Skip to content
2000
Volume 21, Issue 4
  • ISSN: 1573-4110
  • E-ISSN: 1875-6727

Abstract

Aims

The primary objective of this study was to develop a simple, selective, sensitive, and rapid method for the determination of trace levels of Rhodamine B in different cosmetic items.

Background

At present, synthetic dyes in various colors are essential in cosmetic products, not only for adding pleasant scents, but also for enhancing their appeal and restoring natural colors. Rhodamine B, a pink synthetic azo dye, is widely used in the cosmetic industry. It poses risks if ingested by humans and animals, causing skin, eye, and respiratory irritation. Scientific studies have shown that it has carcinogenic, reproductive, developmental, neurotoxic, and chronic toxic effects on both humans and animals. Therefore, the improvement of precise and fast measurement techniques for detecting Rhodamine B in different sample types is crucial.

Objective

The objective of this study was to find a fast, accurate, and sensitive method for the determination of trace levels of Rhodamine B in different cosmetic items.

Methods

The technique used has been based on Dispersive Surfactant Micelle-mediated Extraction (DSME) combined with digital image analysis.

Results

The optimized method yielded a linear calibration graph ranging from 25 to 300 µg L-1, with a correlation coefficient of 0.9975 and the Limit of Detection (LOD) of 6.7 µg L-1. The proposed method was used to measure Rhodamine B in lipstick and nail polish samples, resulting in satisfactory recoveries ranging from 97.8 to 107.2%.

Conclusion

DSME could remove the necessity of high temperature, hazardous organic solvents, and anionic surfactants in Cloud Point Extraction (CPE) and Catanionic Surfactants-based Coacervation Extraction (CSCE). Additionally, experiments have shown the results from digital image analysis to be in line with those from a commercial UV-Vis spectrophotometer and a spectrofluorometer. The authors believe that utilizing DSME image analysis could be a beneficial alternative to the analytical analysis of other colored species in routine analysis.

Loading

Article metrics loading...

/content/journals/cac/10.2174/0115734110327096240823114100
2024-09-03
2025-08-17
Loading full text...

Full text loading...

References

  1. PourrezaN. RastegarzadehS. LarkiA. Micelle-mediated cloud point extraction and spectrophotometric determination of rhodamine B using Triton X-100.Talanta200877273373610.1016/j.talanta.2008.07.031
    [Google Scholar]
  2. AlessoM. BondioliG. TalíoM.C. LuconiM.O. FernándezL.P. Micelles mediated separation fluorimetric methodology for Rhodamine B determination in condiments, snacks and candies.Food Chem.2012134151351710.1016/j.foodchem.2012.02.110
    [Google Scholar]
  3. JainR. MathurM. SikarwarS. MittalA. Removal of the hazardous dye rhodamine B through photocatalytic and adsorption treatments.J. Environ. Manage.200785495696410.1016/j.jenvman.2006.11.002 17239520
    [Google Scholar]
  4. DesiderioC. MarraC. FanaliS. Quantitative analysis of synthetic dyes in lipstick by micellar electrokinetic capillary chromatography.Electrophoresis1998198-91478148310.1002/elps.1150190844 9694299
    [Google Scholar]
  5. QiP. LinZ. LiJ. WangC. MengW. HongH. ZhangX. Development of a rapid, simple and sensitive HPLC-FLD method for determination of rhodamine B in chili-containing products.Food Chem.20141649810310.1016/j.foodchem.2014.05.036 24996311
    [Google Scholar]
  6. FrankeC. WesterholmH. NiessnerR. Solid-phase extraction (SPE) of the fluorescence tracers uranine and sulphorhodamine B.Water Res.199731102633263710.1016/S0043‑1354(97)00111‑5
    [Google Scholar]
  7. LimH.S. ChoiE. LeeJ.H. LeeG. KimM. Analysis of illegal colourants (citrus red II, diethyl yellow, dimethyl yellow, metanil yellow and rhodamine B) in foods by LC-UV and LC-MS/MS.Food Addit. Contam. Part A Chem. Anal. Control Expo. Risk Assess.202037689590410.1080/19440049.2020.1746840 32243233
    [Google Scholar]
  8. LiangF. JinD. MaP. WangD. YangQ. SongD. WangX. Rapid determination of rhodamine B in chili powder by surface-enhanced raman spectroscopy.Anal. Lett.201548121918192910.1080/00032719.2014.1003428
    [Google Scholar]
  9. KhoshmaramL. MohammadiM. Combination of a smart phone based low-cost portable colorimeter with air-assisted liquid-liquid microextraction for speciation and determination of chromium (III) and (VI).Microchem. J.202116410599110.1016/j.microc.2021.105991
    [Google Scholar]
  10. UrapenR. MasawatP. Novel method for the determination of tetracycline antibiotics in bovine milk based on digital-image-based colorimetry.Int. Dairy J.2015441510.1016/j.idairyj.2014.12.002
    [Google Scholar]
  11. Kompany-ZarehM. MansourianM. RavaeeF. Simple method for colorimetric spot-test quantitative analysis of Fe(III) using a computer controlled hand-scanner.Anal. Chim. Acta200247119710410.1016/S0003‑2670(02)00871‑1
    [Google Scholar]
  12. LeónK. MeryD. PedreschiF. LeónJ. Color measurement in L*a*b units from RGB digital images.Food Res. Int.200639101084109110.1016/j.foodres.2006.03.006
    [Google Scholar]
  13. HuoD.Q. ZhangG.P. HouC.J. DongJ.L. ZhangY-C. LiuZ. LuoX-G. FaH-B. ZhangS-Y. A colorimetric sensor array for identification of natural amino acids.Chin. J. Anal. Chem.20103881115112010.1016/S1872‑2040(09)60061‑X
    [Google Scholar]
  14. Bang-iamN. UdnanY. MasawatP. Design and fabrication of artificial neural network-digital image-based colorimeter for protein assay in natural rubber latex and medical latex gloves.Microchem. J.201310627027510.1016/j.microc.2012.08.003
    [Google Scholar]
  15. LimaM.B. AndradeS.I.E. BarretoI.S. AlmeidaL.F. AraújoM.C.U. A digital image-based micro-flow-batch analyzer.Microchem. J.201310623824310.1016/j.microc.2012.07.010
    [Google Scholar]
  16. TôrresA.R. da Silva LyraW. de AndradeS.I.E. AndradeR.A.N. da SilvaE.C. AraújoM.C.U. da Nóbrega GaiãoE. A digital image-based method for determining of total acidity in red wines using acid–base titration without indicator.Talanta201184360160610.1016/j.talanta.2011.02.002 21482256
    [Google Scholar]
  17. López-RuizN. Martínez-OlmosA. Pérez de Vargas-SansalvadorI.M. Fernández-Ramos M.D. CarvajalM.A. Capitan-VallveyL.F. PalmaA.J. Determination of O2 using colour sensing from image processing with mobile devices.Sens. Actuators B Chem.2012171-17293894510.1016/j.snb.2012.06.007
    [Google Scholar]
  18. FanY. LiJ. GuoY. XieL. ZhangG. Digital image colorimetry on smartphone for chemical analysis: A review.Measurement202117110882910.1016/j.measurement.2020.108829
    [Google Scholar]
  19. SmithA.R. Color gamut transform pairs.Comput. Graph.1978123121910.1145/965139.807361
    [Google Scholar]
  20. FirdausM.L. AlwiW. TrinoveldiF. RahayuI. RahmidarL. WarsitoK. Determination of chromium and iron using digital image-based colorimetry.Procedia Environ. Sci.20142029830410.1016/j.proenv.2014.03.037
    [Google Scholar]
  21. Al-Ne’aimiM.M. Al-KhuderM.M. Synthesis characterization and extraction studies of some metal (II) complexes containing (hydrazoneoxime and bis-acylhydrazone) moieties. Spectrochim.Acta A Mol.2013105365373
    [Google Scholar]
  22. SoylakM. UnsalY.E. YilmazE. TuzenM. Determination of rhodamine B in soft drink, waste water and lipstick samples after solid phase extraction.Food Chem. Toxicol.20114981796179910.1016/j.fct.2011.04.030 21570440
    [Google Scholar]
  23. DumanS. YilmazE. SoylakM. Solid phase microextraction of rhodamine B in cosmetic samples using ZnS@GO@WMCNTs nanocomposite with spectrophotometric detection.Microchem. J.202419911021410.1016/j.microc.2024.110214
    [Google Scholar]
  24. MelnykA. WolskaL. NamieśnikJ. Coacervative extraction as a green technique for sample preparation for the analysis of organic compounds.J. Chromatogr. A2014133911210.1016/j.chroma.2014.02.082 24666936
    [Google Scholar]
  25. ChenD. ZhangP. LiY. MeiZ. XiaoY. Hexafluoroisopropanol-induced coacervation in aqueous mixed systems of cationic and anionic surfactants for the extraction of sulfonamides in water samples.Anal. Bioanal. Chem.2014406246051606010.1007/s00216‑014‑8031‑1 25069882
    [Google Scholar]
  26. XuJ. NiuM. XiaoY. Hexafluoroisopropanol-induced catanionic-surfactants-based coacervate extraction for analysis of lysozyme.Anal. Bioanal. Chem.201740951281128910.1007/s00216‑016‑0054‑3 27822643
    [Google Scholar]
  27. KhalediM.G. JenkinsS.I. LiangS. Perfluorinated alcohols and acids induce coacervation in aqueous solutions of amphiphiles.Langmuir20132982458246410.1021/la303035h 23394345
    [Google Scholar]
  28. KhoshmaramL. BagherianE. Dispersive surfactant micelle-mediated extraction combined with a smartphone-based portable colorimeter: A cost-effective and simple approach for cobalt determination.Anal. Methods202416343444110.1039/D3AY01698F 38165682
    [Google Scholar]
  29. KhoshmaramL. SaadatiM. KarimiA. A simple and rapid technique for the determination of copper based on air-assisted liquid–liquid microextraction and image colorimetric analysis.Anal. Methods202012273490349810.1039/D0AY00706D 32672284
    [Google Scholar]
  30. MelnykA. NamieśnikJ. WolskaL. Theory and recent applications of coacervate-based extraction techniques.Trends Analyt. Chem.20157128229210.1016/j.trac.2015.03.013
    [Google Scholar]
  31. WangC.C. MasiA.N. FernándezL. On-line micellar-enhanced spectrofluorimetric determination of rhodamine dye in cosmetics.Talanta2008751135140 18371858
    [Google Scholar]
/content/journals/cac/10.2174/0115734110327096240823114100
Loading
/content/journals/cac/10.2174/0115734110327096240823114100
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test