Skip to content
2000
Volume 21, Issue 6
  • ISSN: 1573-4110
  • E-ISSN: 1875-6727

Abstract

This extensive review highlights the different techniques used to extract chitosan, its antibacterial characteristics, and its wide range of applications across various industries. Thanks to its exceptional solubility and notable chemical and biological properties, it has been used in several applications. It is biodegradable, and biocompatible, and has numerous reactive amino side groups that enable chemical modification and the development of various practical derivatives. Several academic publications have extensively covered many characteristics of chitosan and its applications in different industries, such as medicine. Chitosan can impart different functions in multiple fields, such as antibacterial, antiviral, and other biological features. Chitosan has various applications across various industries. Due to its exceptional solubility and significant chemical and biological properties, it has been utilized in numerous applications. Chitosan is biodegradable and biocompatible, and its multiple reactive amino side groups enable chemical modification and the development of various practical derivatives. Chitosan can provide different functions in numerous fields, such as antibacterial, antiviral, and other biological features. This review primarily focuses on chitosan's sources and extraction methods, providing an up-to-date overview of its properties. Additionally, the review highlights the diverse applications of chitosan, whether in its original state or modified and incorporated into nanocomposites, in various fields, making it a highly versatile and commonly used material in the biomedical industry.

Loading

Article metrics loading...

/content/journals/cac/10.2174/0115734110317876240628133351
2024-07-08
2025-11-04
Loading full text...

Full text loading...

References

  1. BounegruA.V. BounegruI. Chitosan-based electrochemical sensors for pharmaceuticals and clinical applications.Polymers20231517353910.3390/polym15173539 37688165
    [Google Scholar]
  2. TagliaroI. MusileG. CaricatoP. DorizziR.M. TagliaroF. AntoniniC. Chitosan film sensor for ammonia detection in microdiffusion analytical devices.Polymers20231521423810.3390/polym15214238 37959918
    [Google Scholar]
  3. KluczkaJ. Chitosan: Structural and Chemical Modification, Properties, and Application.MDPI2023554
    [Google Scholar]
  4. EgorovA.R. KirichukA.A. RubanikV.V. RubanikV.V.Jr TskhovrebovA.G. KritchenkovA.S. Chitosan and its derivatives: Preparation and antibacterial properties.Materials20231618607610.3390/ma16186076 37763353
    [Google Scholar]
  5. WuS. WuS. ZhangX. FengT. WuL. Chitosan-based hydrogels for bioelectronic sensing: Recent advances and applications in biomedicine and food safety.Biosensors20231319310.3390/bios13010093 36671928
    [Google Scholar]
  6. ThambiliyagodageC. JayanettiM. MendisA. EkanayakeG. LiyanaarachchiH. VigneswaranS. Recent Advances in Chitosan-Based Applications—A Review.Materials2023165207310.3390/ma16052073 36903188
    [Google Scholar]
  7. HanE. PanY. LiL. LiuY. GuY. CaiJ. Development of sensitive electrochemical sensor based on chitosan/mwcnts-auptpd nanocomposites for detection of bisphenol A.Chemosensors202311633110.3390/chemosensors11060331
    [Google Scholar]
  8. JafernikK. ŁadniakA. BlicharskaE. CzarnekK. EkiertH. WiącekA.E. SzopaA. Chitosan-based nanoparticles as effective drug delivery systems—a review.Molecules2023284196310.3390/molecules28041963 36838951
    [Google Scholar]
  9. MulyasuryaniA. PranantoY.P. FardiyahQ. WidwiastutiH. DarjitoD. Application of chitosan-based molecularly imprinted polymer in development of electrochemical sensor for p-aminophenol determination.Polymers2023158181810.3390/polym15081818 37111963
    [Google Scholar]
  10. JiangY. KrishnanN. HeoJ. FangR.H. ZhangL. Nanoparticle–hydrogel superstructures for biomedical applications.J. Control. Release202032450552110.1016/j.jconrel.2020.05.041 32464152
    [Google Scholar]
  11. DannertC. StokkeB.T. DiasR.S. Nanoparticle-hydrogel composites: From molecular interactions to macroscopic behavior.Polymers201911227510.3390/polym11020275 30960260
    [Google Scholar]
  12. MohiteP. RahayuP. MundeS. AdeN. ChidrawarV.R. SinghS. JayeoyeT.J. PrajapatiB.G. BhattacharyaS. PatelR.J. Chitosan-based hydrogel in the management of dermal infections: A review.Gels20239759410.3390/gels9070594 37504473
    [Google Scholar]
  13. HameedA.Z. RajS.A. KandasamyJ. BaghdadiM.A. ShahzadM.A. Chitosan: A sustainable material for multifarious applications.Polymers20221412233510.3390/polym14122335 35745912
    [Google Scholar]
  14. MadniA. KousarR. NaeemN. WahidF. Recent advancements in applications of chitosan-based biomaterials for skin tissue engineering.J. Bioresour. Bioprod.202161112510.1016/j.jobab.2021.01.002
    [Google Scholar]
  15. JayakumarR. MenonD. ManzoorK. NairS.V. TamuraH. Biomedical applications of chitin and chitosan based nanomaterials—A short review.Carbohydr. Polym.201082222723210.1016/j.carbpol.2010.04.074
    [Google Scholar]
  16. IbrahimM.A. AlhalafiM.H. EmamE.A.M. IbrahimH. MosaadR.M. A review of chitosan and chitosan nanofiber: Preparation, characterization, and its potential applications.Polymers20231513282010.3390/polym15132820 37447465
    [Google Scholar]
  17. MouryaV. InamdaraN. Ashutosh TiwariN. Carboxymethyl chitosan and its applications.Adv. Mater. Lett.201011113310.5185/amlett.2010.3108
    [Google Scholar]
  18. AranazI. HarrisR. HerasA. Chitosan amphiphilic derivatives. Chemistry and applications.Curr. Org. Chem.201014330833010.2174/138527210790231919
    [Google Scholar]
  19. WangW. MengQ. LiQ. LiuJ. ZhouM. JinZ. ZhaoK. Chitosan derivatives and their application in biomedicine.Int. J. Mol. Sci.202021248710.3390/ijms21020487 31940963
    [Google Scholar]
  20. WangW. XueC. MaoX. Chitosan: Structural modification, biological activity and application.Int. J. Biol. Macromol.20201644532454610.1016/j.ijbiomac.2020.09.042 32941908
    [Google Scholar]
  21. QinY. LiP. Antimicrobial chitosan conjugates: Current synthetic strategies and potential applications.Int. J. Mol. Sci.202021249910.3390/ijms21020499 31941068
    [Google Scholar]
  22. LiuX. ZhaoX. LiuY. ZhangT. Review on preparation and adsorption properties of chitosan and chitosan composites.Polym. Bull.20227942633266510.1007/s00289‑021‑03626‑9
    [Google Scholar]
  23. KumariS. KishorR. Chitin and chitosan: Origin, properties, and applications.In: Handbook of chitin and chitosan.Elsevier202013310.1016/B978‑0‑12‑817970‑3.00001‑8
    [Google Scholar]
  24. PiresC.T.G.V.M.T. VilelaJ.A.P. AiroldiC. The effect of chitin alkaline deacetylation at different condition on particle properties.Procedia Chem.2014922022510.1016/j.proche.2014.05.026
    [Google Scholar]
  25. AkpanE. Solubility, degree of acetylation, and distribution of acetyl groups in chitosan.In: Handbook of Chitin and Chitosan.Elsevier202013116410.1016/B978‑0‑12‑817970‑3.00005‑5
    [Google Scholar]
  26. NovikovV.Y. DerkachS.R. KonovalovaI.N. DolgopyatovaN.V. KuchinaY.A. Mechanism of heterogeneous alkaline deacetylation of chitin: A review.Polymers2023157172910.3390/polym15071729 37050343
    [Google Scholar]
  27. MouynaI. DellièreS. BeauvaisA. GravelatF. SnarrB. LehouxM. ZachariasC. SunY. de Jesus CarrionS. PearlmanE. SheppardD.C. LatgéJ.P. What are the functions of chitin deacetylases in Aspergillus fumigatus?Front. Cell. Infect. Microbiol.2020102810.3389/fcimb.2020.00028 32117802
    [Google Scholar]
  28. KouS.G. PetersL.M. MucaloM.R. Chitosan: A review of sources and preparation methods.Int. J. Biol. Macromol.2021169859410.1016/j.ijbiomac.2020.12.005 33279563
    [Google Scholar]
  29. Martín-LópezH. Pech-CohuoS.C. Ayora-TalaveraT. Cuevas-BernardinoJ.C. Ramos-DíazA. Espinosa-AndrewsH. ShiraiK. PachecoN. Deacetylation of chitin obtained by biological method and its application in melipona honey-incorporated antimicrobial biofilms.MRS Adv.202163888589210.1557/s43580‑021‑00168‑0
    [Google Scholar]
  30. AkopovaT.A. PopyrinaT.N. DeminaT.S. Mechanochemical transformations of polysaccharides: A systematic review.Int. J. Mol. Sci.202223181045810.3390/ijms231810458 36142370
    [Google Scholar]
  31. NgoT.H.D. NgoD.N. Effects of low–frequency ultrasound on heterogenous deacetylation of chitin.Int. J. Biol. Macromol.2017104Pt B1604161010.1016/j.ijbiomac.2017.03.117 28342758
    [Google Scholar]
  32. WardhonoE.Y. PinemM.P. KustiningsihI. EffendyM. ClausseD. SalehK. GuéninE. Heterogeneous deacetylation reaction of chitin under low-frequency ultrasonic irradiation.Carbohydr. Polym.202126711818010.1016/j.carbpol.2021.118180 34119148
    [Google Scholar]
  33. VerleeA. MinckeS. StevensC.V. Recent developments in antibacterial and antifungal chitosan and its derivatives.Carbohydr. Polym.201716426828310.1016/j.carbpol.2017.02.001 28325326
    [Google Scholar]
  34. DragostinO.M. SamalS.K. DashM. LupascuF. PânzariuA. TuchilusC. GhetuN. DanciuM. DubruelP. PieptuD. VasileC. TatiaR. ProfireL. New antimicrobial chitosan derivatives for wound dressing applications.Carbohydr. Polym.2016141284010.1016/j.carbpol.2015.12.078 26876993
    [Google Scholar]
  35. ChenQ. QiY. JiangY. QuanW. LuoH. WuK. LiS. OuyangQ. Progress in research of chitosan chemical modification technologies and their applications.Mar. Drugs202220853610.3390/md20080536 36005539
    [Google Scholar]
  36. WuK.H. WangJ.C. HuangJ.Y. HuangC.Y. ChengY.H. LiuN.T. Preparation and antibacterial effects of Ag/AgCl-doped quaternary ammonium-modified silicate hybrid antibacterial material.Mater. Sci. Eng. C20199817718410.1016/j.msec.2018.12.142 30813017
    [Google Scholar]
  37. NegiK. UmarA. ChauhanM.S. AkhtarM.S. Ag/CeO2 nanostructured materials for enhanced photocatalytic and antibacterial applications.Ceram. Int.20194516205092051710.1016/j.ceramint.2019.07.030
    [Google Scholar]
  38. GutiérrezB.J.M. ConceiçãoK. de AndradeV.M. Trava-AiroldiV.J. CapoteG. High antibacterial properties of DLC film doped with nanodiamond.Surf. Coat. Tech.201937539540110.1016/j.surfcoat.2019.07.029
    [Google Scholar]
  39. SekarA.D. KumarV. MuthukumarH. GopinathP. MatheswaranM. Electrospinning of Fe-doped ZnO nanoparticles incorporated polyvinyl alcohol nanofibers for its antibacterial treatment and cytotoxic studies.Eur. Polym. J.2019118273510.1016/j.eurpolymj.2019.05.038
    [Google Scholar]
  40. KwakH.W. KimJ.E. LeeK.H. Green fabrication of antibacterial gelatin fiber for biomedical application.React. Funct. Polym.2019136869410.1016/j.reactfunctpolym.2018.12.020
    [Google Scholar]
  41. RatovaM. MillsA. Antibacterial titania-based photocatalytic extruded plastic films.J. Photochem. Photobiol. Chem.201529915916510.1016/j.jphotochem.2014.11.014
    [Google Scholar]
  42. BelbekhoucheS. BousserrhineN. AlphonseV. Le FlochF. Charif MechicheY. MenidjelI. CarbonnierB. Chitosan based self-assembled nanocapsules as antibacterial agent.Colloids Surf. B Biointerfaces201918115816510.1016/j.colsurfb.2019.05.028 31129522
    [Google Scholar]
  43. Karimi AlavijehR. BeheshtiS. AkhbariK. MorsaliA. Investigation of reasons for metal–organic framework’s antibacterial activities.Polyhedron201815625727810.1016/j.poly.2018.09.028
    [Google Scholar]
  44. ZhouY. YangH. LiuX. MaoJ. GuS. XuW. Potential of quaternization-functionalized chitosan fiber for wound dressing.Int. J. Biol. Macromol.20135232733210.1016/j.ijbiomac.2012.10.012 23089086
    [Google Scholar]
  45. CheahW.Y. ShowP.L. NgI.S. LinG.Y. ChiuC.Y. ChangY.K. Antibacterial activity of quaternized chitosan modified nanofiber membrane.Int. J. Biol. Macromol.201912656957710.1016/j.ijbiomac.2018.12.193 30584947
    [Google Scholar]
  46. ResslerA. Chitosan-based biomaterials for bone tissue engineering applications: A short review.Polymers20221416343010.3390/polym14163430 36015686
    [Google Scholar]
  47. CapuanaE. LoprestiF. Carfì PaviaF. BrucatoV. La CarrubbaV. Solution-based processing for scaffold fabrication in tissue engineering applications: A brief review.Polymers20211313204110.3390/polym13132041 34206515
    [Google Scholar]
  48. KimY. ZharkinbekovZ. RaziyevaK. TabyldiyevaL. BerikovaK. ZhumagulD. TemirkhanovaK. SaparovA. Chitosan-based biomaterials for tissue regeneration.Pharmaceutics202315380710.3390/pharmaceutics15030807 36986668
    [Google Scholar]
  49. GambariL. AmoreE. RaggioR. BonaniW. BaroneM. LisignoliG. GrigoloB. MottaA. GrassiF. Hydrogen sulfide-releasing silk fibroin scaffold for bone tissue engineering.Mater. Sci. Eng. C201910247148210.1016/j.msec.2019.04.039 31147018
    [Google Scholar]
  50. Moreno MadridA.P. VrechS.M. SanchezM.A. RodriguezA.P. Advances in additive manufacturing for bone tissue engineering scaffolds.Mater. Sci. Eng. C201910063164410.1016/j.msec.2019.03.037 30948100
    [Google Scholar]
  51. RanganathanS. BalagangadharanK. SelvamuruganN. Chitosan and gelatin-based electrospun fibers for bone tissue engineering.Int. J. Biol. Macromol.201913335436410.1016/j.ijbiomac.2019.04.115 31002907
    [Google Scholar]
  52. MarinsN.H. LeeB.E.J. SilvaR.M. RaghavanA. Villarreal CarreñoN.L. GrandfieldK. Niobium pentoxide and hydroxyapatite particle loaded electrospun polycaprolactone/gelatin membranes for bone tissue engineering.Colloids Surf. B Biointerfaces201918211038610.1016/j.colsurfb.2019.110386 31369954
    [Google Scholar]
  53. FarokhiM. MottaghitalabF. SamaniS. ShokrgozarM.A. KunduS.C. ReisR.L. FatahiY. KaplanD.L. Silk fibroin/hydroxyapatite composites for bone tissue engineering.Biotechnol. Adv.2018361689110.1016/j.biotechadv.2017.10.001 28993220
    [Google Scholar]
  54. KhanM.A. MujahidM. A review on recent advances in chitosan based composite for hemostatic dressings.Int. J. Biol. Macromol.201912413814710.1016/j.ijbiomac.2018.11.045 30447365
    [Google Scholar]
  55. HuqT. KhanA. BrownD. DhayagudeN. HeZ. NiY. Sources, production and commercial applications of fungal chitosan: A review.J. Bioresour. Bioprod.202272859810.1016/j.jobab.2022.01.002
    [Google Scholar]
  56. HattoriH. IshiharaM. Changes in blood aggregation with differences in molecular weight and degree of deacetylation of chitosan.Biomed. Mater.201510101501410.1088/1748‑6041/10/1/015014 25611127
    [Google Scholar]
  57. BiranjeS.S. MadiwaleP.V. PatankarK.C. ChhabraR. BangdeP. DandekarP. AdivarekarR.V. Cytotoxicity and hemostatic activity of chitosan/carrageenan composite wound healing dressing for traumatic hemorrhage.Carbohydr. Polym.202023911610610.1016/j.carbpol.2020.116106 32414437
    [Google Scholar]
  58. PiekarskaK. SikoraM. OwczarekM. Jóźwik-PruskaJ. Wiśniewska-WronaM. Chitin and chitosan as polymers of the future—obtaining, modification, life cycle assessment and main directions of application.Polymers202315479310.3390/polym15040793 36850077
    [Google Scholar]
  59. HuZ. LuS. ChengY. KongS. LiS. LiC. YangL. Investigation of the effects of molecular parameters on the hemostatic properties of chitosan.Molecules20182312314710.3390/molecules23123147 30513622
    [Google Scholar]
  60. PogorielovM.V. SikoraV.Z. Chitosan as a hemostatic agent: Current state. Eur. J. Med.Ser. B201521243310.13187/ejm.s.b.2015.2.24
    [Google Scholar]
  61. ChanL.W. KimC.H. WangX. PunS.H. WhiteN.J. KimT.H. PolySTAT-modified chitosan gauzes for improved hemostasis in external hemorrhage.Acta Biomater.20163117818510.1016/j.actbio.2015.11.017 26593785
    [Google Scholar]
  62. LestariW. YusryW.N.A.W. HarisM.S. JaswirI. IdrusE. A glimpse on the function of chitosan as a dental hemostatic agent.Jpn. Dent. Sci. Rev.202056114715410.1016/j.jdsr.2020.09.001 33204370
    [Google Scholar]
  63. WuS. HuangZ. YueJ. LiuD. WangT. EzannoP. RuanC. ZhaoX. LuW.W. PanH. The efficient hemostatic effect of Antarctic krill chitosan is related to its hydration property.Carbohydr. Polym.201513229530310.1016/j.carbpol.2015.06.030 26256352
    [Google Scholar]
  64. HuS. BiS. YanD. ZhouZ. SunG. ChengX. ChenX. Preparation of composite hydroxybutyl chitosan sponge and its role in promoting wound healing.Carbohydr. Polym.201818415416310.1016/j.carbpol.2017.12.033 29352906
    [Google Scholar]
  65. ZhaoY.W. LiuL. HanX. GuanJ. Preparation of N, O-carboxymethyl chitosan with different substitutional degree and its application for hemostasis.Adv. Mat. Res.2013798-7991061106610.4028/www.scientific.net/AMR.798‑799.1061
    [Google Scholar]
  66. HuangL. XiaoL. Jung PoudelA. LiJ. ZhouP. GauthierM. LiuH. WuZ. YangG. Porous chitosan microspheres as microcarriers for 3D cell culture.Carbohydr. Polym.201820261162010.1016/j.carbpol.2018.09.021 30287042
    [Google Scholar]
  67. LončarevićA. IvankovićM. RoginaA. Electrosprayed chitosan–copper complex microspheres with uniform size.Materials20211419563010.3390/ma14195630 34640029
    [Google Scholar]
  68. ZhaoJ. TianH. ShangF. LvT. ChenD. FengJ. Injectable, anti-cancer drug-eluted chitosan microspheres against osteosarcoma.J. Funct. Biomater.20221339110.3390/jfb13030091 35893459
    [Google Scholar]
  69. WangB. WangS. ZhangQ. DengY. LiX. PengL. ZuoX. PiaoM. KuangX. ShengS. YuY. Recent advances in polymer-based drug delivery systems for local anesthetics.Acta Biomater.201996556710.1016/j.actbio.2019.05.044 31152941
    [Google Scholar]
  70. EwartD. PetersonE.J. SteerC.J. A new era of genetic engineering for autoimmune and inflammatory diseases.Semin. Arthritis Rheum.2019491e1e710.1016/j.semarthrit.2019.05.004 31146955
    [Google Scholar]
  71. ShamsiM. MohammadiA. ManshadiM.K.D. Sanati-NezhadA. Mathematical and computational modeling of nano-engineered drug delivery systems.J. Control. Release201930715016510.1016/j.jconrel.2019.06.014 31229474
    [Google Scholar]
  72. SuC. LiuY. LiR. WuW. FawcettJ.P. GuJ. Absorption, distribution, metabolism and excretion of the biomaterials used in Nanocarrier drug delivery systems.Adv. Drug Deliv. Rev.20191439711410.1016/j.addr.2019.06.008 31255595
    [Google Scholar]
  73. GuZ. AimettiA.A. WangQ. DangT.T. ZhangY. VeisehO. ChengH. LangerR.S. AndersonD.G. Injectable nano-network for glucose-mediated insulin delivery.ACS Nano2013754194420110.1021/nn400630x 23638642
    [Google Scholar]
  74. EngkagulV. KlaharnI. SereemaspunA. ChirachanchaiS. Chitosan whisker grafted with oligo(lactic acid) nanoparticles via a green synthesis pathway: Potential as a transdermal drug delivery system.Nanomedicine20171382523253110.1016/j.nano.2017.07.001 28711550
    [Google Scholar]
  75. RajithaP. GopinathD. BiswasR. SabithaM. JayakumarR. Chitosan nanoparticles in drug therapy of infectious and inflammatory diseases.Expert Opin. Drug Deliv.20161381177119410.1080/17425247.2016.1178232 27087148
    [Google Scholar]
  76. YangY. ZhuH. WangJ. FangQ. PengZ. Enzymatically disulfide-crosslinked chitosan/hyaluronic acid layer-by-layer self-assembled microcapsules for redox-responsive controlled release of protein.ACS Appl. Mater. Interfaces20181039334933350610.1021/acsami.8b07120 30203959
    [Google Scholar]
  77. TaoF. MaS. TaoH. JinL. LuoY. ZhengJ. XiangW. DengH. Chitosan-based drug delivery systems: From synthesis strategy to osteomyelitis treatment – A review.Carbohydr. Polym.202125111706310.1016/j.carbpol.2020.117063 33142615
    [Google Scholar]
  78. ShoueirK.R. El-DesoukyN. RashadM.M. AhmedM.K. JanowskaI. El-KemaryM. Chitosan based-nanoparticles and nanocapsules: Overview, physicochemical features, applications of a nanofibrous scaffold, and bioprinting.Int. J. Biol. Macromol.20211671176119710.1016/j.ijbiomac.2020.11.072 33197477
    [Google Scholar]
  79. LangerR. New methods of drug delivery.Science199024949761527153310.1126/science.2218494 2218494
    [Google Scholar]
  80. ChaudhariS.P. PatilP.S. Pharmaceutical excipients: A review.Int J Adv Pharm Biol Chem2012112134
    [Google Scholar]
  81. JainK.K. An overview of drug delivery systems.Methods Mol. Biol.2020205915410.1007/978‑1‑4939‑9798‑5_1 31435914
    [Google Scholar]
  82. PuriV. SharmaA. KumarP. SinghI. HuanbuttaK. Synthesis and characterization of thiolated gum ghatti as a novel excipient: Development of compression-coated mucoadhesive tablets of domperidone.ACS Omega2021624158441585410.1021/acsomega.1c01328 34179628
    [Google Scholar]
  83. BulbulY.E. Eskitoros-TogayŞ.M. Demirtas-KorkmazF. DilsizN. Multi-walled carbon nanotube-incorporating electrospun composite fibrous mats for controlled drug release profile.Int. J. Pharm.201956811851310.1016/j.ijpharm.2019.118513 31301462
    [Google Scholar]
  84. OzluB. KabayG. BocekI. YilmazM. PiskinA.K. ShimB.S. MutluM. Controlled release of doxorubicin from polyethylene glycol functionalized melanin nanoparticles for breast cancer therapy: Part I. Production and drug release performance of the melanin nanoparticles.Int. J. Pharm.201957011861310.1016/j.ijpharm.2019.118613 31415880
    [Google Scholar]
  85. GajendiranM. JoH. KimK. BalasubramanianS. In vitro controlled release of tuberculosis drugs by amphiphilic branched copolymer nanoparticles.J. Ind. Eng. Chem.20197718118810.1016/j.jiec.2019.04.033
    [Google Scholar]
  86. SafdarR. OmarA.A. ArunagiriA. RegupathiI. ThanabalanM. Potential of Chitosan and its derivatives for controlled drug release applications – A review.J. Drug Deliv. Sci. Technol.20194964265910.1016/j.jddst.2018.10.020
    [Google Scholar]
  87. BajracharyaR. SongJ.G. BackS.Y. HanH.K. Recent advancements in non-invasive formulations for protein drug delivery.Comput. Struct. Biotechnol. J.2019171290130810.1016/j.csbj.2019.09.004 31921395
    [Google Scholar]
  88. LeeS.H. SongJ.G. HanH.K. Development of pH-responsive organic-inorganic hybrid nanocomposites as an effective oral delivery system of protein drugs.J. Control. Release2019311-312748410.1016/j.jconrel.2019.08.036 31487499
    [Google Scholar]
  89. JiangW.Z. CaiY. LiH.Y. Chitosan-based spray-dried mucoadhesive microspheres for sustained oromucosal drug delivery.Powder Technol.201731212413210.1016/j.powtec.2017.02.021
    [Google Scholar]
  90. RassuG. GaviniE. JonassenH. ZambitoY. FogliS. BreschiM.C. GiunchediP. New chitosan derivatives for the preparation of rokitamycin loaded microspheres designed for ocular or nasal administration.J. Pharm. Sci.200998124852486510.1002/jps.21751 19479981
    [Google Scholar]
  91. WangF. ZhangQ. LiX. HuangK. ShaoW. YaoD. HuangC. Redox-responsive blend hydrogel films based on carboxymethyl cellulose/chitosan microspheres as dual delivery carrier.Int. J. Biol. Macromol.201913441342110.1016/j.ijbiomac.2019.05.049 31078600
    [Google Scholar]
  92. PengH.H. HongD.X. GuanY.X. YaoS.J. Preparation of pH-responsive DOX-loaded chitosan nanoparticles using supercritical assisted atomization with an enhanced mixer.Int. J. Pharm.2019558829010.1016/j.ijpharm.2018.12.077 30639222
    [Google Scholar]
  93. ChuL. ZhangY. FengZ. YangJ. TianQ. YaoX. ZhaoX. TanH. ChenY. Synthesis and application of a series of amphipathic chitosan derivatives and the corresponding magnetic nanoparticle-embedded polymeric micelles.Carbohydr. Polym.201922311496610.1016/j.carbpol.2019.06.005 31426997
    [Google Scholar]
  94. CugginoJ.C. BlancoE.R.O. GugliottaL.M. Alvarez IgarzabalC.I. CalderónM. Crossing biological barriers with nanogels to improve drug delivery performance.J. Control. Release201930722124610.1016/j.jconrel.2019.06.005 31175895
    [Google Scholar]
  95. LiS. HuL. LiD. WangX. ZhangP. WangJ. YanG. TangR. Carboxymethyl chitosan-based nanogels via acid-labile ortho ester linkages mediated enhanced drug delivery.Int. J. Biol. Macromol.201912947748710.1016/j.ijbiomac.2019.02.072 30771386
    [Google Scholar]
  96. WangJ. XuM. ChengX. KongM. LiuY. FengC. ChenX. Positive/negative surface charge of chitosan based nanogels and its potential influence on oral insulin delivery.Carbohydr. Polym.201613686787410.1016/j.carbpol.2015.09.103 26572423
    [Google Scholar]
  97. SgambatoA. PastoriV. RussoL. VesentiniS. LecchiM. CipollaL. Neoglycosylated collagen: Effect on neuroblastoma F-11 cell lines.Molecules20202519436110.3390/molecules25194361 32977424
    [Google Scholar]
  98. RussoL. CipollaL. Glycomics: New challenges and opportunities in regenerative medicine.Chemistry20162238133801338810.1002/chem.201602156 27400428
    [Google Scholar]
  99. RussoL. SgambatoA. LecchiM. PastoriV. RaspantiM. NatalelloA. DogliaS.M. NicotraF. CipollaL. Neoglucosylated collagen matrices drive neuronal cells to differentiate.ACS Chem. Neurosci.20145426126510.1021/cn400222s 24625037
    [Google Scholar]
  100. LiangY. HeJ. GuoB. Functional hydrogels as wound dressing to enhance wound healing.ACS Nano2021158126871272210.1021/acsnano.1c04206 34374515
    [Google Scholar]
  101. PetroniS. TagliaroI. AntoniniC. D’ArienzoM. OrsiniS. ManoJ. BrancatoV. BorgesJ. CipollaL. Chitosan-based biomaterials: Insights into chemistry, properties, devices, and their biomedical applications.Mar. Drugs202321314710.3390/md21030147 36976196
    [Google Scholar]
  102. WardW.E. ChilibeckP.D. ComelliE.M. DuncanA.M. PhillipsS.M. RobinsonL.E. StellingwerffT. Research in nutritional supplements and nutraceuticals for health, physical activity, and performance: Moving forward.Appl. Physiol. Nutr. Metab.201944545546010.1139/apnm‑2018‑0781 30794435
    [Google Scholar]
  103. PuriV. NagpalM. SinghI. SinghM. DhingraG.A. HuanbuttaK. DheerD. SharmaA. SangnimT. A comprehensive review on nutraceuticals: Therapy support and formulation challenges.Nutrients20221421463710.3390/nu14214637 36364899
    [Google Scholar]
  104. PattiA.M. KatsikiN. NikolicD. Al-RasadiK. RizzoM. Nutraceuticals in lipid-lowering treatment: A narrative review on the role of chitosan.Angiology201566541642110.1177/0003319714542999 25037700
    [Google Scholar]
  105. Abd El-HackM.E. El-SaadonyM.T. ShafiM.E. ZabermawiN.M. ArifM. BatihaG.E. KhafagaA.F. Abd El-HakimY.M. Al-SagheerA.A. Antimicrobial and antioxidant properties of chitosan and its derivatives and their applications: A review.Int. J. Biol. Macromol.20201642726274410.1016/j.ijbiomac.2020.08.153 32841671
    [Google Scholar]
  106. KimS. Competitive biological activities of chitosan and its derivatives: Antimicrobial, antioxidant, anticancer, and anti-inflammatory activities.Int. J. Polym. Sci.2018201811310.1155/2018/1708172
    [Google Scholar]
  107. GomesL. PaschoalinV. Mere Del AguilaE. Chitosan nanoparticles: Production, physicochemical characteristics and nutraceutical applications chitosan nanoparticles: Production, physicochemical characteristics and nutraceutical applications.Revista Virtual de Quimica2017938710.21577/1984‑6835.20170022
    [Google Scholar]
  108. FengC. LiJ. KongM. LiuY. ChengX.J. LiY. ParkH.J. ChenX.G. Surface charge effect on mucoadhesion of chitosan based nanogels for local anti-colorectal cancer drug delivery.Colloids Surf. B Biointerfaces201512843944710.1016/j.colsurfb.2015.02.042 25769283
    [Google Scholar]
  109. GheorghițăD. MoldovanH. RobuA. BițaA.I. GrosuE. AntoniacA. CorneschiI. AntoniacI. BodogA.D. BăcilăC.I. Chitosan-based biomaterials for hemostatic applications: A review of recent advances.Int. J. Mol. Sci.202324131054010.3390/ijms241310540 37445718
    [Google Scholar]
  110. FengP. LuoY. KeC. QiuH. WangW. ZhuY. HouR. XuL. WuS. Chitosan-based functional materials for skin wound repair: Mechanisms and applications.Front. Bioeng. Biotechnol.2021965059810.3389/fbioe.2021.650598 33681176
    [Google Scholar]
  111. PawłowskiŁ. BartmańskiM. Mielewczyk-GryńA. CieślikB.M. GajowiecG. ZielińskiA. Electrophoretically deposited chitosan/eudragit E 100/AgNPs composite coatings on titanium substrate as a silver release system.Materials20211416453310.3390/ma14164533 34443056
    [Google Scholar]
  112. Kubasiewicz-RossP. FleischerM. PitułajA. HadzikJ. Nawrot-HadzikI. BortkiewiczO. DominiakM. JurczyszynK. Evaluation of the three methods of bacterial decontamination on implants with three different surfaces.Adv. Clin. Exp. Med.202029217718210.17219/acem/112606 32097545
    [Google Scholar]
  113. García-CabezónC. GodinhoV. Salvo-CominoC. TorresY. Martín-PedrosaF. Improved corrosion behavior and biocompatibility of porous titanium samples coated with bioactive chitosan-based nanocomposites.Materials20211421632210.3390/ma14216322 34771848
    [Google Scholar]
  114. AngganiH. PerdanaR. SiregarE. BachtiarE. The effect of coating chitosan on Porphyromonas gingivalis biofilm formation in the surface of orthodontic mini-implant.J. Adv. Pharm. Technol. Res.2021121848810.4103/japtr.JAPTR_95_20 33532361
    [Google Scholar]
  115. AlnufaiyB.M. LambarteR.N.A. Al-HamdanK.S. The osteogenetic potential of chitosan coated implant: An in vitro study.J. Stem Cells Regen. Med.2020162444910.46582/jsrm.1602008 33414580
    [Google Scholar]
  116. HallmannL. GerngroßM.D. Chitosan and its application in dental implantology.J. Stomatol. Oral Maxillofac. Surg.20221236e701e70710.1016/j.jormas.2022.02.006 35183801
    [Google Scholar]
  117. Paradowska-StolarzA. MikulewiczM. LaskowskaJ. KarolewiczB. OwczarekA. The importance of chitosan coatings in dentistry.Mar. Drugs2023211261310.3390/md21120613 38132934
    [Google Scholar]
  118. RónaV. BenczeB. KelemenK. VéghD. TóthR. KóiT. HegyiP. VargaG. RózsaN.K. GécziZ. Effect of chitosan on the number of Streptococcus mutans in saliva: A meta-analysis and systematic review.Int. J. Mol. Sci.202324201527010.3390/ijms242015270 37894948
    [Google Scholar]
  119. GuzmánE. OrtegaF. RubioR.G. Chitosan: A promising multifunctional cosmetic ingredient for skin and hair care.Cosmetics2022959910.3390/cosmetics9050099
    [Google Scholar]
  120. BrighamC. Chitin and chitosan: Sustainable, medically relevant biomaterials.Int. J. Biotechnol. Wellness Ind.201762414710.6000/1927‑3037.2017.06.02.1
    [Google Scholar]
  121. SionkowskaA. KaczmarekB. MichalskaM. LewandowskaK. GrabskaS. Preparation and characterization of collagen/chitosan/hyaluronic acid thin films for application in hair care cosmetics.Pure Appl. Chem.201789121829183910.1515/pac‑2017‑0314
    [Google Scholar]
  122. KulkaK. SionkowskaA. Chitosan based materials in cosmetic applications: A review.Molecules2023284181710.3390/molecules28041817 36838805
    [Google Scholar]
  123. ZhangY. HeP. LuoM. XuX. DaiG. YangJ. Highly stretchable polymer/silver nanowires composite sensor for human health monitoring.Nano Res.202013491992610.1007/s12274‑020‑2730‑z
    [Google Scholar]
  124. FuS. ZhuY. ZhangY. ZhangM. ZhangY. QiaoL. YinN. SongK. LiuM. WangD. Recent advances in carbon nanomaterials-based electrochemical sensors for phenolic compounds detection.Microchem. J.202117110677610.1016/j.microc.2021.106776
    [Google Scholar]
  125. DengJ. YukH. WuJ. VarelaC.E. ChenX. RocheE.T. GuoC.F. ZhaoX. Electrical bioadhesive interface for bioelectronics.Nat. Mater.202120222923610.1038/s41563‑020‑00814‑2 32989277
    [Google Scholar]
  126. YukH. LuB. ZhaoX. Hydrogel bioelectronics.Chem. Soc. Rev.20194861642166710.1039/C8CS00595H 30474663
    [Google Scholar]
  127. WuS. KimE. LiJ. BentleyW.E. ShiX.W. PayneG.F. Catechol-based capacitor for redox-linked bioelectronics.ACS Appl. Electron. Mater.2019181337134710.1021/acsaelm.9b00272 32090203
    [Google Scholar]
  128. LiaoM. WanP. WenJ. GongM. WuX. WangY. ShiR. ZhangL. Wearable, healable, and adhesive epidermal sensors assembled from mussel‐inspired conductive hybrid hydrogel framework.Adv. Funct. Mater.20172748170385210.1002/adfm.201703852
    [Google Scholar]
  129. LiangY. ZhaoX. HuT. ChenB. YinZ. MaP.X. GuoB. Adhesive hemostatic conducting injectable composite hydrogels with sustained drug release and photothermal antibacterial activity to promote full‐thickness skin regeneration during wound healing.Small20191512190004610.1002/smll.201900046 30786150
    [Google Scholar]
  130. PanZ. WangZ-Y. WangM-H. YangL. YuS-H. Adhesive aero-hydrogel hybrid conductor assembled from silver nanowire architectures.Sci. China Mater.202164112868287610.1007/s40843‑021‑1677‑3
    [Google Scholar]
  131. DuanJ. LiangX. GuoJ. ZhuK. ZhangL. Ultra‐stretchable and force‐sensitive hydrogels reinforced with chitosan microspheres embedded in polymer networks.Adv. Mater.201628368037804410.1002/adma.201602126 27380145
    [Google Scholar]
  132. CaoJ. WuB. YuanP. LiuY. HuC. Progress of research on conductive hydrogels in flexible wearable sensors.Gels202410214410.3390/gels10020144 38391474
    [Google Scholar]
  133. KimJ.H. KimS.R. KilH.J. KimY.C. ParkJ.W. Highly conformable, transparent electrodes for epidermal electronics.Nano Lett.20181874531454010.1021/acs.nanolett.8b01743 29923729
    [Google Scholar]
  134. LiuQ. YangS. RenJ. LingS. Flame-retardant and sustainable silk ionotronic skin for fire alarm systems.ACS Mater. Lett.20202771272010.1021/acsmaterialslett.0c00062
    [Google Scholar]
  135. LiC. DuanL. ChengX. Facile method to synthesize fluorescent chitosan hydrogels for selective detection and adsorption of Hg2+/Hg+.Carbohydr. Polym.202228811941710.1016/j.carbpol.2022.119417 35450660
    [Google Scholar]
  136. ChenF. ZhangY. WangM. LiuJ. HaiW. LiuY. Chitosan modified graphene field-effect transistor biosensor for ultrasensitive procalcitonin detection.Talanta2024268Pt 112530810.1016/j.talanta.2023.125308 37862752
    [Google Scholar]
  137. RajpurohitA.S. SrivastavaA.K. Simultaneous electrochemical sensing of three prevalent anti-allergic drugs utilizing nanostructured manganese hexacyanoferrate/chitosan modified screen printed electrode.Sens. Actuators B Chem.201929423124410.1016/j.snb.2019.05.046
    [Google Scholar]
  138. GholivandM.B. ShamsipurM. EhzariH. Cetirizine dihydrochloride sensor based on nano composite chitosan, MWCNTs and ionic liquid.Microchem. J.201914669270010.1016/j.microc.2019.01.068
    [Google Scholar]
  139. Abd-ElsabourM. Abou-KrishaM.M. KenawyS.H. YousefT.A. A novel electrochemical sensor based on an environmentally friendly synthesis of magnetic chitosan nanocomposite carbon paste electrode for the determination of diclofenac to control inflammation.Nanomaterials2023136107910.3390/nano13061079 36985972
    [Google Scholar]
  140. WuL. LuX. WuY. HuangC. GuC. TianY. MaJ. An electrochemical sensor based on synergistic enhancement effects between nitrogen-doped carbon nanotubes and copper ions for ultrasensitive determination of anti-diabetic metformin.Sci. Total Environ.202387816312010.1016/j.scitotenv.2023.163120 36996983
    [Google Scholar]
  141. Karami-KolmotiP. ZaeimbashiR. An electrochemical sensing platform based on a modified carbon paste electrode with graphene/Co3O4 nanocomposite for sensitive propranolol determination.ADMET DMPK202311222723610.5599/admet.1705 37325122
    [Google Scholar]
  142. HuangY. MuL. ZhaoX. HanY. GuoB. Bacterial growth-induced tobramycin smart release self-healing hydrogel for Pseudomonas aeruginosa-infected burn wound healing.ACS Nano2022168130221303610.1021/acsnano.2c05557 35921085
    [Google Scholar]
  143. LuoX. LiuY. QinR. AoF. WangX. ZhangH. YangM. LiuX. Tissue-nanoengineered hyperbranched polymer based multifunctional hydrogels as flexible “wounped treatment-health monitoring” bioelectronic implant.Appl. Mater. Today20222910157610.1016/j.apmt.2022.101576
    [Google Scholar]
  144. WuJ. LiuH. ChenW. MaB. JuH. Device integration of electrochemical biosensors.Nature Reviews Bioengineering20231534636010.1038/s44222‑023‑00032‑w 37168735
    [Google Scholar]
  145. KarratA. AmineA. Recent advances in chitosan-based electrochemical sensors and biosensors.Arab. J. Chem. Environ. Res2020726693
    [Google Scholar]
  146. ZhongC. YangB. JiangX. LiJ. Current progress of nanomaterials in molecularly imprinted electrochemical sensing.Crit. Rev. Anal. Chem.2018481153210.1080/10408347.2017.1360762 28777018
    [Google Scholar]
  147. WangB. HuangD. WengZ. Recent advances in polymer-based biosensors for food safety detection.Polymers20231515325310.3390/polym15153253 37571147
    [Google Scholar]
  148. ArtiguesM. Gilabert-PorresJ. TexidóR. BorrósS. AbellàJ. ColominasS. Analytical parameters of a novel glucose biosensor based on grafted PFM as a covalent immobilization technique.Sensors20212112418510.3390/s21124185 34207185
    [Google Scholar]
  149. LiX. FalconeN. HossainM.N. KraatzH.B. ChenX. HuangH. Development of a novel label-free impedimetric electrochemical sensor based on hydrogel/chitosan for the detection of ochratoxin.A. Talanta202122612218310.1016/j.talanta.2021.122183 33676715
    [Google Scholar]
  150. YeY. GuoH. SunX. Recent progress on cell-based biosensors for analysis of food safety and quality control.Biosens. Bioelectron.201912638940410.1016/j.bios.2018.10.039 30469077
    [Google Scholar]
  151. AlhammadiM. AliyaS. UmapathiR. OhM-H. HuhY.S. A simultaneous qualitative and quantitative lateral flow immunoassay for on-site and rapid detection of streptomycin in pig blood serum and urine.Microchem. J.202319510942710.1016/j.microc.2023.109427
    [Google Scholar]
  152. UmapathiR. Venkateswara RajuC. Majid GhoreishianS. Mohana RaniG. KumarK. OhM-H. Pil ParkJ. Suk HuhY. Recent advances in the use of graphitic carbon nitride-based composites for the electrochemical detection of hazardous contaminants.Coord. Chem. Rev.202247021470810.1016/j.ccr.2022.214708
    [Google Scholar]
  153. Venkateswara RajuC. Hwan ChoC. Mohana RaniG. ManjuV. UmapathiR. Suk HuhY. Pil ParkJ. Emerging insights into the use of carbon-based nanomaterials for the electrochemical detection of heavy metal ions.Coord. Chem. Rev.202347621492010.1016/j.ccr.2022.214920
    [Google Scholar]
  154. ShenY. WeiY. ZhuC. CaoJ. HanD-M. Ratiometric fluorescent signals-driven smartphone-based portable sensors for onsite visual detection of food contaminants.Coord. Chem. Rev.202245821444210.1016/j.ccr.2022.214442
    [Google Scholar]
  155. WeiM. RaoH. NiuZ. XueX. LuoM. ZhangX. HuangH. XueZ. LuX. Breaking the time and space limitation of point-of-care testing strategies: Photothermometric sensors based on different photothermal agents and materials.Coord. Chem. Rev.202144721414910.1016/j.ccr.2021.214149
    [Google Scholar]
  156. UmapathiR. RaniG.M. KimE. ParkS-Y. ChoY. HuhY.S. Sowing kernels for food safety: Importance of rapid on‐site detction of pesticide residues in agricultural foods.Food Front.20223466667610.1002/fft2.166
    [Google Scholar]
  157. LuY. ShiZ. LiuQ. Smartphone-based biosensors for portable food evaluation.Curr. Opin. Food Sci.201928748110.1016/j.cofs.2019.09.003
    [Google Scholar]
  158. MaT. WangH. WeiM. LanT. WangJ. BaoS. GeQ. FangY. SunX. Application of smart-phone use in rapid food detection, food traceability systems, and personalized diet guidance, making our diet more health.Food Res. Int.202215211091810.1016/j.foodres.2021.110918 35181089
    [Google Scholar]
  159. RateniG. DarioP. CavalloF. Smartphone-based food diagnostic technologies: A review.Sensors2017176145310.3390/s17061453 28632188
    [Google Scholar]
  160. KalyaniN. GoelS. JaiswalS. On site sensing of pesticides using point of care biosensors: A review.Environ. Chem. Lett.202119134535410.1007/s10311‑020‑01070‑1
    [Google Scholar]
  161. MaliH. ShahC. RaghunandanB.H. PrajapatiA.S. PatelD.H. TrivediU. SubramanianR.B. Organophosphate pesticides an emerging environmental contaminant: Pollution, toxicity, bioremediation progress, and remaining challenges.J. Environ. Sci.202312723425010.1016/j.jes.2022.04.023 36522056
    [Google Scholar]
  162. SohrabiH. HemmatiA. MajidiM.R. EyvaziS. Jahanban-EsfahlanA. BaradaranB. Adlpour-AzarR. MokhtarzadehA. de la GuardiaM. Recent advances on portable sensing and biosensing assays applied for detection of main chemical and biological pollutant agents in water samples: A critical review.Trends Analyt. Chem.202114311634410.1016/j.trac.2021.116344
    [Google Scholar]
  163. UmapathiR. GhoreishianS.M. SonwalS. RaniG.M. HuhY.S. Portable electrochemical sensing methodologies for on-site detection of pesticide residues in fruits and vegetables.Coord. Chem. Rev.202245321430510.1016/j.ccr.2021.214305
    [Google Scholar]
  164. UmapathiR. SonwalS. LeeM.J. Mohana RaniG. LeeE-S. JeonT-J. KangS-M. OhM-H. HuhY.S. Colorimetric based on-site sensing strategies for the rapid detection of pesticides in agricultural foods: New horizons, perspectives, and challenges.Coord. Chem. Rev.202144621406110.1016/j.ccr.2021.214061
    [Google Scholar]
  165. UmapathiR. ParkB. SonwalS. RaniG.M. ChoY. HuhY.S. Advances in optical-sensing strategies for the on-site detection of pesticides in agricultural foods.Trends Food Sci. Technol.2022119698910.1016/j.tifs.2021.11.018
    [Google Scholar]
  166. ViscianoP. SchironeM. Rapid methods for assessing food safety and quality.Foods20209453310.3390/foods9040533 32340291
    [Google Scholar]
  167. YanT. ZhangG. ChaiH. QuL. ZhangX. Flexible biosensors based on colorimetry, fluorescence, and electrochemistry for point-of-care testing.Front. Bioeng. Biotechnol.2021975369210.3389/fbioe.2021.753692 34650963
    [Google Scholar]
  168. PrabhuS.A. KavithayeniV. SuganthyR. GeethaK. Graphene quantum dots synthesis and energy application: A review.Carbon Letters202131111210.1007/s42823‑020‑00154‑w
    [Google Scholar]
  169. SahooM. VishwakarmaS. PanigrahiC. Kumar, J. Nanotechnology: Current applications and future scope in food.Food Front.20212132210.1002/fft2.58
    [Google Scholar]
  170. ZhangZ. LouY. GuoC. JiaQ. SongY. TianJ-Y. ZhangS. WangM. HeL. DuM. Metal–organic frameworks (MOFs) based chemosensors/biosensors for analysis of food contaminants.Trends Food Sci. Technol.202111856958810.1016/j.tifs.2021.10.024
    [Google Scholar]
  171. YanY. A recent trend: application of graphene in catalysis.Carbon Lett.202131177199
    [Google Scholar]
  172. ChoiJ. YongK. ChoiJ. CowieA. Emerging point-of-care technologies for food safety analysis.Sensors201919481710.3390/s19040817 30781554
    [Google Scholar]
  173. DanialW. A short review on electrochemical exfoliation of graphene and graphene quantum dots.Carbon Lett.202131371388
    [Google Scholar]
  174. FangL. JiaM. ZhaoH. KangL. ShiL. ZhouL. KongW. Molecularly imprinted polymer-based optical sensors for pesticides in foods: Recent advances and future trends.Trends Food Sci. Technol.202111638740410.1016/j.tifs.2021.07.039
    [Google Scholar]
  175. GuY. LiY. RenD. SunL. ZhuangY. YiL. WangS. Recent advances in nanomaterial‐assisted electrochemical sensors for food safety analysis.Food Front.20223345347910.1002/fft2.143
    [Google Scholar]
  176. PatelS. JamunkarR. SinhaD. Monisha; Patle, T.K.; Kant, T.; Dewangan, K.; Shrivas, K. Recent development in nanomaterials fabricated paper-based colorimetric and fluorescent sensors: A review.Trends Environ. Anal. Chem.202131e0013610.1016/j.teac.2021.e00136
    [Google Scholar]
  177. ReddicherlaU. Review—emerging trends in the development of electrochemical devices for the on-site detection of food contaminants.ECS Sens. Plus20221044601
    [Google Scholar]
  178. JinR. KongD. ZhaoX. LiH. YanX. LiuF. SunP. DuD. LinY. LuG. Tandem catalysis driven by enzymes directed hybrid nanoflowers for on-site ultrasensitive detection of organophosphorus pesticide.Biosens. Bioelectron.201914111147310.1016/j.bios.2019.111473 31272060
    [Google Scholar]
  179. MishraR.K. HubbleL.J. MartínA. KumarR. BarfidokhtA. KimJ. MusamehM.M. KyratzisI.L. WangJ. Wearable flexible and stretchable glove biosensor for on-site detection of organophosphorus chemical threats.ACS Sens.20172455356110.1021/acssensors.7b00051 28723187
    [Google Scholar]
  180. FarshchiF. SaadatiA. Kholafazad-KordashtH. SeidiF. HasanzadehM. Trifluralin recognition using touch‐based fingertip: Application of wearable glove‐based sensor toward environmental pollution and human health control.J. Mol. Recognit.20213411e292710.1002/jmr.2927 34288170
    [Google Scholar]
  181. MahmoudpourM. SaadatiA. HasanzadehM. Kholafazad-kordashtH. A stretchable glove sensor toward rapid monitoring of trifluralin: A new platform for the on‐site recognition of herbicides based on wearable flexible sensor technology using lab‐on‐glove.J. Mol. Recognit.20213410e292310.1002/jmr.2923 34131991
    [Google Scholar]
  182. SafarkhaniM. KimH. HanS. TaghavimandiF. ParkY. UmapathiR. JeongY-S. ShinK. HuhY.S. Advances in sprayable sensors for nerve agent detection.Coord. Chem. Rev.202450921580410.1016/j.ccr.2024.215804
    [Google Scholar]
  183. DagnawF.W. FengW. SongQ.H. Selective and rapid detection of nerve agent simulants by polymer fibers with a fluorescent chemosensor in gas phase.Sens. Actuators B Chem.202031812793710.1016/j.snb.2020.127937
    [Google Scholar]
  184. LeeH. KimH.J. Novel fluorescent probe for the selective detection of organophosphorous nerve agents through a cascade reaction from oxime to nitrile via isoxazole.Tetrahedron201470182966297010.1016/j.tet.2014.03.026
    [Google Scholar]
  185. JangY.J. MulayS.V. KimY. JorayevP. ChurchillD.G. Nerve agent simulant diethyl chlorophosphate detection using a cyclization reaction approach with high stokes shift system.New J. Chem.20174141653165810.1039/C6NJ03712G
    [Google Scholar]
  186. TauranY. BrioudeA. ColemanA.W. RhimiM. KimB. Molecular recognition by gold, silver and copper nanoparticles.World J. Biol. Chem.201343356310.4331/wjbc.v4.i3.35 23977421
    [Google Scholar]
/content/journals/cac/10.2174/0115734110317876240628133351
Loading
/content/journals/cac/10.2174/0115734110317876240628133351
Loading

Data & Media loading...


  • Article Type:
    Review Article
Keyword(s): antibacterial; biomaterials; biosensors; Chitosan; drug delivery; treatments
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test