Chem.199727248302893029810.1074/jbc.272.48.30289 9374515
    [Google Scholar]
  36. BehnenJ. KösterH. NeudertG. CraanT. HeineA. KlebeG. Experimental and computational active site mapping as a starting point to fragment-based lead discovery.ChemMedChem20127224826110.1002/cmdc.201100490 22213702
    [Google Scholar]
  37. SogabeS. MasubuchiM. SakataK. FukamiT.A. MorikamiK. ShiratoriY. EbiikeH. KawasakiK. AokiY. ShimmaN. D’ArcyA. WinklerF.K. BannerD.W. OhtsukaT. Crystal structures of Candida albicans N-myristoyltransferase with two distinct inhibitors.Chem. Biol.20029101119112810.1016/S1074‑5521(02)00240‑5 12401496
    [Google Scholar]
  38. KaplanW. LittlejohnT.G. Swiss-PDB Viewer (Deep View).Brief. Bioinform.20012219519710.1093/bib/2.2.195 11465736
    [Google Scholar]
  39. TianW. ChenC. LeiX. ZhaoJ. LiangJ. CASTp 3.0: Computed atlas of surface topography of proteins.Nucleic Acids Res.201846W1W363W36710.1093/nar/gky473 29860391
    [Google Scholar]
  40. CousinsK.R. Computer review of ChemDraw ultra 12.0.J. Am. Chem. Soc.201113321838810.1021/ja204075s 21561109
    [Google Scholar]
  41. Chemistry software: Chem3DAvailable from: https://library.bath.ac.uk/chemistry-software/chem3d (Accessed on:Apr. 29, 2024)
  42. O’BoyleN.M. BanckM. JamesC.A. MorleyC. VandermeerschT. HutchisonG.R. Open Babel: An open chemical toolbox.J. Cheminform.2011313310.1186/1758‑2946‑3‑33 21982300
    [Google Scholar]
  43. NevesB.J. MottinM. Moreira-FilhoJ.T. de Paula SousaB.K. MendoncaS.S. AndradeC.H. Best practices for docking-based virtual screening.Molecular Docking for Computer-Aided Drug Design.Academic Press2021759810.1016/B978‑0‑12‑822312‑3.00001‑1
    [Google Scholar]
  44. BIOVIA Discovery Studio, 4Available from: https://www.3ds.com/products/biovia/discovery-studio
  45. StefaniuA. Introductory chapter: Molecular docking and molecular dynamics techniques to achieve rational drug design.Molecular Docking and Molecular Dynamics.IntechOpen201910.5772/intechopen.84200
    [Google Scholar]
  46. HelgrenT.R. HagenT.J. Demonstration of AutoDock as an educational tool for drug discovery.J. Chem. Educ.201794334534910.1021/acs.jchemed.6b00555
    [Google Scholar]
  47. MorrisG.M. HueyR. OlsonA. J Using AutoDock for ligand-receptor docking.Curr. Protoc. Bioinformat200810.1002/0471250953.bi0814s24
    [Google Scholar]
  48. KhumarA.B.S. KumarK.N. RajaC. EzhilarasiM.R. In-vitro anticancer activity, antimicrobial and in-silico studies of naphthyl pyrazole analogues.Rasayan J. Chem.20201321199121410.31788/RJC.2020.1325495
    [Google Scholar]
  49. ShettyP.R. ShivarajaG. KrishnaswamyG. PruthvirajK. MohanV.C. Sreenivasa, S Pyrazole Schiff Bases: Synthesis, characterization, biological screening, in silico ADME and molecular docking studies.Ind. J. Heterocycl. Chem.2020302123130
    [Google Scholar]
  50. DainaA. MichielinO. ZoeteV. SwissADME: A free web tool to evaluate pharmacokinetics, drug-likeness and medicinal chemistry friendliness of small molecules.Sci. Rep.2017714271710.1038/srep42717 28256516
    [Google Scholar]
/content/journals/cac/10.2174/0115734110312334240820074359
Loading
/content/journals/cac/10.2174/0115734110312334240820074359
Loading

Data & Media loading...


  • Article Type:
    Research Article
Keyword(s): AMR; drug-likeness; heterocyclic compounds; molecular docking; pyrazole; thiadiazole
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test