Skip to content
2000
Volume 21, Issue 9
  • ISSN: 1573-4110
  • E-ISSN: 1875-6727

Abstract

Introduction

The recognition of the health hazards of azo dyes has highlighted the need to develop efficient, rapid, and reliable analytical methods for dye determination.

Methods

In this work, electrochemical probing of the azo group of Tartrazine (TZ) and Carmoisine (CR) in food dyes was carried out. Synthesized bismuth and zinc oxide nanoparticles were used to modify Graphite Electrode (GE).

Results

Electrochemical analysis showed a much better electrochemical response using ZnO+Bi/GE as a modifier than individually nanoparticle-modified graphite electrodes. From the CV analysis, it was found that both the dyes exhibited irreversible electrochemical behavior, and the redox parameters were calculated. The Limit of Detection (LOD) values recorded for TZ and CR for ZnO+Bi/GE-based sensors were 0.84 µM and 2.80 µM, respectively. The obtained sensitivity values were 11.86 µA/µM/cm2 for TZ and 17.3 µA/µM/cm2 for CR.

Conclusion

The sensor evidently demonstrated reliable simultaneous detection of both dyes, making it suitable for practical applications in food safety analysis.

Loading

Article metrics loading...

/content/journals/cac/10.2174/0115734110329759240902065018
2024-10-08
2025-12-21
Loading full text...

Full text loading...

References

  1. Karimi-MalehH. BeitollahiH. Senthil KumarP. TajikS. Mohammadzadeh JahaniP. KarimiF. KaramanC. VasseghianY. BaghayeriM. RouhiJ. ShowP.L. RajendranS. FuL. ZareN. Recent advances in carbon nanomaterials-based electrochemical sensors for food azo dyes detection.Food Chem. Toxicol.202216411296110.1016/j.fct.2022.112961 35395340
    [Google Scholar]
  2. QianH. WangJ. YanL. Synthesis of lignin-poly(N-methylaniline)-reduced graphene oxide hydrogel for organic dye and lead ions removal.J. Biores. Bioprod.20205320421010.1016/j.jobab.2020.07.006
    [Google Scholar]
  3. TvorynskaS. JosypčukB. BarekJ. DubenskaL. Electrochemical behavior and sensitive methods of the voltammetric determination of food azo dyes amaranth and allura red ac on amalgam electrodes.Food Anal. Methods201912240942110.1007/s12161‑018‑1372‑1
    [Google Scholar]
  4. BarcielaP. Perez-VazquezA. PrietoM.A. Azo dyes in the food industry: Features, classification, toxicity, alternatives, and regulation.Food Chem. Toxicol.202317811393510.1016/j.fct.2023.113935 37429408
    [Google Scholar]
  5. ShenY. ZhangX. PrinyawiwatkulW. XuZ. Simultaneous determination of red and yellow artificial food colourants and carotenoid pigments in food products.Food Chem.201415755355810.1016/j.foodchem.2014.02.039 24679817
    [Google Scholar]
  6. YamjalaK. NainarM.S. RamisettiN.R. Methods for the analysis of azo dyes employed in food industry – A review.Food Chem.201619281382410.1016/j.foodchem.2015.07.085 26304415
    [Google Scholar]
  7. ChenX.H. ZhaoY.G. ShenH.Y. ZhouL.X. PanS.D. JinM.C. Fast determination of seven synthetic pigments from wine and soft drinks using magnetic dispersive solid-phase extraction followed by liquid chromatography–tandem mass spectrometry.J. Chromatogr. A2014134612312810.1016/j.chroma.2014.04.060 24797395
    [Google Scholar]
  8. RovinaK. PrabakaranP.P. SiddiqueeS. ShaaraniS.M. Methods for the analysis of Sunset Yellow FCF (E110) in food and beverage products- a review.Trends Analyt. Chem.201685475610.1016/j.trac.2016.05.009
    [Google Scholar]
  9. KayaS.I. CetinkayaA. OzkanS.A. Latest advances on the nanomaterials-based electrochemical analysis of azo toxic dyes Sunset Yellow and Tartrazine in food samples.Food Chem. Toxicol.202115611252410.1016/j.fct.2021.112524 34454997
    [Google Scholar]
  10. HegdeG. YuvarajA.R. Sinn-YamW. YusoffM.M. Fast Photoswitching Azo Dyes.Macromol. Symp.2015353124024510.1002/masy.201550333
    [Google Scholar]
  11. SrivastavaR. SofiI.R. Impact of Synthetic Dyes on Human Health and Environment.IGI Global Publishing House202014616110.4018/978‑1‑7998‑0311‑9.ch007
    [Google Scholar]
  12. ChenX. DengQ. LinS. DuC. ZhaoS. HuY. YangZ. LyuY. HanJ. A new approach for risk assessment of aggregate dermal exposure to banned azo dyes in textiles.Regul. Toxicol. Pharmacol.20179117317810.1016/j.yrtph.2017.10.022 29080844
    [Google Scholar]
  13. TangA.Y.L. LoC.K.Y. KanC. Textile dyes and human health: a systematic and citation network analysis review.Color. Technol.2018134424525710.1111/cote.12331
    [Google Scholar]
  14. BarreraH. Cruz-OlivaresJ. Frontana-UribeB.A. Gómez-DíazA. Reyes-RomeroP.G. Barrera-DiazC.E. Electro-Oxidation–Plasma Treatment for Azo Dye Carmoisine (Acid Red 14) in an Aqueous Solution.Materials (Basel)2020136146310.3390/ma13061463 32210192
    [Google Scholar]
  15. SrinivasanP. SethuramanM.G. GovindasamyM. GokulkumarK. AlothmanA.A. AlanaziH.A. HuangC-H. Nanomolar detection of organic pollutant -tartrazine in food samples using zinc-metal organic framework/carbon nano fiber - composite modified screen-printed electrode.J. Food Compos. Anal.202413310646210.1016/j.jfca.2024.106462
    [Google Scholar]
  16. LeulescuM. RotaruA. PălărieI. MoanţăA. CioaterăN. PopescuM. MorîntaleE. BubulicăM.V. FlorianG. HărăborA. RotaruP. Tartrazine: physical, thermal and biophysical properties of the most widely employed synthetic yellow food-colouring azo dye.J. Therm. Anal. Calorim.2018134120923110.1007/s10973‑018‑7663‑3
    [Google Scholar]
  17. Cardenas-RiojasA.A. Calderon-ZavaletaS.L. Quiroz-AguinagaU. Muedas-TaipeG. Carhuayal-AlvarezS.M. Ascencio-FloresY.F. Ponce-VargasM. Baena-MoncadaA.M. Modified Electrochemical Sensors for the Detection of Selected Food Azo Dyes: A Review.ChemElectroChem2024114e20230049010.1002/celc.202300490
    [Google Scholar]
  18. MonishaB. SridharanR. KumarP.S. RangasamyG. KrishnaswamyV.G. SubhashreeS. Sensing of azo toxic dyes using nanomaterials and its health effects - A review.Chemosphere202331313761410.1016/j.chemosphere.2022.137614 36565768
    [Google Scholar]
  19. HaridevamuthuB. MuruganR. SeenivasanB. MeenatchiR. PachaiappanR. AlmutairiB.O. ArokiyarajS. M K, K.; Arockiaraj, J. Synthetic azo-dye, Tartrazine induces neurodevelopmental toxicity via mitochondria-mediated apoptosis in zebrafish embryos.J. Hazard. Mater.202446113252410.1016/j.jhazmat.2023.132524 37741213
    [Google Scholar]
  20. TroppJ. IhdeM.H. CraterE.R. BellN.C. BhattaR. JohnsonI.C. BonizzoniM. AzoulayJ.D. A Sensor Array for the Nanomolar Detection of Azo Dyes in Water.ACS Sens.2020561541154710.1021/acssensors.0c00342 32475110
    [Google Scholar]
  21. RovinaK. SiddiqueeS. ShaaraniS.M. A Review of Extraction and Analytical Methods for the Determination of Tartrazine (E 102) in Foodstuffs.Crit. Rev. Anal. Chem.201747430932410.1080/10408347.2017.1287558 28128965
    [Google Scholar]
  22. BlachnioM. BudnyakT.M. Derylo-MarczewskaA. MarczewskiA.W. TertykhV.A. Chitosan–Silica Hybrid Composites for Removal of Sulfonated Azo Dyes from Aqueous Solutions.Langmuir20183462258227310.1021/acs.langmuir.7b04076 29345945
    [Google Scholar]
  23. NtrallouK. GikaH. TsochatzisE. Analytical and Sample Preparation Techniques for the Determination of Food Colorants in Food Matrices.Foods2020915810.3390/foods9010058 31936025
    [Google Scholar]
  24. HemmatiM. RajabiM. Switchable fatty acid based CO2-effervescence ameliorated emulsification microextraction prior to high performance liquid chromatography for efficient analyses of toxic azo dyes in foodstuffs.Food Chem.201928618519010.1016/j.foodchem.2019.01.197 30827594
    [Google Scholar]
  25. Flores-AguilarJ.F. MedranoL.C. Perez-EscalanteE. RodriguezJ.A. Camacho-MendozaR.L. IbarraI.S. Large‐volume sample stacking with polarity switching for analysis of azo dyes in water samples by capillary electrophoresis.Int. J. Environ. Anal. Chem.201999131255126710.1080/03067319.2019.1618461
    [Google Scholar]
  26. ManjunathaJ.G. A novel voltammetric method for the enhanced detection of the food additive tartrazine using an electrochemical sensor.Heliyon2018411e0098610.1016/j.heliyon.2018.e00986 30761373
    [Google Scholar]
  27. LipskikhO.I. KorotkovaE.I. KhristunovaY.P. BarekJ. KratochvilB. Sensors for voltammetric determination of food azo dyes - A critical review.Electrochim. Acta201826097498510.1016/j.electacta.2017.12.027
    [Google Scholar]
  28. BessegatoG.G. BrugneraM.F. ZanoniM.V.B. Electroanalytical sensing of dyes and colorants.Curr. Opin. Electrochem.20191613414210.1016/j.coelec.2019.05.008
    [Google Scholar]
  29. DmukhailoA. TvorynskaS. DubenskaL. Rapid and straightforward electrochemical approach for the determination of the toxic food azo dye tartrazine using sensors based on silver solid amalgam.J. Electroanal. Chem. (Lausanne)202393211725010.1016/j.jelechem.2023.117250
    [Google Scholar]
  30. ElaremR. AlqahtaniT. MellouliS. El AwadiG.A. AlgarniS. KolsiL. Experimental investigations on thermophysical properties of nano-enhanced phase change materials for thermal energy storage applications.Alex. Eng. J.20226197037704410.1016/j.aej.2021.12.046
    [Google Scholar]
  31. Ascencio-FloresY.F. Carhuayal-AlvarezS.M. Quiroz-AguinagaU. Calderon-ZavaletaS.L. LópezE.O. Ponce-VargasM. Cardenas-RiojasA.A. Baena-MoncadaA.M. Simultaneous square wave voltammetry detection of azo dyes using silver nanoparticles assembled on carbon nanofibers.Electrochim. Acta202344114178210.1016/j.electacta.2022.141782
    [Google Scholar]
  32. Ibraheem Shelash Al-HawaryS. Omar BaliA. AskarS. LaftaH.A. Jawad KadhimZ. KholdorovB. RiadiY. SolankiR. ismaeel kadhem, Q.; Fakri Mustafa, Y. Recent advances in nanomaterials-based electrochemical and optical sensing approaches for detection of food dyes in food samples: A comprehensive overview.Microchem. J.202318910854010.1016/j.microc.2023.108540
    [Google Scholar]
  33. SunJ. ZhangX. MiaoS. PengL. PengX. WuC. GanT. Embedded ZnO nanorod in ZIF-8 as a high-efficiency core–shell structural electrocatalyst for subnanomole level sensing of diethylstilbestrol.Can. J. Chem.2024102851352110.1139/cjc‑2023‑0195
    [Google Scholar]
  34. BabuA.M. RajeevR. ThadathilD.A. VargheseA. HegdeG. Surface modulation and structural engineering of graphitic carbon nitride for electrochemical sensing applications.J. Nanostructure Chem.202212576580710.1007/s40097‑021‑00459‑w
    [Google Scholar]
  35. JohnA. BennyL. CherianA.R. NarahariS.Y. VargheseA. HegdeG. Electrochemical sensors using conducting polymer/noble metal nanoparticle nanocomposites for the detection of various analytes: a review.J. Nanostructure Chem.202111113110.1007/s40097‑020‑00372‑8
    [Google Scholar]
  36. HussainR.T. IslamA.K.M.S. KhairuddeanM. SuahF.B.M. A polypyrrole/GO/ZnO nanocomposite modified pencil graphite electrode for the determination of andrographolide in aqueous samples.Alex. Eng. J.20226164209421810.1016/j.aej.2021.09.040
    [Google Scholar]
  37. LeventA. AltunA. TaşS. YardımY. ŞentürkZ. Voltammetric Behavior of Testosterone on Bismuth Film Electrode: Highly Sensitive Determination in Pharmaceuticals and Human Urine by Square‐Wave Adsorptive Stripping Voltammetry.Electroanalysis20152751219122810.1002/elan.201400627
    [Google Scholar]
  38. ÖnalG. AltunkaynakY. LeventA. Application of BiFE for electrochemical properties and determination of loratadine by cathodic stripping voltammetry in the cationic surfactant medium.J. Indian Chem. Soc.202118123465347510.1007/s13738‑021‑02286‑w
    [Google Scholar]
  39. AltunkaynakY. ÖnalG. LeventA. Electrochemical evaluation of the desloratadine at bismuth film electrode in the presence of cationic surfactant: Highly sensitive determination in pharmaceuticals and human urine by Linear sweep-cathodic stripping voltammetry.Turk. J. Chem.202145377578710.3906/kim‑2101‑42 34385867
    [Google Scholar]
  40. DorrajiP.S. JalaliF. Electrochemical fabrication of a novel ZnO/cysteic acid nanocomposite modified electrode and its application to simultaneous determination of sunset yellow and tartrazine.Food Chem.2017227737710.1016/j.foodchem.2017.01.071 28274460
    [Google Scholar]
  41. NezhadH.M. Fabrication of a Nanostructure Voltammetric Sensor for Carmoisine Analysis as a Food Dye Additive.Anal Bioanal Electrochem201810220229
    [Google Scholar]
  42. SunS.C. HsiehB.C. ChuangM.C. Electropolymerised-hemin-catalysed reduction and analysis of tartrazine and sunset yellow.Electrochim. Acta201931976677410.1016/j.electacta.2019.07.014
    [Google Scholar]
  43. ThulasiS. KathiravanA. Asha JhonsiM. Fluorescent Carbon Dots Derived from Vehicle Exhaust Soot and Sensing of Tartrazine in Soft Drinks.ACS Omega20205127025703110.1021/acsomega.0c00707 32258938
    [Google Scholar]
  44. ChaudhariS.S. PatilP.O. BariS.B. KhanZ.G. A comprehensive exploration of tartrazine detection in food products: Leveraging fluorescence nanomaterials and electrochemical sensors: Recent progress and future trends.Food Chem.202443313742510.1016/j.foodchem.2023.137425 37690141
    [Google Scholar]
  45. MehmandoustM. ErkN. KaramanO. KarimiF. BijadM. KaramanC. Three-dimensional porous reduced graphene oxide decorated with carbon quantum dots and platinum nanoparticles for highly selective determination of azo dye compound tartrazine.Food Chem. Toxicol.202115811269810.1016/j.fct.2021.112698 34838678
    [Google Scholar]
  46. VatandostE. Ghorbani-HasanSaraei, A.; Chekin, F.; Naghizadeh Raeisi, S.; Shahidi, S.A. Green tea extract assisted green synthesis of reduced graphene oxide: Application for highly sensitive electrochemical detection of sunset yellow in food products.Food Chem. X2020610008510.1016/j.fochx.2020.100085 32577617
    [Google Scholar]
  47. WuJ.H. LeeH.L. Determination of sunset yellow and tartrazine in drinks using screen-printed carbon electrodes modified with reduced graphene oxide and NiBTC frameworks.Microchem. J.202015810513310.1016/j.microc.2020.105133
    [Google Scholar]
  48. Karimi-MalehH. DarabiR. Shabani-NooshabadiM. BaghayeriM. KarimiF. RouhiJ. AlizadehM. KaramanO. VasseghianY. KaramanC. Determination of D&C Red 33 and Patent Blue V Azo dyes using an impressive electrochemical sensor based on carbon paste electrode modified with ZIF-8/g-C3N4/Co and ionic liquid in mouthwash and toothpaste as real samples.Food Chem. Toxicol.202216211290710.1016/j.fct.2022.112907 35271984
    [Google Scholar]
  49. GanT. SunJ. WuQ. JingQ. YuS. Graphene Decorated with Nickel Nanoparticles as a Sensitive Substrate for Simultaneous Determination of Sunset Yellow and Tartrazine in Food Samples.Electroanalysis20132561505151210.1002/elan.201300008
    [Google Scholar]
  50. ZhouZ. MukherjeeS. HouS. LiW. ElsnerM. FischerR.A. Porphyrinic MOF Film for Multifaceted Electrochemical Sensing.Angew. Chem. Int. Ed.20216037205512055710.1002/anie.202107860 34260128
    [Google Scholar]
  51. TianY. ToudertJ. Nanobismuth: Fabrication, Optical, and Plasmonic Properties—Emerging Applications.J. Nanotechnol.2018201812310.1155/2018/3250932
    [Google Scholar]
  52. Asadpour-ZeynaliK. MollarasouliF. Bismuth and Bismuth-Chitosan modified electrodes for determination of two synthetic food colorants by net analyte signal standard addition method.Open Chem.201412671171810.2478/s11532‑014‑0529‑z
    [Google Scholar]
  53. AneeshP.M. VanajaK.A. JayarajM.K. Synthesis of ZnO nanoparticles by hydrothermal method.SPIE Digital library200766390J10.1117/12.730364
    [Google Scholar]
  54. PudukudyM. YaakobZ. Facile Synthesis of Quasi Spherical ZnO Nanoparticles with Excellent Photocatalytic Activity.J. Cluster Sci.20152641187120110.1007/s10876‑014‑0806‑1
    [Google Scholar]
  55. WangY.W. HongB.H. KimK.S. Size control of semimetal bismuth nanoparticles and the UV-visible and IR absorption spectra.J. Phys. Chem. B2005109157067707210.1021/jp046423v 16851804
    [Google Scholar]
  56. DineshV.P. BijiP. AshokA. DharaS.K. KamruddinM. TyagiA.K. RajB. Plasmon-mediated, highly enhanced photocatalytic degradation of industrial textile dyes using hybrid ZnO@Ag core–shell nanorods.RSC Advances20144103589305894010.1039/C4RA09405K
    [Google Scholar]
  57. WangL. CuiZ.L. ZhangZ.K. Bi nanoparticles and Bi2O3 nanorods formed by thermal plasma and heat treatment.Surf. Coat. Tech.20072019-115330533210.1016/j.surfcoat.2006.07.027
    [Google Scholar]
  58. GanT. ZhaoA. WangS. LvZ. SunJ. Hierarchical triple-shelled porous hollow zinc oxide spheres wrapped in graphene oxide as efficient sensor material for simultaneous electrochemical determination of synthetic antioxidants in vegetable oil.Sens. Actuators B Chem.201623570771610.1016/j.snb.2016.05.137
    [Google Scholar]
  59. ChebotarevA.N. PliutaK.V. SnigurD.V. Determination of Carmoisine onto Carbon‐Paste Electrode Modified by Silica Impregnated with Cetylpyridinium Chloride.ChemistrySelect20205123688369310.1002/slct.202000518
    [Google Scholar]
  60. Cardenas-RiojasA.A. Calderon-ZavaletaS.L. Quiroz-AguinagaU. LópezE.O. Ponce-VargasM. Baena-MoncadaA.M. Evaluation of an electrochemical sensor based on gold nanoparticles supported on carbon nanofibers for detection of tartrazine dye.J. Solid State Electrochem.20232781969198210.1007/s10008‑023‑05438‑5
    [Google Scholar]
  61. BonyadiS. GhanbariK. Application of molecularly imprinted polymer and ZnO nanoparticles as a novel electrochemical sensor for tartrazine determination.Microchem. J.202318710839810.1016/j.microc.2023.108398
    [Google Scholar]
  62. HamzehS. Mahmoudi-MoghaddamH. Zinatloo-AjabshirS. AmiriM. Razavi NasabS.A. Eco-friendly synthesis of mesoporous praseodymium oxide nanoparticles for highly efficient electrochemical sensing of carmoisine in food samples.Food Chem.202443313736310.1016/j.foodchem.2023.137363 37688817
    [Google Scholar]
  63. TajikS. Lohrasbi-NejadA. Mohammadzadeh JahaniP. AskariM.B. SalarizadehP. BeitollahiH. Co-detection of carmoisine and tartrazine by carbon paste electrode modified with ionic liquid and MoO3/WO3 nanocomposite.J. Food Meas. Charact.202216172273010.1007/s11694‑021‑01201‑4
    [Google Scholar]
  64. HeydariM. GhoreishiS.M. KhoobiA. Chemometrics-assisted determination of Sudan dyes using zinc oxide nanoparticle-based electrochemical sensor.Food Chem.2019283687210.1016/j.foodchem.2018.12.132 30722927
    [Google Scholar]
  65. BijadM. Karimi-MalehH. FarsiM. ShahidiS.A. An electrochemical-amplified-platform based on the nanostructure voltammetric sensor for the determination of carmoisine in the presence of tartrazine in dried fruit and soft drink samples.J. Food Meas. Charact.201812163464010.1007/s11694‑017‑9676‑1
    [Google Scholar]
  66. KaramiM. Shabani-NooshabadiM. Electro-sensing of carmoisine and tartrazine in foodstuffs based on triple-shell CaMgFe2O4 hollow spheres-modified sensor.Mater. Chem. Phys.202431812928910.1016/j.matchemphys.2024.129289
    [Google Scholar]
  67. Garkani NejadF. SheikhshoaieI. BeitollahiH. Simultaneous detection of carmoisine and tartrazine in food samples using GO-Fe3O4-PAMAM and ionic liquid based electrochemical sensor.Food Chem. Toxicol.202216211286410.1016/j.fct.2022.112864 35157927
    [Google Scholar]
  68. StozhkoN.Y. KhamzinaE.I. BukharinovaM.A. TarasovA.V. An Electrochemical Sensor Based on Carbon Paper Modified with Graphite Powder for Sensitive Determination of Sunset Yellow and Tartrazine in Drinks.Sensors (Basel)20222211409210.3390/s22114092 35684711
    [Google Scholar]
  69. JohnB.K. MathewS. JohnN. MathewJ. MathewB. Hydrothermal synthesis of N,S-doped carbon quantum dots as a dual mode sensor for azo dye tartrazine and fluorescent ink applications.J. Photochem. Photobiol. Chem.202343611438610.1016/j.jphotochem.2022.114386
    [Google Scholar]
  70. OkekeE.S. EzeorbaT.P.C. OkoyeC.O. ChenY. MaoG. FengW. WuX. Analytical detection methods for azo dyes: A focus on comparative limitations and prospects of bio-sensing and electrochemical nano-detection.J. Food Compos. Anal.202211410477810.1016/j.jfca.2022.104778
    [Google Scholar]
  71. Karim-NezhadG. KhorablouZ. ZamaniM. Seyed DorrajiP. AlamgholilooM. Voltammetric sensor for tartrazine determination in soft drinks using poly (p -aminobenzenesulfonic acid)/zinc oxide nanoparticles in carbon paste electrode.J. Food Drug Anal.201725229330110.1016/j.jfda.2016.10.002 28911670
    [Google Scholar]
  72. SoniI. KumarP. SharmaS. Kudur JayaprakashG. A Short Review on Electrochemical Sensing of Commercial Dyes in Real Samples Using Carbon Paste Electrodes.Electrochem20212227429410.3390/electrochem2020020
    [Google Scholar]
  73. AhmadiS. HasanzadehM. GhasempourZ. Sub-micro electrochemical recognition of carmoisine, sunset yellow, and tartrazine in fruit juices using P(β-CD/Arg)/CysA-AuNPs/AuE.Food Chem.202340213450110.1016/j.foodchem.2022.134501 36303391
    [Google Scholar]
/content/journals/cac/10.2174/0115734110329759240902065018
Loading
/content/journals/cac/10.2174/0115734110329759240902065018
Loading

Data & Media loading...

Supplements

Supplementary material is available on the publisher's website along with the published article.


  • Article Type:
    Research Article
Keyword(s): Azo dyes; bismuth; electrochemical; sensor; voltammetry; zinc oxide
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test