Skip to content
2000
Volume 21, Issue 4
  • ISSN: 1573-4110
  • E-ISSN: 1875-6727

Abstract

Background

Implants made of titanium are significant in the orthopedic and dental fields. Strong osteointegration can only be achieved by surface modification technologies. The benefits of titanium are numerous, but its inert state prevents it from integrating with human cell's biologically. The titanium implant’s surface is crucial for osseointegration and implant success; hence this is necessary. How to apply osteoconductive coatings or increase the surface roughness of titanium dental implants has been investigated. Surface treatments include grit blasting, acid etching, anodizing, and coatings with calcium phosphate. Clinical efficacy has been demonstrated for most marketed surfaces (>95%). The exact involvement of surface topography and chemical reactions in early dental implant osseointegration is still unclear.

Methods

Sixteen implant samples were made with different parameters. Each one has 5 parameters, including Sandblast Pressure (SP), Sandblast Cycle (SC), Anodizing Time (AT), Anodizing Voltage (AV), and Etching Time (ET). Physical and chemical characterization was used to identify optimized samples. SEM, EDS, XRD, Biodegradation, Contact Angle, Microhardness, MTT, Real-Time PCR, and Antibacterial tests were taken from the samples.

Results

Different surface treatments showed that all surfaces were roughened and micro-nano structures had been shaped. The microhardness of some samples increased during surface treatment. Sample number 14 has potentially antibacterial activities.

Conclusion

Future dental implants may be able to detect tissue formation and cellular attachment, which could facilitate medication release. The future of flexible, multipurpose dental implants lies in additive manufacturing, biosensing, and triggered drug-release technologies.

Loading

Article metrics loading...

/content/journals/cac/10.2174/0115734110313259240823103253
2024-09-03
2025-08-18
Loading full text...

Full text loading...

References

  1. De BruynH. ChristiaensV. DoornewaardR. JacobssonM. CosynJ. JacquetW. VervaekeS. Implant surface roughness and patient factors on long-term peri-implant bone loss.Periodontol. 2000201773121822710.1111/prd.12177 28000269
    [Google Scholar]
  2. HaugenH.J. ChenH. Is There a Better Biomaterial for Dental Implants than Titanium?—A Review and Meta-Study Analysis.J. Funct. Biomater.20221324610.3390/jfb13020046 35645254
    [Google Scholar]
  3. AlghamdiH.S. JansenJ.A. The development and future of dental implants.Dent. Mater. J.202039216717210.4012/dmj.2019‑140 31969548
    [Google Scholar]
  4. Krishna AllaR. GinjupalliK. UpadhyaN. ShammasM. Krishna RaviR. SekharR. Surface roughness of implants: A review.Trends Biomater. Artif. Organs201125112118
    [Google Scholar]
  5. BrånemarkP.I. BreineU. AdellR. HanssonB.O. LindströِmJ. OhlssonÅ Intra-osseous anchorage of dental prostheses. I. Experimental studies.Scand. J. Plast. Reconstr. Surg.1969328110010.3109/02844316909036699 4924041
    [Google Scholar]
  6. SiegenthalerD.W. JungR.E. HoldereggerC. RoosM. HämmerleC.H.F. Replacement of teeth exhibiting periapical pathology by immediate implants. A prospective, controlled clinical trial.Clin. Oral Implants Res.200718672773710.1111/j.1600‑0501.2007.01411.x 17888019
    [Google Scholar]
  7. McCrackenM. Dental implant materials: commercially pure titanium and titanium alloys.J. Prosthodont.199981404310.1111/j.1532‑849X.1999.tb00006.x 10356553
    [Google Scholar]
  8. LiuX. ChuP.K. DingC. Surface modification of titanium, titanium alloys, and related materials for biomedical applications.Mater. Sci. Eng. R Reports.2004474912110.1016/j.mser.2004.11.001
    [Google Scholar]
  9. RoblesD. BrizuelaA. Fernández-DomínguezM. GilJ. Corrosion Resistance and Titanium Ion Release of Hybrid Dental Implants.Materials (Basel)20231610365010.3390/ma16103650 37241275
    [Google Scholar]
  10. El-BannaA. BissaM.W. KhurshidZ. ZohaibS. AsiriF.Y.I. ZafarM.S. 4 - Surface modification techniques of dental implants. ZafarM.S. KhurshidZ. KhanA.S. NajeebS. SefatF.B.T-D.I. Dental Implants- Materials, Coatings, Surface Modifications and Interfaces with Oral TissuesWoodhead Publishing2020496810.1016/B978‑0‑12‑819586‑4.00004‑4
    [Google Scholar]
  11. IonescuA.C. BrambillaE. AzzolaF. OttobelliM. PellegriniG. FrancettiL.A. Laser microtextured titanium implant surfaces reduce in vitro and in situ oral biofilm formation.PLoS One2018139e020226210.1371/journal.pone.0202262 30192766
    [Google Scholar]
  12. SchupbachP. GlauserR. BauerS. Al2O3 particles on titanium dental implant systems following sandblasting and acid-etching process.Int. J. Biomater.20192019631842910.1155/2019/6318429
    [Google Scholar]
  13. JayasreeA. IvanovskiS. GulatiK. Local therapy from nanoengineered titanium dental implants.Surf. Modif. Titan. Dent. Implant.2023202315319810.1007/978‑3‑031‑21565‑0_6
    [Google Scholar]
  14. López-ValverdeN. AragonesesJ. López-ValverdeA. QuispeLópezN. RodríguezC. AragonesesJ.M. Effectiveness of biomolecule-based bioactive surfaces, on os-seointegration of titanium dental implants: A systematic review and meta-analysis of in vivo studies.Front. Bioeng. Biotechnol.20221098611210.3389/fbioe.2022.986112 36225604
    [Google Scholar]
  15. SinghR. A comparative analysis of sandblasted and acid etched and polished titanium surface on enhancement of osteogenic potential: An in vitro study.J. Dent. Implant.2012211510.4103/0974‑6781.96558
    [Google Scholar]
  16. BanS. IwayaY. KonoH. SatoH. Surface modification of titanium by etching in concentrated sulfuric acid.Dent. Mater.200622121115112010.1016/j.dental.2005.09.007 16375960
    [Google Scholar]
  17. JuodzbalysG. SapragonieneM. WennerbergA. New acid etched titanium dental implant surface. Stomatol Balt.Dent Maxillofac J.20035101105
    [Google Scholar]
  18. BruschiM. Steinmüller-NethlD. GoriwodaW. RasseM. Composition and modifications of dental implant surfaces.J. Oral Implantol.2015201552742610.1155/2015/527426
    [Google Scholar]
  19. SaksøH. JakobsenT. SaksøM. BaasJ. JakobsenS.S. SoballeK. No positive effect of Acid etching or plasma cleaning on osseointegration of titanium implants in a canine femoral condyle press-fit model.Open Orthop. J.2013711710.2174/1874325001307010001 23341850
    [Google Scholar]
  20. WennerbergA. AlbrektssonT. Effects of titanium surface topography on bone integration: a systematic review.Clin. Oral Implants Res.200920s4Suppl. 417218410.1111/j.1600‑0501.2009.01775.x 19663964
    [Google Scholar]
  21. HeP. HuangM. FisherS. YueC.Y. YangJ. Effects of primer and annealing treatments on the shear strength between anodized Ti6Al4V and epoxy.Int. J. Adhes. Adhes.201557495610.1016/j.ijadhadh.2014.10.004
    [Google Scholar]
  22. LordM.S. FossM. BesenbacherF. Influence of nanoscale surface topography on protein adsorption and cellular response.Nano Today201051667810.1016/j.nantod.2010.01.001
    [Google Scholar]
  23. OmarO. KarazisisD. BalloA. PetronisS. AgheliH. EmanuelssonL. ThomsenP. The role of well-defined nanotopography of titanium implants on osseointegration: cellular and molecular events in vivo.Int. J. Nanomedicine2016111367138210.2147/IJN.S101294 27099496
    [Google Scholar]
  24. MendonçaG. MendonçaD.B.S. AragãoF.J.L. CooperL.F. Advancing dental implant surface technology – From micron- to nanotopography.Biomaterials200829283822383510.1016/j.biomaterials.2008.05.012 18617258
    [Google Scholar]
  25. GittensR.A. Olivares-NavarreteR. ChengA. AndersonD.M. McLachlanT. StephanI. Geis-GerstorferJ. SandhageK.H. FedorovA.G. RuppF. BoyanB.D. TannenbaumR. SchwartzZ. The roles of titanium surface micro/nanotopography and wettability on the differential response of human osteoblast lineage cells.Acta Biomater.2013946268627710.1016/j.actbio.2012.12.002 23232211
    [Google Scholar]
  26. FernandesP.R.E. OteroA.I.P. FernandesJ.C.H. NassaniL.M. CastilhoR.M. de Oliveira FernandesG.V. Clinical performance comparing titanium and titanium–zirconium or zirconia dental implants: A systematic review of randomized controlled trials.Dent. J.20221011110.3390/dj10050083
    [Google Scholar]
  27. AbuhusseinH. PagniG. RebaudiA. WangH.L. The effect of thread pattern upon implant osseointegration.Clin. Oral Implants Res.201021212913610.1111/j.1600‑0501.2009.01800.x 19709058
    [Google Scholar]
  28. NiuW. WangP. ZhuS. LiuZ. JiP. Marginal bone loss around dental implants with and without microthreads in the neck: A systematic review and meta-analysis.J. Prosthet. Dent.20171171344010.1016/j.prosdent.2016.07.003 27646798
    [Google Scholar]
  29. KangY.I. LeeD.W. ParkK.H. MoonI.S. Effect of thread size on the implant neck area: preliminary results at 1 year of function.Clin. Oral Implants Res.201223101147115110.1111/j.1600‑0501.2011.02298.x 22092875
    [Google Scholar]
  30. ZahranR. Rosales LealJ.I. Rodríguez ValverdeM.A Cabrerizo VílchezM.A Effect of Hydrofluoric Acid Etching Time on Titanium Topography, Chemistry, Wettability, and Cell Adhesion.PLoS One20161111e016529610.1371/journal.pone.0165296 27824875
    [Google Scholar]
  31. ChrcanovicB.R. LeãoN.L.C. MartinsM.D. Influence of different acid etchings on the superficial characteristics of Ti sandblasted with Al2O3.Mater. Res.20131651006101410.1590/S1516‑14392013005000067
    [Google Scholar]
  32. ChrcanovicB.R. MartinsM.D. Study of the influence of acid etching treatments on the superficial characteristics of Ti.Mater. Res.201417237338010.1590/S1516‑14392014005000042
    [Google Scholar]
  33. BudeiD.V. VaireanuD-I. PrepelitaP. Popescu-PelinG. MincuM. CiobotaruI-A. A comparative morphological study of titanium dioxide surface layer dental implants.Open Chemistry202119118919810.1515/chem‑2021‑0197
    [Google Scholar]
  34. PimentaJ. Szmukler-MonclerS. RaigrodskiA.J. Physical characterization of 3 implant systems made of distinct materials with distinct surfaces.J. Prosthet. Dent.20221281637210.1016/j.prosdent.2020.11.015 33546854
    [Google Scholar]
  35. MessousR. HenriquesB. BousbaaH. SilvaF.S. TeughelsW. SouzaJ.C.M. Cytotoxic effects of submicron- and nano-scale titanium debris released from dental implants: An integrative review.Clin. Oral Investig.20212541627164010.1007/s00784‑021‑03785‑z 33616805
    [Google Scholar]
  36. Szmukler-MonclerS. BlusC. Morales SchwarzD. OrrùG. Characterization of a macro- and micro-textured titanium grade 5 alloy surface obtained by etching only without sandblasting.Materials20201322507410.3390/ma13225074 33187066
    [Google Scholar]
  37. ReshadiF. KhorasaniS. FarajiG. Surface characterization of nanostructured commercially pure titanium modified by sandblasting and acid-etching for implant applications.Proc. Inst. Mech. Eng., Part J J. Eng. Tribol.2020234341442310.1177/1350650119864246
    [Google Scholar]
  38. TuikampeeS. ChaijareenontP. RungsiyakullP. YavirachA. Titanium Surface Modification Techniques to Enhance Osteoblasts and Bone Formation for Dental Implants: A Narrative Review on Current Advances.Metals (Basel)202414551510.3390/met14050515
    [Google Scholar]
  39. López-ValverdeN. Flores-FraileJ. RamírezJ.M. Macedo de SousaB. Herrero-HernándezS. López-ValverdeA. Bioactive Surfaces vs. Conventional Surfaces in Titanium Dental Implants: A Comparative Systematic Review.J. Clin. Med.202097204710.3390/jcm9072047 32610687
    [Google Scholar]
  40. ChoiS.H. JangY.S. JangJ.H. BaeT.S. LeeS.J. LeeM.H. Enhanced antibacterial activity of titanium by surface modification with polydopamine and silver for dental implant application.J. Appl. Biomater. Funct. Mater.201917310.1177/2280800019847067 31530071
    [Google Scholar]
  41. Velasco-OrtegaE. Ortiz-GarcíaI. Jiménez-GuerraA. Monsalve-GuilL. Muñoz-GuzónF. PerezR.A. GilF.J. Comparison between sandblasted acid-etched and oxidized titanium dental implants: In vivo study.Int. J. Mol. Sci.20192013326710.3390/ijms20133267 31277204
    [Google Scholar]
  42. Javier GilF. PlanellJ.A. PadrósA. AparicioC. The effect of shot blasting and heat treatment on the fatigue behavior of titanium for dental implant applications.Dent. Mater.200723448649110.1016/j.dental.2006.03.003 16620949
    [Google Scholar]
  43. MarenziG. ImperoF. ScherilloF. SammartinoJ.C. SquillaceA. SpagnuoloG. Effect of different surface treatments on titanium dental implant micro-morphology.Materials (Basel)201912573310.3390/ma12050733 30836588
    [Google Scholar]
  44. KangB.S. SulY.T. OhS.J. LeeH.J. AlbrektssonT. XPS, AES and SEM analysis of recent dental implants.Acta Biomater.2009562222222910.1016/j.actbio.2009.01.049 19261554
    [Google Scholar]
  45. MarenziG. SpagnuoloG. SammartinoJ.C. GasparroR. RebaudiA. SalernoM. Micro-scale surface patterning of titanium dental implants by anodization in the presence of modifying salts.Materials (Basel)20191211175310.3390/ma12111753 31151141
    [Google Scholar]
  46. KyrylenkoS. WarchołF. OleshkoO. HusakY. Kazek-KęsikA. KorniienkoV. DeinekaV. SowaM. MaciejA. MichalskaJ. Jakóbik-KolonA. MatułaI. BasiagaM. HulubnychaV. StolarczykA. PisarekM. MishchenkoO. PogorielovM. SimkaW. Effects of the sources of calcium and phosphorus on the structural and functional properties of ceramic coatings on titanium dental implants produced by plasma electrolytic oxidation.Mater. Sci. Eng. C202111911160710.1016/j.msec.2020.111607 33321651
    [Google Scholar]
  47. PalaniveluR. KalainathanS. Ruban KumarA. Characterization studies on plasma sprayed (AT/HA) bi-layered nano ceramics coating on biomedical commercially pure titanium dental implant.Ceram. Int.20144067745775110.1016/j.ceramint.2013.12.116
    [Google Scholar]
  48. PiconiC. MaccauroG. Zirconia as a Ceramic Biomaterial. Biomaterials199920112510.1016/S0142‑9612(98)00010‑6
    [Google Scholar]
  49. StrnadG. ChirilaN. PetrovanC. RussuO. Contact angle measurement on medical implant titanium based biomaterials.Procedia Technol.20162294695310.1016/j.protcy.2016.01.094
    [Google Scholar]
  50. HongY.S. KimM.J. HanJ.S. YeoI.S. Effects of hydrophilicity and fluoride surface modifications to titanium dental implants on early osseointegration: An in vivo study.Implant Dent.201423552953310.1097/ID.0000000000000131 25192155
    [Google Scholar]
  51. Ríos-CarrascoB. LemosB.F. Herrero-ClimentM. Gil MurF.J. Ríos-SantosJ.V. Effect of the acid-etching on grit-blasted dental implants to improve osseointegration: Histomorphometric analysis of the bone-implant contact in the rabbit tibia model.Coatings20211111142610.3390/coatings11111426
    [Google Scholar]
  52. GinerL. MercadéM. TorrentS. PunsetM. PérezR.A. DelgadoL.M. GilF.J. Double acid etching treatment of dental implants for enhanced biological properties.J. Appl. Biomater. Funct. Mater.2018162838910.5301/jabfm.5000376 28885666
    [Google Scholar]
  53. Velasco-OrtegaE. Alfonso-RodríguezC.A. Monsalve-GuilL. España-LópezA. Jiménez-GuerraA. GarzónI. AlaminosM. GilF.J. Relevant aspects in the surface properties in titanium dental implants for the cellular viability.Mater. Sci. Eng. C20166411010.1016/j.msec.2016.03.049 27127022
    [Google Scholar]
  54. VerdeguerP. GilJ. PunsetM. ManeroJ.M. NartJ. VilarrasaJ. RuperezE. Citric Acid in the Passivation of Titanium Dental Implants: Corrosion Resistance and Bactericide Behavior.Materials (Basel)202215254510.3390/ma15020545 35057263
    [Google Scholar]
  55. OgawaE.S. MatosA.O. BelineT. MarquesI.S.V. SukotjoC. MathewM.T. RangelE.C. CruzN.C. MesquitaM.F. ConsaniR.X. BarãoV.A.R. Surface-treated commercially pure titanium for biomedical applications: Electrochemical, structural, mechanical and chemical characterizations.Mater. Sci. Eng. C20166525126110.1016/j.msec.2016.04.036 27157750
    [Google Scholar]
  56. PetriniM. PierfeliceT.V. AmicoE.D. Di PietroN. PandolfiA. ArcangeloC.D. De AngelisF. MandatoriD. SchiavoneV. PiattelliA. IezziG. Influence of nano, micro, and macro topography of dental implant surfaces on human gingival fibroblasts.Int. J. Mol. Sci.202122189871
    [Google Scholar]
  57. Villaça-carvalhoM.F.L. CarolineJ. De AraR. BeraldoJ.M. FalcheteR. EliM. De MoraesL. RobertoL. ManhC. LoboA.O. MarcianoF.R. MarottaL. De VasconcellosR. Bioactivity of an experimental dental implant with anodized surface.J. Funct. Biomater.20211223910.3390/jfb12020039
    [Google Scholar]
  58. HuangB-H. LuY-J. LanW-C. RuslinM. LinH-Y. OuK-L. SaitoT. TsaiH-Y. LeeC-H. ChoY-C. YangT-S. LiuC-M. HouP-J. Surface properties and biocompatibility of anodized titanium with a potential pretreatment for biomedical applications.Metals2021117109010.3390/met11071090
    [Google Scholar]
  59. GilJ. PérezR. Herrero-ClimentM. Rizo-GorritaM. Torres-LagaresD. GutierrezJ.L. Benefits of residual aluminum oxide for sand blasting titanium dental implants: Osseointegration and bactericidal effects.Materials202115117810.3390/ma15010178 35009326
    [Google Scholar]
  60. OliveiraD.P. PalmieriA. CarinciF. BolfariniC. Gene expression of human osteoblasts cells on chemically treated surfaces of Ti–6Al–4V–ELI.Mater. Sci. Eng. C20155124825510.1016/j.msec.2015.03.011 25842132
    [Google Scholar]
  61. JayasreeA. Gómez-CerezoM.N. VerronE. IvanovskiS. GulatiK. Gallium-doped dual micro-nano titanium dental implants towards soft-tissue integration and bactericidal functions.Materials Today Advances20221610029710.1016/j.mtadv.2022.100297
    [Google Scholar]
  62. KhodaeiM. Hossein KelishadiS. The effect of different oxidizing ions on hydrogen peroxide treatment of titanium dental implant.Surf. Coat. Tech.201835315816210.1016/j.surfcoat.2018.08.037
    [Google Scholar]
  63. ChauhanP. KoulV. BhatnagarN. Critical role of etching parameters in the evolution of nano micro sla surface on the Ti6Al4V alloy dental implants.Materials (Basel)20211421634410.3390/ma14216344 34771869
    [Google Scholar]
  64. HosseinpourS. NandaA. WalshL.J. XuC. Microbial decontamination and antibacterial activity of nanostructured titanium dental implants: A narrative review.Nanomaterials (Basel)2021119233610.3390/nano11092336 34578650
    [Google Scholar]
  65. FlörkeC. JanningJ. HinrichsC. BehrensE. LiedtkeK.R. SenS. ChristofzikD. WiltfangJ. GülsesA. In-vitro assessment of the efficiency of cold atmospheric plasma on decontamination of titanium dental implants.Int. J. Implant Dent.2022811210.1186/s40729‑022‑00411‑9 35275307
    [Google Scholar]
  66. EstevesG.M. EstevesJ. ResendeM. MendesL. AzevedoA.S. Antimicrobial and Antibiofilm Coating of Dental Implants—Past and New Perspectives.Antibiotics (Basel)202211223510.3390/antibiotics11020235 35203837
    [Google Scholar]
  67. SilvaR.C.S. AgrelliA. AndradeA.N. Mendes-MarquesC.L. ArrudaI.R.S. SantosL.R.L. VasconcelosN.F. MachadoG. Titanium Dental Implants: An Overview of Applied Nanobiotechnology to Improve Biocompatibility and Prevent Infections.Materials (Basel)2022159315010.3390/ma15093150 35591484
    [Google Scholar]
  68. CostaR.C. AbdoV.L. MendesP.H.C. Mota-VelosoI. BertoliniM. MathewM.T. BarāoV.A.R. SouzaJ.G.S. Microbial corrosion in titanium-based dental implants: How tiny bacteria can create a big problem?J. Bio- Tribo-Corrosion20217410.1007/s40735‑021‑00575‑8
    [Google Scholar]
  69. CallejasJ.A. GilJ. BrizuelaA. PérezR.A. BoschB.M. Effect of the size of titanium particles released from dental implants on immunological response.Int. J. Mol. Sci.20222313733310.3390/ijms23137333 35806339
    [Google Scholar]
/content/journals/cac/10.2174/0115734110313259240823103253
Loading
/content/journals/cac/10.2174/0115734110313259240823103253
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test