Skip to content
2000
Volume 21, Issue 6
  • ISSN: 1573-4110
  • E-ISSN: 1875-6727

Abstract

This study reviews the latest progress of ratiometric fluorescent probes of copper ions from 2022 till now. As a key trace element in biological systems, copper ions play an important role in a variety of biological processes. However, the abnormal change in copper ion concentration is closely related to a variety of diseases, so the development of highly sensitive and highly selective copper ion detection methods is of great significance for scientific research and clinical diagnosis. In this paper, we first introduced the classification of copper ion fluorescence probes, including molecular sensors based on five-membered azocycles, six-membered azocycles, imide groups (RC=NR'), oxygen and nitrogen functional groups (such as ethers, aldehydes, ketones, esters, carboxylic acids and hydroxyl groups) and group VIA elements. Subsequently, the application of nanosensors in the detection of copper ions is further discussed, especially the nanosensors in which copper is used as a reactant, catalyst or alternative reaction. Finally, the current research status of copper ion fluorescence probes is summarized, and the future development direction is prospected in order to provide reference and inspiration for the design of new high-efficiency copper ion detection tools.

Loading

Article metrics loading...

/content/journals/cac/10.2174/0115734110326657240909064134
2024-09-20
2025-11-01
Loading full text...

Full text loading...

References

  1. TapieroH. TownsendD.M. TewK.D. Trace elements in human physiology and pathology. Copper.Biomed. Pharmacother.200357938639810.1016/S0753‑3322(03)00012‑X 14652164
    [Google Scholar]
  2. TisatoF. MarzanoC. PorchiaM. PelleiM. SantiniC. Copper in diseases and treatments, and copper‐based anticancer strategies.Med. Res. Rev.201030470874910.1002/med.20174 19626597
    [Google Scholar]
  3. ReidA. MillerC. FarrantJ.P. PolturiR. ClarkD. RayS. CooperG. SchmittM. Copper chelation in patients with hypertrophic cardiomyopathy.Open Heart202291e00180310.1136/openhrt‑2021‑001803 35169044
    [Google Scholar]
  4. GromadzkaG. TarnackaB. FlagaA. AdamczykA. Copper dyshomeostasis in neurodegenerative diseases-therapeutic implications.Int. J. Mol. Sci.20202123925910.3390/ijms21239259 33291628
    [Google Scholar]
  5. LiuX. LuoB. WuX. TangZ. Cuproptosis and cuproptosis-related genes: Emerging potential therapeutic targets in breast cancer.Biochim. Biophys. Acta Rev. Cancer20231878618901310.1016/j.bbcan.2023.189013 37918452
    [Google Scholar]
  6. KahlsonM.A. DixonS.J. Copper-induced cell death.Science202237565861231123210.1126/science.abo3959 35298241
    [Google Scholar]
  7. XueQ. KangR. KlionskyD.J. TangD. LiuJ. ChenX. Copper metabolism in cell death and autophagy.Autophagy20231982175219510.1080/15548627.2023.2200554 37055935
    [Google Scholar]
  8. ChenL. MinJ. WangF. Copper homeostasis and cuproptosis in health and disease.Signal Transduct. Target. Ther.20227137810.1038/s41392‑022‑01229‑y 36414625
    [Google Scholar]
  9. TongX. TangR. XiaoM. XuJ. WangW. ZhangB. LiuJ. YuX. ShiS. Targeting cell death pathways for cancer therapy: recent developments in necroptosis, pyroptosis, ferroptosis, and cuproptosis research.J. Hematol. Oncol.202215117410.1186/s13045‑022‑01392‑3 36482419
    [Google Scholar]
  10. ChenZ. LiY. LiuX. Copper homeostasis and copper-induced cell death: Novel targeting for intervention in the pathogenesis of vascular aging.Biomed. Pharmacother.202316911583910.1016/j.biopha.2023.115839 37976889
    [Google Scholar]
  11. ChenT. LiangL. WangY. LiX. YangC. Ferroptosis and cuproptposis in kidney Diseases: dysfunction of cell metabolism.Apoptosis2023293-428930210.1007/s10495‑023‑01928‑z 38095762
    [Google Scholar]
  12. KozlowskiH. PotockiS. RemelliM. Rowinska-ZyrekM. ValensinD. Specific metal ion binding sites in unstructured regions of proteins.Coord. Chem. Rev.201325719-202625263810.1016/j.ccr.2013.01.024
    [Google Scholar]
  13. MaherP. Potentiation of glutathione loss and nerve cell death by the transition metals iron and copper: Implications for age-related neurodegenerative diseases.Free Radic. Biol. Med.20181159210410.1016/j.freeradbiomed.2017.11.015 29170091
    [Google Scholar]
  14. XieW. GuoZ. ZhaoL. WeiY. The copper age in cancer treatment: From copper metabolism to cuproptosis.Prog. Mater. Sci.202313810114510.1016/j.pmatsci.2023.101145
    [Google Scholar]
  15. SharanovP.Y. VolkovD.S. AlovN.V. Quantification of elements in copper–zinc ores at micro- and macro-levels by total reflection X-ray fluorescence and inductively coupled plasma atomic emission spectrometry.Anal. Methods201911293750375610.1039/C9AY01055F
    [Google Scholar]
  16. PađanJ. MarcinekS. CindrićA.M. SantinelliC. Retelletti BrogiS. RadakovitchO. GarnierC. OmanovićD. Organic copper speciation by anodic stripping voltammetry in estuarine waters with high dissolved organic matter.Front Chem.2021862874910.3389/fchem.2020.628749 33634075
    [Google Scholar]
  17. KimP. ZhangC.C. ThoroeS. WeiskirchenS. GaisaN.T. BuhlE.M. StremmelW. MerleU. WeiskirchenR. Accurate measurement of copper overload in an experimental model of Wilson disease by laser ablation inductively coupled plasma mass spectrometry. Biomedicines,202089035610.3390/biomedicines8090356
    [Google Scholar]
  18. GaoC. ZangS. NieL. TianY. ZhangR. JingJ. ZhangX. A sensitive ratiometric fluorescent probe for quantitive detection and imaging of alkaline phosphatase in living cells.Anal. Chim. Acta2019106613113510.1016/j.aca.2019.03.043 31027528
    [Google Scholar]
  19. LiS. SunJ. LiuG. ZhangS. ZhangZ. WangX. A new Keggin-type polyoxometallate-based bifunctional catalyst for trace detection and pH-universal photodegradation of phenol.Chin. Chem. Lett.202435810914810.1016/j.cclet.2023.109148
    [Google Scholar]
  20. DingL. CaoY. LiH. WangF. GuoD.Y. YangW. PanQ. A ratiometric fluorescence-scattering sensor for rapid, sensitive and selective detection of doxycycline in animal foodstuffs. Food Chem.,2022373Pt B13166910.1016/j.foodchem.2021.131669 34863605
    [Google Scholar]
  21. LiS. WangB. LiuG. LiX. SunC. ZhangZ. WangX. Achieving ultra-trace analysis and multi-light driven photodegradation toward phenolic derivatives via a bifunctional catalyst derived from a Cu(I)-complex-modified polyoxometalate.Inorg. Chem. Front.20241151561157210.1039/D3QI02513F
    [Google Scholar]
  22. WangX. SongX. WuJ. DongP. MenX. ZhangX. YangF. SunW. Mitochondria-targeting two-photon fluorescent probe for sequential recognition of Cu2+ and ATP in neurons and zebrafish.Spectrochim. Acta A Mol. Biomol. Spectrosc.202330312326010.1016/j.saa.2023.123260 37591016
    [Google Scholar]
  23. YangF. SongX. ZhangM. MaH. ZhangS. WangW. WangR. WangZ. YuanZ. RenD. SunW. Mitochondria-targeting phenothiazine-based ratiometric fluorescent probe for visual and rapid detection of hypochlorous acid in living cells and zebrafish.Dyes Pigments202422911225810.1016/j.dyepig.2024.112258
    [Google Scholar]
  24. LuC. XuJ. SongZ. DaiZ. Advancements in ESIPT probe research over the past three years based on different fluorophores.Dyes Pigments202422411199410.1016/j.dyepig.2024.111994
    [Google Scholar]
  25. HossainA. BhattacharyyaA. ReiserO. Copper’s rapid ascent in visible-light photoredox catalysis.Science20193646439eaav971310.1126/science.aav9713 31048464
    [Google Scholar]
  26. LuoY. RuanZ. GuoZ. ChenY. LinH. GeM. ZhuC. Electron Orbital Hybridization‐Enhanced Copper‐Nanocatalysis for Anti‐Infection.Adv. Funct. Mater.20243422231374210.1002/adfm.202313742
    [Google Scholar]
  27. AliM. MemonN. MallahM.A. ChannaA.S. GaurR. JiahaiY. Recent development in fluorescent probes for copper ion detection.Curr. Top. Med. Chem.2022221083585410.2174/1568026622666220225153703 35232361
    [Google Scholar]
  28. AlyamiA.Y. Recent progress in organic fluorescence and colorimetric chemosensors for Cu2+ detection: A comprehensive review (2018–2023).Dyes Pigments202322011174010.1016/j.dyepig.2023.111740
    [Google Scholar]
  29. ChenY. ZhengS. KimM.H. ChenX. YoonJ. Recent progress of TP/NIR fluorescent probes for metal ions.Curr. Opin. Chem. Biol.20237510232110.1016/j.cbpa.2023.102321 37196449
    [Google Scholar]
  30. ChopraT. SasanS. DeviL. ParkeshR. KapoorK.K. A comprehensive review on recent advances in copper sensors.Coord. Chem. Rev.202247021470410.1016/j.ccr.2022.214704
    [Google Scholar]
  31. DashP.P. PatelD.A. MohantyP. BehuraR. BeheraS. SahooS.K. JaliB.R. Advances on chromo-fluorogenic sensing of copper(II) with Schiff bases.Inorg. Chim. Acta202355612163510.1016/j.ica.2023.121635
    [Google Scholar]
  32. CotruvoJ.A.Jr AronA.T. Ramos-TorresK.M. ChangC.J. Synthetic fluorescent probes for studying copper in biological systems.Chem. Soc. Rev.201544134400441410.1039/C4CS00346B 25692243
    [Google Scholar]
  33. YangF. ZhangT.T. LiS.S. SongP. ZhangK. GuanQ.Y. KangB. XuJ.J. ChenH.Y. Endogenous MicroRNA-Triggered and Real-Time Monitored Drug Release via Cascaded Energy Transfer Payloads.Anal. Chem.20178919102391024710.1021/acs.analchem.7b01582 28884569
    [Google Scholar]
  34. YangF. GaoH. LiS.S. AnR.B. SunX.Y. KangB. XuJ.J. ChenH.Y. A fluorescent τ -probe: quantitative imaging of ultra-trace endogenous hydrogen polysulfide in cells and in vivo.Chem. Sci. (Camb.)20189255556556310.1039/C8SC01879K 30061987
    [Google Scholar]
  35. SunW. GuX. DongP. ChuL. ZhangZ. ChengZ. YangF. Cell-membrane-targeted near-infrared fluorescent probe for detecting extracellular ATP.Analyst (Lond.)2022147184167417310.1039/D2AN00893A 35993404
    [Google Scholar]
  36. WuD. ChenL. LeeW. KoG. YinJ. YoonJ. Recent progress in the development of organic dye based near-infrared fluorescence probes for metal ions.Coord. Chem. Rev.2018354749710.1016/j.ccr.2017.06.011
    [Google Scholar]
  37. LiuG. XiaN. TianL. SunZ. LiuL. Progress in the development of biosensors based on peptide-copper coordination interaction. Biosensors-Basel20221210080910.3390/bios12100809
    [Google Scholar]
  38. YangY.S. CaoJ.Q. MaC.M. ZhangY.P. GuoH.C. XueJ.J. A novel pyrazoline-based fluorescence probe armed by pyrene and naphthol system for the selective detection of Cu2+ and its biological application.J. Indian Chem. Soc.20221983451346110.1007/s13738‑022‑02536‑5
    [Google Scholar]
  39. ZhangY.P. NiuW.Y. YangY.S. ZhangZ.F. YuanY.Z. GuoH.C. ZhangH.R. A smart low-molecular-mass naphthalene-pyrazoline gelator: Gelation behavior and selective fluorescent detection Cu2+.J. Mol. Liq.202338712265310.1016/j.molliq.2023.122653
    [Google Scholar]
  40. WangP. XueS. ZhouD. GuoZ. WangQ. GuoB. YangX. WuJ. Peptide-based colorimetric and fluorescent dual-functional probe for sequential detection of copper(II) and cyanide ions and its application in real water samples, test strips and living cells.Spectrochim. Acta A Mol. Biomol. Spectrosc.202227612122210.1016/j.saa.2022.121222 35413531
    [Google Scholar]
  41. XieM. ZhaoJ. MaiX. ChenY. ZhaoW. SunM. YuL. YuH.J. A dual-function luminescent probe for copper(II) ions and pH detection based on ruthenium(II) complex.Spectrochim. Acta A Mol. Biomol. Spectrosc.202227712126510.1016/j.saa.2022.121265 35439674
    [Google Scholar]
  42. MurugaperumalP. RajendranP. NallathambiS. AyyanarS. PerdihF. BalasubramaniemA. AlagarsamyA. An oxalamide-bridged imidazole based ‘turn off’ fluorescent receptor for copper(II) and iron(III) ions.New J. Chem.20234728133421335210.1039/D3NJ02444J
    [Google Scholar]
  43. WeiP. XiaoL. HouP. WangQ. WangP. A novel Cu(II)-assisted peptide fluorescent probe for highly sensitive detection of glyphosate in real samples: real application in test strips and smartphone.Anal. Bioanal. Chem.2023415245985599610.1007/s00216‑023‑04869‑3 37505235
    [Google Scholar]
  44. XiaoL. WeiP. YangX. WangP. A novel dual-signals peptide-based probe for highly selective detection of Cu(II) and glyphosate and its applications in smartphone-assisted test strips sensing system.Microchem. J.202319310908410.1016/j.microc.2023.109084
    [Google Scholar]
  45. XiaoL. WeiP. HeF. GouY. ZhouJ. WangP. WuJ. Smartphone-assisted colorimetric and fluorescent dual-functional peptide-based probe for multianalyte visual detection in 100% aqueous media, living cells and test strips.J. Mol. Struct.2023127413455610.1016/j.molstruc.2022.134556
    [Google Scholar]
  46. ZhouM. LiuM. WangX. ChenX. HuS. ZengW. Rapid, selective fluorescent determination of Copper(II) in aqueous solution and living cells using a Dansyl-based click probe.Anal. Lett.20235671174119110.1080/00032719.2022.2122062
    [Google Scholar]
  47. KumarA. KumarS. ChaeP.S. A chromo-fluorogenic naphthoquinolinedione- based probe for dual detection of Cu2+ and its use for various water samples. Molecules,2022273078510.3390/molecules27030785
    [Google Scholar]
  48. SinghG. LalB. SinghR. GeorgeN. SinghG. Diksha; Kaur, G.; Singh, H.; Tittal, R.K.; Kaur, G.; Singh, J. Ampyrone appended 1,2,3-triazole as selective fluorescent Cu(II) ion sensor: DFT and docking findings.Spectrochim. Acta A Mol. Biomol. Spectrosc.202330212316310.1016/j.saa.2023.123163 37478755
    [Google Scholar]
  49. PurushothamanP. KarpagamS. Thiophene-appended benzothiazole compounds for ratiometric detection of copper and cadmium ions with comparative density functional theory studies and their application in real-time samples.ACS Omega2022745413614136910.1021/acsomega.2c05157 36406525
    [Google Scholar]
  50. ZhaoL. ChenK. XieK. HuJ. DengM. ZouY. GaoS. FuY. YeF. A benzothiazole-based “on-off” fluorescence probe for the specific detection of Cu2+ and its application in solution and living cells.Dyes Pigments202321011094310.1016/j.dyepig.2022.110943
    [Google Scholar]
  51. SuprajaN. KarpagamS. Chemo-selective onsite detection of copper ion by crown ether affixed benzothiazole derivatives corroborated with density functional theory.Polyhedron202425211688210.1016/j.poly.2024.116882
    [Google Scholar]
  52. KumarasamyK. DevendhiranT. ChienW.J. LinM.C. RamasamyS.K. LiaoY.F. Synthesis and recognition behaviour studies of benzimidazole derivative containing pyridine moiety.J. Photochem. Photobiol. Chem.202344511506710.1016/j.jphotochem.2023.115067
    [Google Scholar]
  53. WangJ. PeiJ. LiG. Lanthanide ternary complex as a fluorescent probe for highly sensitive and selective detection of copper ions based on selective recognition and photoinduced electron transfer.Spectrochim. Acta A Mol. Biomol. Spectrosc.202329012228710.1016/j.saa.2022.122287 36603275
    [Google Scholar]
  54. BojeD. LoyaM. AttaA.K. Amidoquinoline-based xylofuranose derivative for selective detection of Cu2+ in aqueous medium.J. Photochem. Photobiol. Chem.202343711446810.1016/j.jphotochem.2022.114468
    [Google Scholar]
  55. CaoR. ZhangM. TangW. WuJ. WangM. NiuX. LiuZ. HaoF. XuH. A novel D-pi-A type fluorescent probe for Cu2+ based on styryl-pyridinium salts conjugating Di-(2-picolyl)amine (DPA) units.J. Fluoresc.20233341565157610.1007/s10895‑023‑03151‑0 36787040
    [Google Scholar]
  56. YaoW. ZhuD. YeY. WangB. XieW. RenA. A novel colorimetric and ratiometric fluorescent probe for detection of Cu2+ with large stokes shift in complete aqueous solution.J. Mol. Struct.2023127813497010.1016/j.molstruc.2023.134970
    [Google Scholar]
  57. CaiL. YanK. XuW. ChenY. XiaoH. A novel fluorescent turn on probe derived from Schiff base for highly selective and sensitive detection of Cu2+ ion.Spectrochim. Acta A Mol. Biomol. Spectrosc.202430712352610.1016/j.saa.2023.123526 38000124
    [Google Scholar]
  58. NyiranshutiL. AndrewsE.R. PovolotskiyL.I. GomezF.M. BartlettN.R. RoyappaA.T. RheingoldA.L. SeitzW.R. PlanalpR.P. Development of a ratiometric fluorescent Cu(II) indicator based on poly(N-isopropylacrylamide) thermal phase transition and an aminopyridyl Cu(II) ligand.Molecules20232820709710.3390/molecules28207097 37894575
    [Google Scholar]
  59. Ali EbrahimzadehM. HashemiZ. BiparvaP. A multifunctional quinoxaline-based chemosensor for colorimetric detection of Fe3+ and highly selective fluorescence turn-off response of Cu+2 and their practical application.Spectrochim. Acta A Mol. Biomol. Spectrosc.202330212309210.1016/j.saa.2023.123092 37421695
    [Google Scholar]
  60. BarotY.B. AnandV. MishraR. Di-Triphenylamine-based AIE active Schiff base for highly sensitive and selective fluorescence sensing of Cu2+ and Fe3+.J. Photochem. Photobiol. Chem.202242611378510.1016/j.jphotochem.2022.113785
    [Google Scholar]
  61. WangD. ShaoT.F. DingW.H. LiS.J. YaoQ. CaoW. WangZ. MaY. AIE -active TPA modified Schiff base for successive sensing of Cu 2+ and His via an on–off–on method and its application in bioimaging.Dalton Trans.202352243444310.1039/D2DT03457C 36524392
    [Google Scholar]
  62. GurusamyS. Nandini AshaR. SankarganeshM. Christopher JeyakumarT. MathavanA. Vanillin based colorimetric and fluorometric chemosensor for detection of Cu(II) ion: DFT calculation, DNA/BSA interaction and molecular docking studies.Inorg. Chem. Commun.202214310971610.1016/j.inoche.2022.109716
    [Google Scholar]
  63. YangZ. YuanY. XuX. GuoH. YangF. An effective long-wavelength fluorescent sensor for Cu2+ based on dibenzylidenehydrazine-bridged biphenylacrylonitrile.Anal. Bioanal. Chem.2022414164707471610.1007/s00216‑022‑04093‑5 35562571
    [Google Scholar]
  64. DivyashreeN.R. RevanasiddappaH.D. BhavyaN.R. MahendraM. JayalakshmiB. ShivamalluC. Prasad KollurS. Azaneylylidene-based tetradentate Schiff base as a new “ON-OFF” fluorescent probe for the detection of Cu(II) ion: Synthesis, characterization and real sample analysis.Spectrochim. Acta A Mol. Biomol. Spectrosc.202329212243510.1016/j.saa.2023.122435 36758319
    [Google Scholar]
  65. HuangY. DingY.F. ZhengY.R. SunY.X. DongW.K. An asymmetric salamo-type fluorescent chemosensor for efficient recognition of Cu2+ and B4O72¯ ions.J. Mol. Struct.2023129213613210.1016/j.molstruc.2023.136132
    [Google Scholar]
  66. SaidA.I. GeorgievN.I. BojinovV.B. Simple excited state intramolecular proton transfer (ESIPT) based probe for pH and selective detection of copper(II) ion in aqueous alkaline environment: Sensitivity, selectivity and logic behavior.J. Photochem. Photobiol. Chem.202444611517610.1016/j.jphotochem.2023.115176
    [Google Scholar]
  67. HijjiY.M. RajanR. ShraimA.M. 3-aminopyridine salicylidene: a sensitive and selective chemosensor for the detection of Cu(II), Al(III), and Fe(III) with application to real samples.Int. J. Mol. Sci.202223211311310.3390/ijms232113113 36361899
    [Google Scholar]
  68. ChenM. CaoF. HuangS. LiY. ZhongM. ZhuM. The Schiff base probe with J-aggregation induced emission for selective detection of Cu2+.J. Fluoresc.20223241457146910.1007/s10895‑022‑02948‑9 35451703
    [Google Scholar]
  69. BhardwajV. HindochaL. Ashok KumarS.K. SahooS.K. An aggregation-induced emissive pyridoxal derived tetradentate Schiff base for the fluorescence turn-off sensing of copper(II) in an aqueous medium.New J. Chem.20224673248325710.1039/D1NJ05523B
    [Google Scholar]
  70. SharmaS. Chayawan; Debnath, J.; Sundar Ghosh, K. Method for highly selective, ultrasensitive fluorimetric detection of Cu2+ and Al3+ by Schiff bases containing o-phenylenediamine and o-aminophenol.Methods2023217273510.1016/j.ymeth.2023.06.013 37399850
    [Google Scholar]
  71. ZhangX. YuS. PangX. RenX. ZhangB. KongJ. LiL. Solvent-directed multiple correspondence fluorescent probe for highly selective and sensitive detection of Cu2+ and Mg2+.Spectrochim. Acta A Mol. Biomol. Spectrosc.202330312320510.1016/j.saa.2023.123205 37523852
    [Google Scholar]
  72. Sanmartín-MatalobosJ. Bermejo-BarreraP. Pérez-JusteI. FondoM. García-DeibeA.M. Alves-IglesiasY. Experimental and computational studies on the interaction of a Dansyl-based fluorescent Schiff base ligand with Cu2+ ions and CuO NPs.Int. J. Mol. Sci.202223191156510.3390/ijms231911565 36232868
    [Google Scholar]
  73. LiuY. WuM. YouJ. WuW. YuY. Synthesis and application of naphthalimide Schiff base fluorescent probe for detection of copper ion and glyphosate.Anal. Chem.2022500577278010.19756/j.issn.0253‑3820.210829
    [Google Scholar]
  74. ZhangJ.Q. YaoG.X. LaY.T. DongW.K. A highly selective bis(salamo)-based fluorescent sensor for two-pronged recognitions to Cu2+ and Arg.Inorg. Chim. Acta202253312077510.1016/j.ica.2021.120775
    [Google Scholar]
  75. BhallaP. TomerN. GoelA. Monika; Ansari, A.; Malhotra, R. Chemoselective detection based on experimental and theoretical calculations of Cu2+ ions via deprotonation of chromone derived probe and its application.J. Mol. Struct.2022126413325110.1016/j.molstruc.2022.133251
    [Google Scholar]
  76. BaiY. ZhangH. YangB. LengX. Development of a fluorescein-based probe with an "off-on" mechanism for selective detection of Copper(II) Ions and its application in imaging of living cells. Biosensors-Basel,2023133030110.3390/bios13030301
    [Google Scholar]
  77. WuM. YuY. YouJ. WuW. Construction and application of glyphosate fluorescence sensor mediated by copper ion.Anal. Chem.2023510113014510.19756/j.issn.0253‑3820.221213
    [Google Scholar]
  78. ZhaoJ. ZhangL. HuangQ. MaD. RenT. A near-infrared AIEE fluorescent chemosensor for Cu2+ through an IPT process.Inorg. Chim. Acta202355512157910.1016/j.ica.2023.121579
    [Google Scholar]
  79. RameshS. KumaresanS. Coumarin xanthene combined probe for the multi-color detection of metal ions and electrospun fibers developed for real-time monitoring.J. Fluoresc.20233341469148010.1007/s10895‑023‑03161‑y 36757642
    [Google Scholar]
  80. NamH. MoonS. GilD. KimC. A dinitrophenol-based colorimetric chemosensor for sequential Cu2+ and S2− detection.Chemosensors (Basel)202311214310.3390/chemosensors11020143
    [Google Scholar]
  81. WuJ.P. XingA.P. YuanY.Y. HaoY.T. PanP. HeS.N. YuanJ. ZengD. A near-infrared hemicyanine-based colorimetric and fluorescent chemosensor for highly sensitive detection of Cu2+ and imaging in living cells and in vivo.Dyes Pigments202422111179710.1016/j.dyepig.2023.111797
    [Google Scholar]
  82. SaidA.I. StanevaD. AngelovaS. GrabchevI. A multi-channel rhodamine-pyrazole based chemosensor for sensing pH, Cu2+, CN– and Ba2+ and its function as a digital comparator.J. Photochem. Photobiol. Chem.202243311421810.1016/j.jphotochem.2022.114218
    [Google Scholar]
  83. LiuJ. ChengP. WuQ. ChenS. WangM. WeiK. LiY. CaoY. LiangX. ZengX. WangX. LiH. Preparation and application of a fast, naked-eye, highly selective and sensitive fluorescent probe of schiff base for detection of Cu2+.Chemosensors2023111155610.20944/preprints202309.0461.v1
    [Google Scholar]
  84. HeoJ.S. SuhB. KimC. Selective detection of Cu2+ by benzothiazole-based colorimetric chemosensor: a DFT study.J. Chem. Sci.202213424310.1007/s12039‑022‑02037‑1
    [Google Scholar]
  85. SidanaN. DeviP. KaurH. Thiophenol amine-based Schiff base for colorimetric detection of Cu2+ and Hg2+ ions.Opt. Mater.202212411198510.1016/j.optmat.2022.111985
    [Google Scholar]
  86. WangH. WangP. NiuL. LiuC. XiaoY. TangY. ChenY. Carbazole-thiophene based fluorescent probe for selective detection of Cu2+ and its live cell imaging.Spectrochim. Acta A Mol. Biomol. Spectrosc.202227812125710.1016/j.saa.2022.121257 35537255
    [Google Scholar]
  87. SrisuwanP. SappasombutA. ThongyodW. JantaratT. TipmaneeV. LeesakulN. SooksawatD. Highly sensitive and selective coumarin-based fluorescent chemosensor for Cu2+ detection.J. Photochem. Photobiol. Chem.202242711384110.1016/j.jphotochem.2022.113841
    [Google Scholar]
  88. GilD. KimC. A selective chromone‐based colorimetric chemosensor for detecting Cu2+ in near‐perfect aqueous solution and test kit.J. Heterocycl. Chem.20225981357136510.1002/jhet.4475
    [Google Scholar]
  89. SahuR. YadavS. GunturuK.C. KapdiA.R. Phenothiazine-based Cu(II)-selective fluorescent sensor: GHK-Cu sensing applications.J. Org. Chem.20238821151181512910.1021/acs.joc.3c01600 37830186
    [Google Scholar]
  90. LinY. YuA. WangJ. KongD. LiuH. LiJ. JiaC. A curcumin-based AIEE-active fluorescent probe for Cu2+ detection in aqueous solution.RSC Advances20221226167721677810.1039/D2RA02595G 35754898
    [Google Scholar]
  91. FanE. GuoH. HaoT. ZhaoR. ZhangP. FengY. LiuY. DengK. Morpholine-modified polyacrylamides with Polymerization-Induced emission and its specific detection to Cu2+ ions.Spectrochim. Acta A Mol. Biomol. Spectrosc.202430912378210.1016/j.saa.2023.123782 38215564
    [Google Scholar]
  92. Deb RoyJ.S. DebM. SanfuiM.D.H. RoyS. DuttaA. ChattopadhyayP.K. GhoshN.N. RoyS. SinghaN.R. Light-emitting redox polymers for sensing and removal-reduction of Cu(II): Roles of hydrogen bonding in nonconventional fluorescence.ACS Appl. Polym. Mater.2022431643165610.1021/acsapm.1c01479
    [Google Scholar]
  93. ZhangJ. ZhouX. WangJ. FangD. A red-emitting Europium(III) complex as a luminescent probe with large Stokes shift for the sequential determination of Cu2+ and biothiols in real samples.Spectrochim. Acta A Mol. Biomol. Spectrosc.202228212166310.1016/j.saa.2022.121663 35917616
    [Google Scholar]
  94. WangX. MaG. ZhangW. ZhaoW. LianG. ZhangS. ZhangD. LiuW. Multifunctional phthalocyanine NIR sensor for fluorescent and colorimetric dual-imaging and removal of intracellular and environmental Cu2+.J. Photochem. Photobiol. Chem.202444911535510.1016/j.jphotochem.2023.115355
    [Google Scholar]
  95. ShahbazM. SharifS. SaeedM. AshrafA. Rehman AfzalT.T. A facile and highly selective fluorimetric chemosensor 1,2,4-Aminonaphthol sulfonic acid for detection of copper ions in aqueous medium.J. Lumin.202326312014910.1016/j.jlumin.2023.120149
    [Google Scholar]
  96. GuoT. TianR. QuW. YangB. GengZ. WangZ. A near-infrared turn-on fluorescent sensor for the determination of copper in mitochondria.Dyes Pigments202220511048310.1016/j.dyepig.2022.110483
    [Google Scholar]
  97. MalankarG.S. ShelarD.S. ManikandanM. PatraM. ManjareS.T. Synthesis of selenium-based BOPHY sensor for imaging of Cu(II) in living HeLa cells.J. Mol. Struct.2023128113511810.1016/j.molstruc.2023.135118
    [Google Scholar]
  98. CaoY. LiJ. ChenM. ZhouL. ZhangQ. LiuW. LiuY. Construction of multicolor fluorescence hydrogels based on the dual-emission CDs@SiO2/AuNCs for alternative visual recognition of copper ions and glutathione.Microchem. J.202218110780110.1016/j.microc.2022.107801
    [Google Scholar]
  99. JiangW. WeiS. ZhangR. A novel ratiometric fluorescence probe for the detection of copper (II) and silver(I) based on assembling dye-doped silica core–shell nanoparticles with gold nanoclusters.Mikrochim. Acta2023190310510.1007/s00604‑023‑05677‑3 36843138
    [Google Scholar]
  100. HeW. LimS.F. BainiR. QuY. LiX. Visual determination of Copper(II) using a biomass sourced carbon quantum dot (CQD) ratiometric fluorescent probe.Anal. Lett.202411410.1080/00032719.2024.2321314
    [Google Scholar]
  101. HeY. WangY. MaoG. LiangC. FanM. Ratiometric fluorescent nanoprobes based on carbon dots and multicolor CdTe quantum dots for multiplexed determination of heavy metal ions.Anal. Chim. Acta2022119133925110.1016/j.aca.2021.339251 35033275
    [Google Scholar]
  102. LiuP. HaoR. SunW. LinZ. JingT. One‐pot synthesis of copper nanocluster/Tb‐MOF composites for the ratiometric fluorescence detection of Cu2+.Luminescence202237101793179910.1002/bio.4359 35946061
    [Google Scholar]
  103. GombárG. SimonP. UngorD. SzatmáriI. CsapóE. Histidinehydroxamic acid as new biomolecule to produce molecular-like fluorescent gold nanoclusters: Possible mechanisms for metal ion sensing.J. Mol. Liq.202338712259710.1016/j.molliq.2023.122597
    [Google Scholar]
  104. SchneiderR. FacureM.H.M. TeodoroK.B.R. MercanteL.A. CorreaD.S. Hydrothermal synthesis of fluorescent functionalized MoS2 quantum dots for heavy metal detection.ACS Appl. Nano Mater.2023623224352244510.1021/acsanm.3c04983
    [Google Scholar]
  105. ZhangX. XuJ. PengY. MaC. WangX. ShangH. YaoL. ChenW. Dual-palindrome chained assembly regulates the formation of palindromic DNAzyme wire transducers empowering sensitized and one-step copper ion- dependent assay.Sens. Actuators B Chem.202237013247110.1016/j.snb.2022.132471
    [Google Scholar]
  106. ZhangW. ZhangY. LiuX. ZhangY. LiuY. WangW. SuR. SunY. HuangY. SongD. WuY. WangX. Ratiometric fluorescence and colorimetric dual-mode sensing platform based on carbon dots for detecting copper(II) ions and D-penicillamine.Anal. Bioanal. Chem.202241441651166210.1007/s00216‑021‑03789‑4 34988586
    [Google Scholar]
  107. ZhouX. ZhangJ. HuangD. YiY. WuK. ZhuG. Nitrogen-doped Ti3C2 MXene quantum dots as an effective FRET ratio fluorometric probe for sensitive detection of Cu2+ and D-PA.Spectrochim. Acta A Mol. Biomol. Spectrosc.202329312248410.1016/j.saa.2023.122484 36796242
    [Google Scholar]
  108. MohamedR.M.K. MohamedS.H. AsranA.M. AlsohaimiI.H. HassanH.M.A. IbrahimH. El-WekilM.M. Bifunctional ratiometric sensor based on highly fluorescent nitrogen and sulfur biomass-derived carbon nanodots fabricated from manufactured dairy product as a precursor.Spectrochim. Acta A Mol. Biomol. Spectrosc.202329312244410.1016/j.saa.2023.122444 36758366
    [Google Scholar]
  109. ChengX.Q. DaiZ.H. GaoH.X. PanQ.S. KongX.J. ShenF.F. WuS. Highly sensitive and selective ratiometric fluorescent and visual detection of Cu2+ based on the hydroxytyrosol–naphthoresorcin–quantum dots sensing platform.Microchem. J.202319510945010.1016/j.microc.2023.109450
    [Google Scholar]
  110. LiR. HuangM. ZhouP. DuanC. Construction of fluorescence probe based on carbon dots dual emission strategy and ratio detection of copper ions in water.Faguang Xuebao202344101872188010.37188/CJL.20230133
    [Google Scholar]
  111. SarkarP. NandiN. BarnwalN. SahuK. BSA-capped dual-emissive silver nanoclusters for detection of IO4– and Cu2+ ions.ACS Appl. Nano Mater.2023617158511585910.1021/acsanm.3c02752
    [Google Scholar]
  112. LiJ. ShenY. GuQ. LiuH. HengH. WangZ. WeiJ. ShenP. Fluorescence on and off sensing platform based on europium nanosheets for the detection of DPA and Cu2+ ions.Spectrochim. Acta A Mol. Biomol. Spectrosc.202329412252210.1016/j.saa.2023.122522 36863081
    [Google Scholar]
  113. LiZ. ChenL. DengJ. ZhangJ. QiaoC. YangM. XuG. LuoX. HuoD. HouC. Eu-MOF based fluorescence probe for ratiometric and visualization detection of Cu2+.Spectrochim. Acta A Mol. Biomol. Spectrosc.202430412336710.1016/j.saa.2023.123367 37714107
    [Google Scholar]
  114. ChenX. XuJ. LiY. ZhaoT. ZhangL. BiN. GouJ. JiaL. Two birds with one stone: Visual colorful assessment of dipicolinic acid and Cu2+ by Ln-MOF hybrid attapulgite nano-probe.Appl. Surf. Sci.202260515466510.1016/j.apsusc.2022.154665
    [Google Scholar]
  115. LeeM. TiwariA.P. KoT.H. KimH.Y. Metal-organic frameworks of rare earth metals embedded side-by-side nanofiber as a switchable luminescent sensor for Fe3+ and Cu2+ in aqueous media.J. Lumin.202224911902910.1016/j.jlumin.2022.119029
    [Google Scholar]
  116. PengL. GuoH. WuN. LiuY. LiuB. WangM. ChenY. TianJ. YangW. A novel dual emission ratiometric fluorescence sensor Eu3+/CDs@UiO-66 to achieve Cu2+ detection in water environment.Colloids Surf. A Physicochem. Eng. Asp.202366413120510.1016/j.colsurfa.2023.131205
    [Google Scholar]
  117. LiuL. YuJ. ShiS. WangJ. SongH. ZhangR. FuL. Preparation, luminescence and photofunctional performances of a hybrid layered gadolinium-europium hydroxide.J. Rare Earths20224091437144410.1016/j.jre.2021.07.011
    [Google Scholar]
/content/journals/cac/10.2174/0115734110326657240909064134
Loading
/content/journals/cac/10.2174/0115734110326657240909064134
Loading

Data & Media loading...


  • Article Type:
    Review Article
Keyword(s): copper; cuproptosis; Fluorescent; probe; ratio; sensor
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test