Skip to content
2000
image of Identifying Key Genes for Neurobehavioral Disorders Caused by 
Long-Term Sleep Deprivation

Abstract

Introduction

This study aims to identify key genes by analyzing gene expression changes induced by prolonged sleep deprivation (SD) and to explore their potential relationship with immune regulation and neurobehavioral disorders.

Methods

Microarray data of SD at different time points were obtained to screen differentially expressed genes (DEGs). The functions of DEGs and the biological pathways involved were explored. Additionally, significant DEGs were screened as key genes for SD. Finally, immune scores and immune cell scores were calculated. The relationships between key genes, immune scores, and immune-related pathways were explored.

Results

The relevant DEGs were identified, including , , , , , and . Among these, , , , and were upregulated in SD samples, while and were downregulated. These key genes were involved in the biological processes, including DNA repair, KRAS signaling, and the PI3K-AKT signaling pathway. Furthermore, , , , and exhibited a significant negative correlation with immune scores and were closely associated with various immune regulatory pathways, like antigen processing and presentation, B cell receptor signaling, and T cell receptor signaling pathways.

Discussion

This study, based on microarray data, investigated the dynamic changes in gene expression induced by SD and their underlying mechanisms. Six key genes with differential expression levels and distinct enriched biological processes were identified.

Conclusion

The altered expression of 6 identified genes induced by SD and their underlying molecular mechanisms may provide a foundation for the early diagnosis and personalized treatment of SD-related diseases.

Loading

Article metrics loading...

/content/journals/cac/10.2174/0115734110374719250411094921
2025-04-18
2025-09-06
Loading full text...

Full text loading...

References

  1. Atrooz F. Salim S. Sleep deprivation, oxidative stress and inflammation. Adv. Protein Chem. Struct. Biol. 2020 119 309 336 10.1016/bs.apcsb.2019.03.001 31997771
    [Google Scholar]
  2. Garbarino S. Lanteri P. Bragazzi N.L. Magnavita N. Scoditti E. Role of sleep deprivation in immune-related disease risk and outcomes. Commun. Biol. 2021 4 1 1304 10.1038/s42003‑021‑02825‑4 34795404
    [Google Scholar]
  3. Alzoubi K.H. Fahmawi A. Khalifeh M.S. Rababa’h A.M. The effects of acute and chronic sleep deprivation on the immune profile in the rat. Curr. Mol. Pharmacol. 2023 16 1 101 108 10.2174/1874467215666220316104321 35297357
    [Google Scholar]
  4. Gaine M.E. Chatterjee S. Abel T. Sleep deprivation and the epigenome. Front. Neural Circuits 2018 12 14 10.3389/fncir.2018.00014 29535611
    [Google Scholar]
  5. Jiao Q. Dong X. Guo C. Wu T. Chen F. Zhang K. Ma Z. Sun Y. Cao H. Tian C. Hu Q. Liu N. Wang Y. Ji L. Yang S. Zhang X. Li J. Shen H. Effects of sleep deprivation of various durations on novelty-related object recognition memory and object location memory in mice. Behav. Brain Res. 2022 418 113621 10.1016/j.bbr.2021.113621 34624424
    [Google Scholar]
  6. Bishir M. Bhat A. Essa M.M. Ekpo O. Ihunwo A.O. Veeraraghavan V.P. Mohan S.K. Mahalakshmi A.M. Ray B. Tuladhar S. Chang S. Chidambaram S.B. Sakharkar M.K. Guillemin G.J. Qoronfleh M.W. Ojcius D.M. Sleep deprivation and neurological disorders. BioMed Res. Int. 2020 2020 1 5764017 10.1155/2020/5764017 33381558
    [Google Scholar]
  7. Chen X. Li Q. Zhang Z. Yang M. Wang E. Identification of potential diagnostic biomarkers from circulating cells during the course of sleep deprivation-related myocardial infarction based on bioinformatics analyses. Front. Cardiovasc. Med. 2022 9 843426 10.3389/fcvm.2022.843426 35369343
    [Google Scholar]
  8. Sofer T. Kurniansyah N. Murray M. Ho Y.L. Abner E. Esko T. Metspalu A. Milani L. Esko T. Mägi R. Nelis M. Hudjashov G. Huffman J.E. Cho K. Wilson P.W.F. Gottlieb D.J. Genome-wide association study of obstructive sleep apnoea in the Million Veteran Program uncovers genetic heterogeneity by sex. EBioMedicine 2023 90 104536 10.1016/j.ebiom.2023.104536 36989840
    [Google Scholar]
  9. Pandi-Perumal S.R. Saravanan K.M. Paul S. Namasivayam G.P. Chidambaram S.B. Waking up the sleep field: An overview on the implications of genetics and bioinformatics of sleep. Mol. Biotechnol. 2024 66 5 919 931 10.1007/s12033‑023‑01009‑1 38198051
    [Google Scholar]
  10. Ke P. Zheng C. Liu F. Wu L. Tang Y. Wu Y. Lv D. Chen H. Qian L. Wu X. Zeng K. Relationship between circadian genes and memory impairment caused by sleep deprivation. PeerJ 2022 10 e13165 10.7717/peerj.13165 35341046
    [Google Scholar]
  11. Wang L. Wang S. Tian C. Zou T. Zhao Y. Li S. Yang M. Chai N. Using bioinformatics and machine learning to predict the genetic characteristics of ferroptosis-cuproptosis-related genes associated with sleep deprivation. Nat. Sci. Sleep 2024 16 1497 1513 10.2147/NSS.S473022 39347483
    [Google Scholar]
  12. Vecsey C.G. Peixoto L. Choi J.H. Wimmer M. Jaganath D. Hernandez P.J. Blackwell J. Meda K. Park A.J. Hannenhalli S. Abel T. Genomic analysis of sleep deprivation reveals translational regulation in the hippocampus. Physiol. Genomics 2012 44 20 981 991 22930738
    [Google Scholar]
  13. Ritchie M.E. Phipson B. Wu D. Hu Y. Law C.W. Shi W. Smyth G.K. limma powers differential expression analyses for RNA-sequencing and microarray studies. Nucleic Acids Res. 2015 43 7 e47 10.1093/nar/gkv007 25605792
    [Google Scholar]
  14. Liao Y. Wang J. Jaehnig E.J. Shi Z. Zhang B. WebGestalt 2019: Gene set analysis toolkit with revamped UIs and APIs. Nucleic Acids Res. 2019 47 W1 W199 W205 31114916
    [Google Scholar]
  15. Subramanian A. Tamayo P. Mootha V.K. Mukherjee S. Ebert B.L. Gillette M.A. Paulovich A. Pomeroy S.L. Golub T.R. Lander E.S. Mesirov J.P. Gene set enrichment analysis: A knowledge-based approach for interpreting genome-wide expression profiles. Proc. Natl. Acad. Sci. USA 2005 102 43 15545 15550 16199517
    [Google Scholar]
  16. Hänzelmann S. Castelo R. Guinney J. GSVA: Gene set variation analysis for microarray and RNA-seq data. BMC Bioinformatics 2013 14 7 23323831
    [Google Scholar]
  17. Yoshihara K. Shahmoradgoli M. Martínez E. Vegesna R. Kim H. Torres-Garcia W. Treviño V. Shen H. Laird P.W. Levine D.A. Carter S.L. Getz G. Stemke-Hale K. Mills G.B. Verhaak R.G.W. Inferring tumour purity and stromal and immune cell admixture from expression data. Nat. Commun. 2013 4 1 2612 10.1038/ncomms3612 24113773
    [Google Scholar]
  18. Newman A.M. Liu C.L. Green M.R. Gentles A.J. Feng W. Xu Y. Hoang C.D. Diehn M. Alizadeh A.A. Robust enumeration of cell subsets from tissue expression profiles. Nat. Methods 2015 12 5 453 457 25822800
    [Google Scholar]
  19. Ruiz F.S. Andersen M.L. Guindalini C. Araujo L.P. Lopes J.D. Tufik S. Sleep influences the immune response and the rejection process alters sleep pattern: Evidence from a skin allograft model in mice. Brain Behav. Immun. 2017 61 274 288 28069386
    [Google Scholar]
  20. Lyons L.C. Vanrobaeys Y. Abel T. Sleep and memory: The impact of sleep deprivation on transcription, translational control, and protein synthesis in the brain. J. Neurochem. 2023 166 1 24 46 10.1111/jnc.15787 36802068
    [Google Scholar]
  21. Goel N. Neurobehavioral effects and biomarkers of sleep loss in healthy adults. Curr. Neurol. Neurosci. Rep. 2017 17 11 89 28944399
    [Google Scholar]
  22. Cirelli C. Cellular consequences of sleep deprivation in the brain. Sleep Med. Rev. 2006 10 5 307 321 16920372
    [Google Scholar]
  23. Van Raemdonck K. Gouwy M. Lepers S.A. Van Damme J. Struyf S. CXCL4L1 and CXCL4 signaling in human lymphatic and microvascular endothelial cells and activated lymphocytes: Involvement of mitogen-activated protein (MAP) kinases, Src and p70S6 kinase. Angiogenesis 2014 17 3 631 640 24469069
    [Google Scholar]
  24. Fan K. Yang J. Gong W.Y. Pan Y.C. Zheng P. Yue X.F. NLRP3 inflammasome activation mediates sleep deprivation-induced pyroptosis in mice. PeerJ 2021 9 e11609 34268006
    [Google Scholar]
  25. Brandhofer M. Hoffmann A. Blanchet X. Siminkovitch E. Rohlfing A.K. El Bounkari O. Nestele J.A. Bild A. Kontos C. Hille K. Rohde V. Fröhlich A. Golemi J. Gokce O. Krammer C. Scheiermann P. Tsilimparis N. Sachs N. Kempf W.E. Maegdefessel L. Otabil M.K. Megens R.T.A. Ippel H. Koenen R.R. Luo J. Engelmann B. Mayo K.H. Gawaz M. Kapurniotu A. Weber C. von Hundelshausen P. Bernhagen J. Heterocomplexes between the atypical chemokine MIF and the CXC-motif chemokine CXCL4L1 regulate inflammation and thrombus formation. Cell. Mol. Life Sci. 2022 79 10 512 36094626
    [Google Scholar]
  26. Schmoker A.M. Perez Pearson L.M. Cruz C. Colon Flores L.G. Branfeild S. Pagán Torres F.D. Fonseca K. Cantres Y.M. Salgado Ramirez C.A. Melendez L.M. Ballif B.A. Washington A.V. Defining the TLT-1 interactome from resting and activated human platelets. J. Proteomics 2020 215 103638 31923473
    [Google Scholar]
  27. Washington A.V. Schubert R.L. Quigley L. Disipio T. Feltz R. Cho E.H. McVicar D.W. A TREM family member, TLT-1, is found exclusively in the alpha-granules of megakaryocytes and platelets. Blood 2004 104 4 1042 1047 10.1182/blood‑2004‑01‑0315 15100151
    [Google Scholar]
  28. Meng D. Luo M. Liu B. The Role of CLEC-2 and Its Ligands in Thromboinflammation. Front. Immunol. 2021 12 688643 10.3389/fimmu.2021.688643 34177942
    [Google Scholar]
/content/journals/cac/10.2174/0115734110374719250411094921
Loading
/content/journals/cac/10.2174/0115734110374719250411094921
Loading

Data & Media loading...

Supplements

Supplementary material is available on the publisher's website along with the published article.

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test