Skip to content
2000
Volume 21, Issue 9
  • ISSN: 1573-4110
  • E-ISSN: 1875-6727

Abstract

Background

Accurate shooting distance estimation is critical in forensic investigations. Traditional color tests like the Modified Griess Test (MGT) and Sodium Rhodizonate Test (SRT) are commonly used but lack sensitivity and objectivity, necessitating improvements in reproducibility and validation.

Methods

A 7.62x39 mm cartridge was fired using an assault rifle (Sarsılmaz® SAR 308) at fabric samples from distances ranging from 0 to 100 cm. MGT and SRT were employed to estimate shooting distances, and the presence of inorganic and organic gunshot residues was confirmed using Scanning Electron Microscopy with Energy Dispersive X-ray Spectroscopy (SEM-EDS) and Fourier Transform Infrared Spectroscopy with Attenuated Total Reflection (FTIR-ATR). Inter-laboratory reproducibility was assessed through Relative Standard Deviation (RSD), paired t-tests, and Pearson Correlation Coefficient (PCC).

Results

MGT and SRT showed high reproducibility at short distances (RSD <11% up to 30 cm), but sensitivity decreased at longer distances, with an RSD of 28.6% for SRT at 100 cm. Paired t-tests revealed statistically significant consistency between laboratories ( < 0.05), and a strong negative correlation (PCC = -0.72) was found between shooting distance and residue area.

Conclusion

Integrating SEM-EDS and FTIR-ATR with MGT and SRT enhances the sensitivity, objectivity, and reproducibility of shooting distance estimations. This multi-method approach provides more reliable forensic evidence for criminal investigations.

This is an open access article published under CC BY 4.0 https://creativecommons.org/licenses/by/4.0/legalcode
Loading

Article metrics loading...

/content/journals/cac/10.2174/0115734110352073241122164830
2024-12-17
2025-12-14
Loading full text...

Full text loading...

/deliver/fulltext/cac/21/9/CAC-21-9-20.html?itemId=/content/journals/cac/10.2174/0115734110352073241122164830&mimeType=html&fmt=ahah

References

  1. BlakeyL.S. SharplesG.P. ChanaK. BirkettJ.W. Fate and behavior of gunshot residue - A review.J. Forensic Sci.201863191910.1111/1556‑4029.13555 28543548
    [Google Scholar]
  2. SerolM. AhmadS.M. QuintasA. FamíliaC. Chemical analysis of gunpowder and gunshot residues.Molecules20232814555010.3390/molecules28145550 37513421
    [Google Scholar]
  3. YükselB. Ozler-YigiterA. BoraT. SenN. KayaaltiZ. GFAAS determination of antimony, barium, and lead levels in gunshot residue swabs: An application in forensic chemistry.At. Spectrosc.20163416416910.46770/AS.2016.04.006
    [Google Scholar]
  4. MatzenT. KukurinC. van de WeteringJ. AriënsS. BosmaW. KnijnenbergA. StamouliA. YpmaR.J.F. Objectifying evidence evaluation for gunshot residue comparisons using machine learning on criminal case data.Forensic Sci. Int.202233511129310.1016/j.forsciint.2022.111293 35462180
    [Google Scholar]
  5. CharlesS. GeusensN. VergalitoE. NysB. Interpol review of gunshot residue 2016-2019.Forensic Sci. Int. Synerg.2020241642810.1016/j.fsisyn.2020.01.011 33385140
    [Google Scholar]
  6. CharlesS. GeusensN. NysB. Interpol review of gunshot residue 2019 to 2021.Forensic Sci. Int. Synerg.2023610030210.1016/j.fsisyn.2022.100302 36545124
    [Google Scholar]
  7. MoranJ.W. BellS. Skin permeation of organic gunshot residue: Implications for sampling and analysis.Anal. Chem.201486126071607910.1021/ac501227e 24837230
    [Google Scholar]
  8. KhandasammyS.R. HalámkováL. BaudeletM. LednevI.K. Identification and highly selective differentiation of organic gunshot residues utilizing their elemental and molecular signatures.Spectrochim. Acta A Mol. Biomol. Spectrosc.202329112231610.1016/j.saa.2023.122316 36634494
    [Google Scholar]
  9. YükselB. ŞenN. ÖgünçG.I. ErdoğanA. Elemental profiling of toxic and modern primers using ICP-MS, SEM-EDS, and XPS: An application in firearm discharge residue investigation.Aust. J. Forensic Sci.202355452954610.1080/00450618.2022.2043436
    [Google Scholar]
  10. RomanòS. De-GiorgioF. D’OnofrioC. GravinaL. AbateS. RomoloF.S. Characterisation of gunshot residues from non-toxic ammunition and their persistence on the shooter’s hands.Int. J. Legal Med.202013431083109410.1007/s00414‑020‑02261‑9 32052122
    [Google Scholar]
  11. YükselB. Özler YiğiterA. BoraT. BozkurtA. ÇavuşM. Determination of antimony element in gunshot residue hand swabs by graphite furnace atomic absorption spectrometry.Turk. J. Forensic Med.201630211011610.5505/adlitip.2016.66934
    [Google Scholar]
  12. FeeneyW. Vander PylC. BellS. TrejosT. Trends in composition, collection, persistence, and analysis of IGSR and OGSR: A review.Forensic Chem.20201910025010.1016/j.forc.2020.100250
    [Google Scholar]
  13. Vander PylC. DalzellK. Menking-HoggattK. LedergerberT. ArroyoL. TrejosT. Transfer and persistence studies of inorganic and organic gunshot residues using synthetic skin membranes.Forensic Chem.20233410049810.1016/j.forc.2023.100498
    [Google Scholar]
  14. WongpakdeeT. BukingS. RatanawimarnwongN. SaetearP. UraisinK. WilairatP. TiyapongpattanaW. NacaprichaD. Simple gunshot residue analyses for estimating firing distance: Investigation with four types of fabrics.Forensic Sci. Int.202132911108410.1016/j.forsciint.2021.111084 34752997
    [Google Scholar]
  15. YükselB. HoM. OvideO. Vander PylC. TrejosT. Infrared imaging as a complementary aid in estimating muzzle-to-target shooting distance: An application on dark, patterned and bloody sample.Forensic Med. Forensic Sci201916738010.5336/forensic.2019‑64837
    [Google Scholar]
  16. Vander PylC. OvideO. HoM. YukselB. TrejosT. Spectrochemical mapping using laser induced breakdown spectroscopy as a more objective approach to shooting distance determination.Spectrochim. Acta B At. Spectrosc.20191529310110.1016/j.sab.2018.12.010
    [Google Scholar]
  17. Vander PylC. Menking-HoggattK. ArroyoL. GonzalezJ. LiuC. YooJ. RussoR.E. TrejosT. Evolution of LIBS technology to mobile instrumentation for expediting firearm-related investigations at the laboratory and the crime scene.Spectrochim. Acta B At. Spectrosc.202320710674110.1016/j.sab.2023.106741
    [Google Scholar]
  18. DillonJ.H. Modified griess test: A chemically specific chromophoric test for nitrite compounds in gunshot residues.ATFE J.1990223243250
    [Google Scholar]
  19. DillonJ.H. The sodium rhodizonate test: A chemically specific chromophoric test for lead in gunshot residues.ATFE J.1990223251252
    [Google Scholar]
  20. GeusensN. NysB. CharlesS. Implementation and optimization of the sodium‐rhodizonate method for chemographic shooting distance estimation.J. Forensic Sci.20196441169117210.1111/1556‑4029.13984 30682216
    [Google Scholar]
  21. BaileyJ.A. CasanovaR.S. BufkinK. A method for enhancing gunshot residue patterns on dark and multicolored fabrics compared with the modified Griess test.J. Forensic Sci.200651481281410.1111/j.1556‑4029.2006.00170.x 16882224
    [Google Scholar]
  22. Vander PylC. MorrisK. ArroyoL. TrejosT. Assessing the utility of LIBS in the reconstruction of firearm related incidents.Forensic Chem.20201910025110.1016/j.forc.2020.100251
    [Google Scholar]
  23. KuriharaM. YasutakaT. AonoT. AshikawaN. EbinaH. IijimaT. IshimaruK. KanaiR. KarubeZ. KonnaiY. KubotaT. MaeharaY. MaeyamaT. OkizawaY. OtaH. OtosakaS. SakaguchiA. TagomoriH. TaniguchiK. TomitaM. TsukadaH. HayashiS. LeeS. MiyazuS. ShinM. NakanishiT. NishikioriT. OndaY. ShinanoT. TsujiH. Repeatability and reproducibility of measurements of low dissolved radiocesium concentrations in freshwater using different pre-concentration methods.J. Radioanal. Nucl. Chem.2019322247748510.1007/s10967‑019‑06696‑2
    [Google Scholar]
  24. LewisS.W. AggK.M. GutowskiS.J. RossP. Forensic sciences | Gunshot residues.Encyclopedia of Analytical Science.Elsevier200543043610.1016/B0‑12‑369397‑7/00204‑1
    [Google Scholar]
  25. Standard practice for gunshot residue analysis by scanning electron microscopy/energy dispersive x-ray spectrometry.2020Available from: https://www.nist.gov/system/files/documents/2020/03/20/OSAC%20GSR%20SC%20E1588%20for%20SAC.pdf
  26. TahirukajM. OlluriB. SurlevaA. A study of the effect of working parameters and validation of SEM/EDS method for determination of elemental composition of commonly encountered GSR samples in shooting events in Kosovo.J. Forensic Sci.20216662393240410.1111/1556‑4029.14803 34297409
    [Google Scholar]
  27. StamouliA. NiewöhnerL. LarssonM. ColsonB. UhligS. FojtasekL. MachadoF. GunaratnamL. Survey of gunshot residue prevalence on the hands of individuals from various population groups in and outside Europe.Forensic Chem.20212310030810.1016/j.forc.2021.100308
    [Google Scholar]
  28. RomoloF.S. Overview, analysis, and interpretation.Encyclopedia of Forensic Sciences201319520110.1016/B978‑0‑12‑382165‑2.00116‑1
    [Google Scholar]
  29. SzewczakE. BondarzewskiA. Is the assessment of interlaboratory comparison results for a small number of tests and limited number of participants reliable and rational?Accredit. Qual. Assur.20162129110010.1007/s00769‑016‑1195‑y
    [Google Scholar]
  30. Menking-HoggattK. OttC. Vander PylC. DalzellK. CurranJ. ArroyoL. TrejosT. Prevalence and probabilistic assessment of organic and inorganic gunshot residue and background profiles using LIBS, electrochemistry, and SEM-EDS.Forensic Chem.20222910042910.1016/j.forc.2022.100429
    [Google Scholar]
  31. López-LópezM. FerrandoJ.L. García-RuizC. Comparative analysis of smokeless gunpowders by Fourier transform infrared and Raman spectroscopy.Anal. Chim. Acta2012717929910.1016/j.aca.2011.12.022 22304820
    [Google Scholar]
  32. ProfumoA. CapucciatiA. MattinoA. DonghiM. MerliD. A simple voltammetric method to evaluate the firing distance through determination of nitrocellulose.Talanta2024266Pt 112504010.1016/j.talanta.2023.125040 37566925
    [Google Scholar]
  33. JainB. YadavP. Vibrational spectroscopy and chemometrics in GSR: Review and current trend.Egypt. J. Forensic Sci.20211111510.1186/s41935‑021‑00229‑3
    [Google Scholar]
  34. BuenoJ. SikirzhytskiV. LednevI.K. Attenuated total reflectance-FT-IR spectroscopy for gunshot residue analysis: Potential for ammunition determination.Anal. Chem.201385157287729410.1021/ac4011843 23745950
    [Google Scholar]
  35. JamalS.H. RoslanN.J. ShahN.A.A. NoorS.A.M. OngK.K. YunusW.M.Z.W. Preparation and characterization of nitrocellulose from bacterial cellulose for propellant uses.Mater. Today Proc.20202918518910.1016/j.matpr.2020.05.540
    [Google Scholar]
  36. ZengJ. QiJ. BaiF. Chung YuJ.C. ShihW.C. Analysis of ethyl and methyl centralite vibrational spectra for mapping organic gunshot residues.Analyst (Lond.)2014139174270427810.1039/C4AN00657G 25005050
    [Google Scholar]
/content/journals/cac/10.2174/0115734110352073241122164830
Loading
/content/journals/cac/10.2174/0115734110352073241122164830
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test